1,122 research outputs found

    A 3D discrete model of the diaphragm and human trunk

    Full text link
    In this paper, a 3D discrete model is presented to model the movements of the trunk during breathing. In this model, objects are represented by physical particles on their contours. A simple notion of force generated by a linear actuator allows the model to create forces on each particle by way of a geometrical attractor. Tissue elasticity and contractility are modeled by local shape memory and muscular fibers attractors. A specific dynamic MRI study was used to build a simple trunk model comprised of by three compartments: lungs, diaphragm and abdomen. This model was registered on the real geometry. Simulation results were compared qualitatively as well as quantitatively to the experimental data, in terms of volume and geometry. A good correlation was obtained between the model and the real data. Thanks to this model, pathology such as hemidiaphragm paralysis can also be simulated.Comment: published in: "Lung Modelling", France (2006

    A Data-Driven Appearance Model for Human Fatigue

    Get PDF
    Humans become visibly tired during physical activity. After a set of squats, jumping jacks or walking up a flight of stairs, individuals start to pant, sweat, loose their balance, and flush. Simulating these physiological changes due to exertion and exhaustion on an animated character greatly enhances a motion’s realism. These fatigue factors depend on the mechanical, physical, and biochemical function states of the human body. The difficulty of simulating fatigue for character animation is due in part to the complex anatomy of the human body. We present a multi-modal capturing technique for acquiring synchronized biosignal data and motion capture data to enhance character animation. The fatigue model utilizes an anatomically derived model of the human body that includes a torso, organs, face, and rigged body. This model is then driven by biosignal output. Our animations show the wide range of exhaustion behaviors synthesized from real biological data output. We demonstrate the fatigue model by augmenting standard motion capture with exhaustion effects to produce more realistic appearance changes during three exercise examples. We compare the fatigue model with both simple procedural methods and a dense marker set data capture of exercise motions

    Aerospace Medicine and Biology: A continuing bibliography with indexes, supplement 140

    Get PDF
    This bibliography lists 306 reports, articles, and other documents introduced into the NASA scientific and technical information system in March 1975

    Go-with-the-Flow: Tracking, Analysis and Sonification of Movement and Breathing to Build Confidence in Activity Despite Chronic Pain

    Get PDF
    Chronic (persistent) pain (CP) affects 1 in 10 adults; clinical resources are insufficient, and anxiety about activity restricts lives. Technological aids monitor activity but lack necessary psychological support. This article proposes a new sonification framework, Go-with-the-Flow, informed by physiotherapists and people with CP. The framework proposes articulation of user-defined sonified exercise spaces (SESs) tailored to psychological needs and physical capabilities that enhance body and movement awareness to rebuild confidence in physical activity. A smartphone-based wearable device and a Kinect-based device were designed based on the framework to track movement and breathing and sonify them during physical activity. In control studies conducted to evaluate the sonification strategies, people with CP reported increased performance, motivation, awareness of movement, and relaxation with sound feedback. Home studies, a focus group, and a survey of CP patients conducted at the end of a hospital pain management session provided an in-depth understanding of how different aspects of the SESs and their calibration can facilitate self-directed rehabilitation and how the wearable version of the device can facilitate transfer of gains from exercise to feared or demanding activities in real life. We conclude by discussing the implications of our findings on the design of technology for physical rehabilitation

    Go-with-the-flow: Tracking, Analysis and Sonification of Movement and Breathing to Build Confidence in Activity Despite Chronic Pain

    Get PDF
    Chronic (persistent) pain (CP) affects one in ten adults; clinical resources are insufficient, and anxiety about activity restricts lives. Technological aids monitor activity but lack necessary psychological support. This paper proposes a new sonification framework, Go-with-the-Flow, informed by physiotherapists and people with CP. The framework proposes articulation of user-defined sonified exercise spaces (SESs) tailored to psychological needs and physical capabilities that enhance body and movement awareness to rebuild confidence in physical activity. A smartphone-based wearable device and a Kinect-based device were designed based on the framework to track movement and breathing and sonify them during physical activity. In control studies conducted to evaluate the sonification strategies, people with CP reported increased performance, motivation, awareness of movement and relaxation with sound feedback. Home studies, a focus group and a survey of CP patients conducted at the end of a hospital pain management session provided an in-depth understanding of how different aspects of the SESs and their calibration can facilitate self-directed rehabilitation and how the wearable version of the device can facilitate transfer of gains from exercise to feared or demanding activities in real life. We conclude by discussing the implications of our findings on the design of technology for physical rehabilitation

    Spring water stress in Scots pine

    Get PDF
    Water use and net carbon assimilation during spring was examined on Scots pine trees exposed to different soil warming dynamics in the field. Sap flow, needle water potential and net carbon assimilation were measured on trees that were exposed to a wide range of soil temperature regimes caused by manipulating the snow cover on tree-scale soil plots. This made it possible to quantify the sensitivity of water uptake and recovery of gas exchange by Scots pine in the critical transition from winter dormancy to the growing season, which can be influenced by silvicultural practices. A part of the study was to find a tool for estimating the coupled effect of belowground and aboveground climate on transpiration, as well as to adapt this tool to the harsh climate of the boreal forest. Combining the results of field experiments on tree susceptibility to water stress with a physically based SVAT model as well as a model for estimating the recovery of photosynthesis helped to predict spatial and inter-annual variability of snow depths, soil warming, water uptake and net primary productivity during spring within different Scots pine stands across the landscape. This could provide a better basis for a more frostconscious forest management. The studies have confirmed the importance of low soil temperatures in combination with aboveground climate for root water uptake and net carbon assimilation during spring, when soil warming occurs after the start of the growing season. The studies have also confirmed that earlier, controlled laboratory studies on the inhibiting effects of low soil temperature on water relations and gas exchange for seedlings or saplings also hold true on mature trees in the field. The experimental data served well as the basis for model analyses of the interaction between belowground and aboveground conditions on water use and net photosynthesis. The results of the field studies and model analyses suggest that the effect of soil temperature on tree water uptake and net photosynthesis during spring, in conjunction with aboveground conditions, are factors that need to be considered in forest management in areas susceptible to soil frost and low soil temperatures

    Physiologic responses to water immersion in man: A compendium of research

    Get PDF
    A total of 221 reports published through December 1973 in the area of physiologic responses to water immersion in man were summarized. The author's abstract or summary was used whenever possible. Otherwise, a detailed annotation was provided under the subheadings: (1) purpose, (2) procedures and methods, (3) results, and (4) conclusions. The annotations are in alphabetical order by first author; author and subject indexes are included. Additional references are provided in the selected bibliography
    • …
    corecore