983 research outputs found

    Color-coordinate system from a 13th-century account of rainbows.

    Get PDF
    We present a new analysis of Robert Grosseteste’s account of color in his treatise De iride (On the Rainbow), dating from the early 13th century. The work explores color within the 3D framework set out in Grosseteste’s De colore [see J. Opt. Soc. Am. A 29, A346 (2012)], but now links the axes of variation to observable properties of rainbows. We combine a modern understanding of the physics of rainbows and of human color perception to resolve the linguistic ambiguities of the medieval text and to interpret Grosseteste’s key terms

    He Scattering from Compact Clusters and from Diffusion-Limited Aggregates on Surfaces: Observable Signatures of Structure

    Full text link
    The angular intensity distribution of He beams scattered from compact clusters and from diffusion limited aggregates, epitaxially grown on metal surfaces, is investigated theoretically. The purpose is twofold: to distinguish compact cluster structures from diffusion limited aggregates, and to find observable {\em signatures} that can characterize the compact clusters at the atomic level of detail. To simplify the collision dynamics, the study is carried out in the framework of the sudden approximation, which assumes that momentum changes perpendicular to the surface are large compared with momentum transfer due to surface corrugation. The diffusion limited aggregates on which the scattering calculations were done, were generated by kinetic Monte Carlo simulations. It is demonstrated, by focusing on the example of compact Pt Heptamers, that signatures of structure of compact clusters may indeed be extracted from the scattering distribution. These signatures enable both an experimental distinction between diffusion limited aggregates and compact clusters, and a determination of the cluster structure. The characteristics comprising the signatures are, to varying degrees, the Rainbow, Fraunhofer, specular and constructive interference peaks, all seen in the intensity distribution. It is also shown, how the distribution of adsorbate heights above the metal surface can be obtained by an analysis of the specular peak attenuation. The results contribute to establishing He scattering as a powerful tool in the investigation of surface disorder and epitaxial growth on surfaces, alongside with STM.Comment: 41 pages, 16 postscript figures. For more details see http://www.fh.huji.ac.il/~dan

    Controlling Quantum Rotation With Light

    Full text link
    Semiclassical catastrophes in the dynamics of a quantum rotor (molecule) driven by a strong time-varying field are considered. We show that for strong enough fields, a sharp peak in the rotor angular distribution can be achieved via time-domain focusing phenomenon, followed by the formation of angular rainbows and glory-like angular structures. Several scenarios leading to the enhanced angular squeezing are proposed that use specially designed and optimized sequences of pulses. The predicted effects can be observed in many processes, ranging from molecular alignment (orientation) by laser fields to heavy-ion collisions, and the squeezing of cold atoms in a pulsed optical lattice.Comment: 8 pages, Latex, 8 figures, based on the talk given at the Eighth Rochester Conference on Coherence and Quantum Optics (June 13-16, 2001). To appear in the proceedings of CQO8 (Plenum, 2002

    Another face of Lorenz-Mie scattering: monodisperse distributions of spheres produce Lissajous-like patterns

    Get PDF
    The complete scattering matrix S of spheres was measured with a flow cytometer. The experimental equipment allows simultaneous detection of two scattering-matrix elements for every sphere in the distribution. Two-parameter scatterplots withx andy coordinates determined by the Sll + Sij and S11 - Sij values are measured. Samples of spheres with very narrow size distributions (< 1%) were analyzed with a FlowCytometer, and they produced unexpected two-parameter scatterplots. Instead of compact distributions we observed Lissajous-like loops. Simulation of the scatterplots, using Lorenz-Mie theory, shows that these loops are due not to experimental errors but to true Lorenz-Mie scattering. It is shown that the loops originate from the sensitivity of the scattered field on the radius of the spheres. This paper demonstrates that the interpretation of rare events and hidden features in flow cytometry needs reconsideration

    Orbiting Rainbows: Optical Manipulation of Aerosols and the Beginnings of Future Space Construction

    Get PDF
    Our objective is to investigate the conditions to manipulate and maintain the shape of an orbiting cloud of dust-like matter so that it can function as an ultra-lightweight surface with useful and adaptable electromagnetic characteristics, for instance, in the optical, RF, or microwave bands. Inspired by the light scattering and focusing properties of distributed optical assemblies in Nature, such as rainbows and aerosols, and by recent laboratory successes in optical trapping and manipulation, we propose a unique combination of space optics and autonomous robotic system technology, to enable a new vision of space system architecture with applications to ultra-lightweight space optics and, ultimately, in-situ space system fabrication. Typically, the cost of an optical system is driven by the size and mass of the primary aperture. The ideal system is a cloud of spatially disordered dust-like objects that can be optically manipulated: it is highly reconfigurable, fault-tolerant, and allows very large aperture sizes at low cost. See Figure 1 for a scenario of application of this concept. The solution that we propose is to construct an optical system in space in which the nonlinear optical properties of a cloud of micron-sized particles are shaped into a specific surface by light pressure, allowing it to form a very large and lightweight aperture of an optical system, hence reducing overall mass and cost. Other potential advantages offered by the cloud properties as optical system involve possible combination of properties (combined transmit/receive), variable focal length, combined refractive and reflective lens designs, and hyper-spectral imaging. A cloud of highly reflective particles of micron-size acting coherently in a specific electromagnetic band, just like an aerosol in suspension in the atmosphere, would reflect the Sun's light much like a rainbow. The only difference with an atmospheric or industrial aerosol is the absence of the supporting fluid medium. This new concept is based on recent understandings in the physics of optical manipulation of small particles in the laboratory and the engineering of distributed ensembles of spacecraft clouds to shape an orbiting cloud of micron-sized objects. In the same way that optical tweezers have revolutionized micro- and nano-manipulation of objects, our breakthrough concept will enable new large scale NASA mission applications and develop new technology in the areas of Astrophysical Imaging Systems and Remote Sensing because the cloud can operate as an adaptive optical imaging sensor. While achieving the feasibility of constructing one single aperture out of the cloud is the main topic of this work, it is clear that multiple orbiting aerosol lenses could also combine their power to synthesize a much larger aperture in space to enable challenging goals such as exoplanet detection. Furthermore, this effort could establish feasibility of key issues related to material properties, remote manipulation, and autonomy characteristics of cloud in orbit. There are several types of endeavors (science missions) that could be enabled by this type of approach, i.e. it can enable new astrophysical imaging systems, exoplanet search, large apertures allow for unprecedented high resolution to discern continents and important features of other planets, hyperspectral imaging, adaptive systems, spectroscopy imaging through limb, and stable optical systems from Lagrange-points. Future micro-miniaturization might hold promise of a further extension of our dust aperture concept to other more exciting smart dust concepts with other associated capabilities

    Adaptive Spectral Mapping for Real-Time Dispersive Refraction

    Get PDF
    Spectral rendering, or the synthesis of images by taking into account the wavelengths of light, allows effects otherwise impossible with other methods. One of these effects is dispersion, the phenomenon that creates a rainbow when white light shines through a prism. Spectral rendering has previously remained in the realm of off-line rendering (with a few exceptions) due to the extensive computation required to keep track of individual light wavelengths. Caustics, the focusing and de-focusing of light through a refractive medium, can be interpreted as a special case of dispersion where all the wavelengths travel together. This thesis extends Adaptive Caustic Mapping, a previously proposed caustics mapping algorithm, to handle spectral dispersion. Because ACM can display caustics in real-time, it is quite amenable to be extended to handle the more general case of dispersion. A method is presented that runs in screen-space and is fast enough to display plausible dispersion phenomena in real-time at interactive frame rates

    The impact of emergent technologies on interpersonal and community interaction of the future : a thematic analysis of selected novels of William Gibson and Vernor Vinge

    Get PDF
    unavailabl
    • …
    corecore