4,780 research outputs found

    Stochastic Simulation of Mudcrack Damage Formation in an Environmental Barrier Coating

    Get PDF
    The FEAMAC/CARES program, which integrates finite element analysis (FEA) with the MAC/GMC (Micromechanics Analysis Code with Generalized Method of Cells) and the CARES/Life (Ceramics Analysis and Reliability Evaluation of Structures / Life Prediction) programs, was used to simulate the formation of mudcracks during the cooling of a multilayered environmental barrier coating (EBC) deposited on a silicon carbide substrate. FEAMAC/CARES combines the MAC/GMC multiscale micromechanics analysis capability (primarily developed for composite materials) with the CARES/Life probabilistic multiaxial failure criteria (developed for brittle ceramic materials) and Abaqus (Dassault Systmes) FEA. In this report, elastic modulus reduction of randomly damaged finite elements was used to represent discrete cracking events. The use of many small-sized low-aspect-ratio elements enabled the formation of crack boundaries, leading to development of mudcrack-patterned damage. Finite element models of a disk-shaped three-dimensional specimen and a twodimensional model of a through-the-thickness cross section subjected to progressive cooling from 1,300 C to an ambient temperature of 23 C were made. Mudcrack damage in the coating resulted from the buildup of residual tensile stresses between the individual material constituents because of thermal expansion mismatches between coating layers and the substrate. A two-parameter Weibull distribution characterized the coating layer stochastic strength response and allowed the effect of the Weibull modulus on the formation of damage and crack segmentation lengths to be studied. The spontaneous initiation of cracking and crack coalescence resulted in progressively smaller mudcrack cells as cooling progressed, consistent with a fractal-behaved fracture pattern. Other failure modes such as delamination, and possibly spallation, could also be reproduced. The physical basis assumed and the heuristic approach employed, which involves a simple stochastic cellular automaton methodology to approximate the crack growth process, are described. The results ultimately show that a selforganizing mudcrack formation can derive from a Weibull distribution that is used to describe the stochastic strength response of the bulk brittle ceramic material layers of an EBC

    Simulation of 3D Model, Shape, and Appearance Aging by Physical, Chemical, Biological, Environmental, and Weathering Effects

    Get PDF
    Physical, chemical, biological, environmental, and weathering effects produce a range of 3D model, shape, and appearance changes. Time introduces an assortment of aging, weathering, and decay processes such as dust, mold, patina, and fractures. These time-varying imperfections provide the viewer with important visual cues for realism and age. Existing approaches that create realistic aging effects still require an excessive amount of time and effort by extremely skilled artists to tediously hand fashion blemishes or simulate simple procedural rules. Most techniques do not scale well to large virtual environments. These limitations have prevented widespread utilization of many aging and weathering algorithms. We introduce a novel method for geometrically and visually simulating these processes in order to create visually realistic scenes. This work proposes the ``mu-ton system, a framework for scattering numerous mu-ton particles throughout an environment to mutate and age the world. We take a point based representation to discretize both the decay effects and the underlying geometry. The mu-ton particles simulate interactions between multiple phenomena. This mutation process changes both the physical properties of the external surface layer and the internal volume substrate. The mutation may add or subtract imperfections into the environment as objects age. First we review related work in aging and weathering, and illustrate the limitations of the current data-driven and physically based approaches. We provide a taxonomy of aging processes. We then describe the structure for our ``mu-ton framework, and we provide the user a short tutorial how to setup different effects. The first application of the ``mu-ton system focuses on inorganic aging and decay. We demonstrate changing material properties on a variety of objects, and simulate their transformation. We show the application of our system aging a simple city alley on different materials. The second application of the ``mu-ton system focuses organic aging. We provide details on simulating a variety of growth processes. We then evaluate and analyze the ``mu-ton framework and compare our results with ``gamma-ton tracing. Finally, we outline the contributions this thesis provides to computer-based aging and weathering simulation

    Multiphase modelling of desiccation cracking in compacted soil

    Get PDF
    PhD ThesisThe development of cracking as a result of desiccation is increasingly under investigation. This work is set within the context of climate change effects on surface processes influencing infrastructure slope stability. The inherent changes to the mechanical and hydrological behaviour of clayey soils subjected to desiccation are significant. The preferential transmission of water due to cracking is widely cited as a source of strength reduction that leads to infrastructure slope failure. In order to gain a better understanding of the cracking mechanism in typical compacted fill conditions, finite difference continuum modelling has been undertaken using FLAC 2D. The two-phase flow add-on has enabled the unsaturated behaviour of the desiccating soil to be included within the mesh. Physical behaviour observed in laboratory experiments has informed the development of the numerical model by allowing better constraint of boundary conditions. Model development has featured the inclusion of several non-linear processes that are fundamental to the changing soil response during drying. The influence of significant parameters has been identified and by means of a varied experimental program, the design, manufacture and testing of a laboratory test apparatus and procedure to define the tensile strength of compacted fills under varying saturation conditions was undertaken and subsequently validated. The factors affecting crack initiation and propagation have been investigated via parametric study. This demonstrated the significant influence of basal restraint on the generation of tensile stresses conducive to cracking and the fundamental importance of the tensile strength function within the proposed modelling methodology. Experimentation with the shape of the SWRC has shown the model to be very sensitive to the hydraulic properties of the material with not only the occurrence of primary cracking being affected but also the development of the desiccated crust. The findings of this work are relatable to the incorporation of desiccation effects in the development of coupled hydrological-mechanical continuum models where atmosphere-soil interactions are increasingly significant.Newcastle University with contribution from the EPSRC project, iSMART

    Crust formation in drying colloidal suspensions

    Get PDF
    During the drying of colloidal suspensions, the desiccation process causes the suspension near the air interface to consolidate into a connected porous matrix or crust. Fluid transport in the porous medium is governed by Darcy’s law and the equations of poroelasticity, while the equations of colloid physics govern processes in the suspension. We derive new equations describing this process, including unique boundary conditions coupling the two regions, yielding a moving-boundary model of the concentration and stress profiles during drying. A solution is found for the steady-state growth of a one-dimensional crust during constant evaporation rate from the surface. The solution is used to demonstrate the importance of the system boundary conditions on stress profiles and diffusivity in a drying crust

    Computational Model for Predicting Particle Fracture During Electrode Calendering

    Full text link
    In the context of calling for low carbon emissions, lithium-ion batteries (LIBs) have been widely concerned as a power source for electric vehicles, so the fundamental science behind their manufacturing has attracted much attention in recent years. Calendering is an important step of the LIB electrode manufacturing process, and the changes it brings to the electrode microstructure and mechanical properties are worth studying. In this work, we reported the observed cracking of active material (AM) particles due to calendering pressure under ex situ nano-X-ray tomography experiments. We developed a 3D-resolved discrete element method (DEM) model with bonded connections to physically mimic the calendering process using real AM particle shapes derived from the tomography experiments. The DEM model can well predict the change of the morphology of the dry electrode under pressure, and the changes of the applied pressure and porosity are consistent with the experimental values. At the same time, the model is able to simulate the secondary AM particles cracking by the fracture of the bond under force. Our model is the first of its kind being able to predict the fracture of the secondary particles along the calendering process. This work provides a tool for guidance in the manufacturing of optimized LIB electrodes

    Woodification of polygonal meshes

    Get PDF
    An evolving polygonal mesh based on stem\u27s tree growth coupled with a physical simulation of bark\u27s cracking is presented. This process is denominated woodification. Whereas previous approaches use a fixed resolution voxel grid, woodification is built on the deformable simplicial complex representation, which robustly simulates growth with adaptive subdivision. The approach allows any meshed object to be grown and textured. Features, such as interaction with obstacles, attributes interpolation, and sketching tools, are added to provide control during the woodifible process

    Numerical modeling in timber engineering – moisture transport and quasi-brittle failure

    Get PDF
    With the rising popularity of timber structures and the increasing complexity of timber engineering projects, the need for numerical simulation tools specific to this building material is gaining rapidly in importance. in particular, moisture transport processes and the quasi-brittle failure behavior, both difficult to describe, present major challenges and are of great relevance in practical construction. For these reasons, this article presents numerical modeling concepts for predicting moisture gradients, estimating effective stiffness and strength, and numerically identifying potential cracking mechanisms in wooden components. These concepts are validated through experimental test programs, and the associated challenges are addressed. selected results ultimately demonstrate the capabilities and relevance of such methods for timber engineering
    corecore