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PREFACE

The following thesis is an extension of the paper submission Woodification:

User-Controlled Cambial Growth Modeling. The so-called Deformable Simplicial

Complex (DSC) for evolving meshes, (Christiansen, Nobel-Jrgensen, Aage,

Sigmund, & Brentzen, 2013), is a novel approach which removes some

implementation issues, such as trade-off of accuracy for the Semi-Lagrangian

method or precise reconstruction of meshes via Marching-Cubes (Lorensen & Cline,

1987), when an advecting Level Set is used. Although DSC brings its own problems

(such as time consuming simulation), it is used as underlying representation of a

polygonal mesh. With the mesh in hand, a biologically-growth model to evolve the

surface is proposed. The DSC representation allows to have a temporal coherence of

the evolving mesh and an automatic subdivision to increase the mesh resolution in

defined regions, such as the locality of a collision with obstacles. The grown mesh is

coupled with a cracking simulation based on tensors, defining a stress threshold and

a relaxation method to compile different cracks behavior. A refresh in manipulating

indexes to represent linear transformations is recommended for the cracking part of

the present work. Lastly, the results are, in the majority of cases, graphical output

through the OpenGL Application Programmable Interface (API). It is advised to

check the article for DSC, O’Brien and Hodgins (1999), and a book regarding

OpenGL, for example Angel and Shreiner (2011).
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ABSTRACT

Guayaquil Sosa, Gustavo Alejandro M.S., Purdue University, May 2014.
Woodification of polygonal meshes. Major Professor: Bedrich Benes.

An evolving polygonal mesh based on stem’s tree growth coupled with a

physical simulation of bark’s cracking is presented. This process is denominated

woodification. Whereas previous approaches use a fixed resolution voxel grid,

woodification is built on the deformable simplicial complex representation, which

robustly simulates growth with adaptive subdivision. The approach allows any

meshed object to be grown and textured. Features, such as interaction with

obstacles, attributes interpolation, and sketching tools, are added to provide control

during the woodifible process.

http://alejandroguayaquil.com/
http://hpcg.purdue.edu/bbenes/
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CHAPTER 1. INTRODUCTION

Defining surface characteristics and material properties is an inherently

important problem in Computer Graphics research. Due to the steadily increasing

demand for realism this has been addressed by the Computer Graphics community

with a large quantity of methods over the last two decades. While early approaches

focused on modeling materials based on assumptions and simplifications, modern

techniques more closely mimic the actual characteristics of materials at different

scales using science-based approaches. A topic covering such stages is the evolution

of a surface mesh, where initially the direction of growth was decided to be based in

the surface normal whereas nowadays such direction is defined procedural with rules

from observations. The evolving nature of growing objects make them hard to

simulate, conveying special problems to reproduce material properties. An example

of growth based on a surface mesh is the upgrowth of a tree.

The growth of trees and the development of branching structures has been

addressed by a multitude of approaches over the years (Deussen & Lintermann,

2004; Edelstein-Keshet, 1988; Kaandorp, 1994; J. Landsberg & Sands, 2011b).

However, apart from the faithful generation of branching systems, the surface

behavior and appearance plays an important role for the realistic rendering of trees.

A number of techniques have addressed the modeling of bark structures and

patterns (Kopf et al., 2007; Lefebvre & Neyret, 2002a; Mann, Plank, & Wilkins,

2006; Wang, Wang, Liu, Hu, & Guo, 2003). However, only a limited set of

techniques approach the lateral growth behavior.

Several methods exist that allow modeling fractures and cracks for rigid

bodies (Hirota, Tanoue, & Kaneko, 1998; O’Brien & Hodgins, 1999). A large set of

these techniques focuses on visualizing physically correct cracking to lower the

burden on content creators when modeling or animating these effects. These
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techniques are predominantly known as meshfree (Rabczuk & Belytschko, 2004) or

as meshless (Pauly et al., 2005) methods. They offer many features that make them

well-suited for modeling fractures and cracks. However, most of the existing

techniques focus on cracking rigid bodies. To the best of the author’s knowledge,

there is no method that addresses the cracking of living objects or their surfaces. So

far, the modeling of bark and the simulation of cracking of solid objects have mostly

been treated separately. Both domains focus on deforming and manipulating surface

meshes. However, due to complicated processes within the entire volume of an

object, the growth of wood and the development of bark cracking patterns need to

be addressed jointly.

The proposed model is an interactive approach for growing arbitrary

polygonal meshes in a wood-like fashion, i.e., the transformation of an object

appearance by emulating girth growth over the surface.

The following are the contributions of this thesis:

1. Usage of detailed growth functions encoding botanical process.

2. A new cracking model based on stress propagation with feedback from the

lateral growth

3. The introduction of the term woodification as the process of converting

water-tight triangular meshes to a grown appearance with bulge and crack

features

In addition to the above contributions the work incorporates collision detection with

obstacles and a sketching tool for manipulating the direction of the growth and/or

the cracking generation.

1.1 Scope

A three step process is used to woodify a polygonal mesh:

1. Drive the evolution of the surface by a biologically-motivated function.
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2. Check surface information by the Deformable Simplicial Complex tetrahedral

mesh (tet-mesh) representation.

3. Generate cracks through a physical process of stress and tension.

The thesis does not consider branching as a simulated feature, and misses the

comparison with botanical tables of different species of trees. Also, the

transformation from a triangular mesh to a tet-mesh is based on the third-party

library TetGen (Si, 2013). A list of tet-meshes compatible with DSC and used

during the experiments can be downloaded from DSCCompatibleMeshes (HPCG,

2014).

Lastly, the evaluation will consist on providing a plausible visual appearance

of bulge and cracked wood with comparison of photos with images generated by the

simulation.

1.2 Significance

Modeling trees and surface modeling are two relevant topics to Computer

Graphics . The first has been researched during the last decade (Deussen et al.,

1998) using biologically-based (Chiba, 1990b) or procedural (Chen, Neubert, Xu,

Deussen, & Kang, 2008; Stava et al., 2014) techniques, including the study of lateral

growth, branching, cracks formation, interactions with objects, and others. The

second is a common method for visualizing three-dimensional objects in Computer

Graphics (Lorensen & Cline, 1987). The representation varies from explicit

equations, such a parametrized sphere or patches constructions, to implicit forms,

such as the Level Set formulation. Recently the DSC method has been introduced

to address the surface manipulation (Misztal & Bærentzen, 2012).

Combining a tree lateral growth, a force-based cracking, and the DSC

method has not been used to simulate growth of polygonal meshes. Furthermore,

http://wias-berlin.de/software/tetgen/
http://alejandroguayaquil.com/branch/tmp/dscmeshes.zip
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merging these pieces provides a technique to define the process of transform meshes

to resemble wood.

1.3 Research Question

We would like to answer if using an evolving mesh method, DSC, driven by a

biologically motivated equation and coupled with a cracking technique is possible to

transform a polygonal mesh to resemble wood.

1.4 Assumptions

The assumptions for this study include:

1. The biologically-motivated growth function derived from a probabilistic

distribution function is correct and resemble the expansion of a stem’s tree.

2. Any water-tight polygonal mesh can be converted to a tet-mesh representation.

1.5 Limitations

The limitations for this study include:

1. The growth direction is defined per triangle and quasi-constant to have

computational performance (using the up direction to consider some preferred

orientation) losing control over the symmetry of the simulation.

2. No external agents, such as weather or human interaction, are considered

during the simulations.

1.6 Delimitations

The delimitations for this study include:

1. The number of vertices of an object is proportional to the memory machine

used for the simulation. Below hundred thousand a current computer with a

modern graphics card can perform the simulation in real time.
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2. The values in the growth speed or relaxation time step are in the range [0, 0.1]

to avoid inaccuracy, due floating point machine precision, of the numerical

methods used.

3. No branching growth of a tree.

1.7 Thesis Overview

The present document is divided as follow: A paragraph introducing the

proposal and key observations of the work is presented at the end of this chapter.

Next, relevant previous work regarding Biologically growth, Bark, and

Crack-Fracture modeling is presented. Also, in Chapter 2 some concepts respecting

the manipulation of polygonal meshes in a computer, giving aperture to precise

definition of a DSC algorithm, are introduced. Chapter 3 shows the study design,

the unit and sampling, and the pipeline for the thesis. Chapter 4 covers in detail the

necessary equations and physics assumptions to reproduce the simulations. The

results, subdivided as lateral growth and surface cracking, are shown in Chapter 5.

This chapter also covers the difficulties experienced during the simulations. Lastly,

Chapter 6 contains conclusion, the possible future worked, and the lessons learned

combining science-based techniques in Computer Graphics.

1.8 Summary

A method is presented for transforming polygonal meshes into a tree-looking

shapes with wood appearance (woodify). The process is done by transforming the

original shape to a tree-looking outline which has bulge and crack features. The

original mesh is transformed to a tet-mesh for mimicking lateral growth using the

DSC method. We utilize a probabilistic distribution function, commonly known in

the field of theoretical biology, to approximate the object growth. Other growth

functions are also introduced by modifying some aspects of the distribution, such as

preferred direction of growth. The evolving surface is coupled with a forced-based

cracking technique to generate bark. The DSC and cracking are extended by adding
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attributes directly to the surface evolution, such as texturing wrapping, local speed

adjustment, and interaction with solid objects providing flexibility to define

material properties, cracking patterns, and growth rate.
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CHAPTER 2. PREVIOUS WORK

This chapter discusses previous work of different methods for growing trees

in Computer Graphics. Special attributes to simulates over a mesh, such as bark

and cracking, are also covered.

2.1 Tree Growth

A desired feature of a tree growth simulation is to provide enough control

while a natural aspect is maintained. The usage of equations coupled with sketching

tools allows to fulfill these characteristics as shown by Lawrence and Funkhouser

(2003). With the idea of providing an explanation to the related work, the stem’s

growth of a tree can be consulted in the literature as biologically-based or

procedurally-based. Additionally, an extensive description of different equations and

tools of growth methods can be consulted in Amar, Goriely, and Müller (2011)

or Mann et al. (2006).

2.1.1 Biologically-based approaches

A tree’s physiology is defined as “the facts related to the dimensions of a

tree” (Huber, 1956), such as metabolism, growth, and reproduction. An important

result regarding the stem’s growth says that an asymmetrical curve becomes

symmetrical as time increases. One of such curve is generated by the lateral growth

variable from the forest growth model (Dale, Doyle, & Shugart, 1985), which

depends on a collection of parameters to assess an individual production. The forest

model does not consider species characteristics or environment interaction.

Chiba (1990b) uses the statistical model of Oohata and Shinozaki (1979) to

derive an equation for the lateral growth. For a given cutting plane z, he defines the

stem density as a function of tree’s height, denoted by S (z), and computes the
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lateral growth by assuming a power function relationship between the total weight

and S (z), Figure 2.1. His solution is a linear combination of exponential functions

outlining fast increment of the stem at lower heights. The model also suggests a

relationship for branching development. An extension of the model, taking into

account ramification and crown evolution, was later presented in Chiba (1990a,

1991) and summarized by Chiba and Shinozaki (1994) as a linear partial differential

equation for the relationship between the stem’s increment and its density.

Figure 2.1. Profile curves, of stem’s growth, every five years. Image
from Chiba and Shinozaki (1994)

Tree’s dynamics can be studied through a biological mechanism, such as

photosynthesis or water consumption, a chemical processes such as carbon balance, a

geometrical assumption such as stand structure, a physical equation such as

mechanical models of stem, or by statistical models such as height-diameter relation

distribution (J. J. Landsberg, 2011). One of the models related to stem’s growth is

the so-called Weibull distribution (Weibull, 1951), which combined with Chiba’s

derivation of stem growth is the biologically-motivated equation used for our mesh

growth. Other biologically-based approaches are: a dynamic flow and storage model

shown in Steppe, De Pauw, Lemeur, and Vanrolleghem (2006), a combination of an
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architectural model with a forest model driven by a level set (Sellier, Plank, &

Harrington, 2011).

2.1.2 Procedurally-based approaches

A common approach for simulating a tree is the so-called

L-system (Lindenmayer, 1968), Figure 2.2. The procedure can be coupled with a

terrain generator and ecosystem rules to recreate diverse landscapes as

demonstrated by Deussen et al. (1998). An L-system for trees has been also

extended to consider environmental conditions such as weight support or space

tropism (Lam & King, 2005).

A more naive approach is looking of lateral growth as an offsetting operation

controlled by defining the speed function over the surface (Buchanan, 1998), and can

be extended by coupling with an L-system as demonstrated by Sellier et al. (2011).

Figure 2.2. Example of a tree branching structure generated by an
L-system. Image obtained from the software Malsys (Fǐser, 2012).

http://malsys.cz/
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Other authors have used fractals to model trees (Oppenheimer, 1986; Zhou,

Chen, Liu, Li, & Rao, 2010). Fractals have the property of sensitivity to their initial

parameter values but they provide straightforward simulations for two-dimensional

and three-dimensional fractal trees (Kaandorp, 1994). A third way is to use an

inverse modeling technique to describe plant organs in terms of their global position

with respect to the tree (Galbraith, Mndermann, & Wyvill, 2004). Alternative

methods are: converting a sketch into a 3D surface model by a Markov random

field (Chen et al., 2008), tracking methodology, for branch knots and lateral

variations, based on computer scanned images (Colin et al., 2010), space

colonization algorithm (Runions, Lane, & Prusinkiewicz, 2007), and branch

inference based on tree silhouette (Wither, Boudon, Cani, & Godin, 2009).

2.2 Bark Modeling

The simulation of bark has also evolved from initial heuristic approaches to a

more botanical techniques.

Figure 2.3. Two instances of simulation of bark. Image from Lefebvre and
Neyret (2002b)
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Bloomenthal (1985) uses a parametric texture model for the branching of a

tree while Hart and Baker (1996) extended using particles to track the flow from the

trunk to the ramifications. A method using horizontal strips with procedural

fractures is shown by Lefebvre and Neyret (2002b), Figure 2.3.

Along the texturing map a variety of procedural, and implicit synthesis,

methods have been used to generate bark in a geometrical fashion to naturally

jointly to a branching structure. Approaches based on spring-mass model, finite

element method, and layer-based technique are used, (Federl & Prusinkiewicz,

2004), to capture differential over stress and strain of a tree. Coupled with a surface

representation a bark is shown as an extra attribute of a texture. Kirota, Kato, and

Kaneko (1998) also uses a spring-mass model for the bark modeling.

2.3 Cracking

Cracking is an important aspect to represent the destruction of natural and

artificial objects. The general approach is to use equations to describe the stress

and strain of a material. Previous models are based on a finite element

method (Federl & Prusinkiewicz, 2002; Glondu et al., 2012; O’Brien & Hodgins,

1999), a spring network technique (Hirota et al., 1998; Hirota, Tanoue, & Kaneko,

2000), or cellular automata (Gobron & Chiba, 2001).

One of the first models simulated the connection between vertexes as

shear-springs (Hirota et al., 1998). A change in the stress between two different

points generates a fracture. The model uses two layers for representing a material,

the exterior having all the possible fractures and the interior plain. In this method,

the pipeline used is: (1) set up parameters, (2) shrink or enlarge a spring, (3)

compute forces checking values in nodes, (4) translate nodes, and (5) cut springs.

The same authors later presented an extension for three-dimensional objects (Hirota

et al., 2000), considering an adaptive subdivision of the spring to solve jaggedness in

the results.
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Paquette, Poulin, and Drettakis (2002) show weathered results such as

cracking and peeling of layers by defining paint strength and tensile stress. The first

computes the adhesion between layers in order to determine the curl of a peeling,

while the second considers elasticity factors to generate a crack. The simulation is

summarized as: (1) new crack, (2) propagation, (3) relaxation, and (4) adhesion.

The data representation is similar to the spring simulation using two layer

definition: a base layer and a paint layer.

Gobron and Chiba (2001) employ a spectrum stress model to simulate cracks

over surfaces. They define a crack as a result of internal stresses becoming greater

than the material resistance and the stress as a tension in a predefined direction.

Depending on the angle between the tension and the principal axis of the object,

the stress has aliases such as compression, expansion, torsion, etc. The object’s

geometry restricted to a surface made the authors consider only compression and

expansion.

Figure 2.4. Glass dragon with a cracking model applied on the surface.
Image from Iben and O’Brien (2006)

Cracks over surface models using a stress field are generated by Iben and

O’Brien (2006), Figure 2.4. The computation of the field is defined heuristically and

applied to each node of the triangulated surface. The steps of the algorithm are: (1)
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initialization of the field, (2) compute the failure criteria, (3) during a failure: (a)

crack the mesh, (b) evolve stress field, (c) update mesh, (4) display cracks by direct

rendering of edges or by doing a filling representation. The stress tensor can be

defined as zero, representing an equilibrium surface, store constant tension,

simulating a drying or shrinking, being filled according to the curvature of the mesh,

or using random noise to model material inhomogeneities. To determine the

direction of the crack, the authors decompose the forces into the tensile part and

the compressive part, building a separation tensor whose eigenvalue determines the

existence of a crack. The associated eigenvector provides the plane for the crack.

Using a mesh to characterize the stress motivates this thesis to use in

conjugation with the growing-bark modeling. The connection can be done by

different techniques such as voxelization defining properties to carry in each voxel,

level set to define an isosurface, or directly to the triangular mesh. An extension of

the latest if the novel DSC method.

2.4 Deformable Simplicial Complex

Moving vertices along normals provide advantages of non-reconstruction of

surface and immediate overload of properties to each vertex. However an important

issue of topology change, when two connected component intersect, arises. To

address this Christiansen et al. (2013) extend the explicit moving of vertices by

introducing a tet-mesh representation of a surface. Maintaining volumetric

information to resolve topology conflicts such as collisions or unstitching.

Also, the DSC underlying representation maintains the triangular

information making it suitable to use Finite Element Method as one attribute.
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Other usages are fluid simulation Misztal, Bridson, Erleben, Bærentzen, and Anton

(2010) and topology optimization Maute and Ramm (1995).

2.5 Summary

This chapter provided a review of the literature relevant to growing trees and

their cracking and bark modeling attributes. The next chapter provides the

framework and methodology to be used in the development of an implementation

for a simulation of the woodification process.
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CHAPTER 3. FRAMEWORK AND METHODOLOGY

3.1 Study Design

The present study is about transforming polygonal meshes into a tree-looking

objects. To perform the transformation, three steps are proposed: (1) Development

of a biologically-motivated equation which will provide an evolving mechanism for

the mesh, (2) Representation of the propagation by the DSC method, and (3)

Application of a cracking and bark model to emulate a realistic surface appearance

of a tree. The coupling of each step is derived as interrelated attributes of the mesh.

The key observations of the proposed approach are:

1. An equation for the growth resembling biological results can be derived from a

probability distribution function.

2. The equation can be added to the direction of growth of a mesh.

3. Coupling a force-based cracking and bark texturing.

3.2 Unit & Sampling

In the following sections the hypothesis, population, sample, variables, and

the evaluation, are discussed.

3.2.1 Hypothesis

The simulation of wood objects through the coupling of a

biologically-motivated growth equation and a physics-based cracking model in a

surface propagation algorithm produce results of good visual quality

3.2.2 Population

The population are polygonal meshes with sufficient properties to be

represented as a tet-mesh to be fed to the proposed pipeline, Figure 3.1. The
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quantification is done showing the number of vertices at the beginning and at the

end of the simulation. Also, the number of iterations required for different meshes.

The qualification is provided by the visual feedback of visually plausible cracks in

geometry and texture (bark).

3.2.3 Sample

The techniques to be used are:

1. A biologically-based process to simulate lateral growth by the so-called

Weibull distribution (expanded in the next chapter) as a structural growth to

represent eccentricity, a reversed growth, a user defined-growth by a sketching

tool, and interaction around obstacles.

2. A DSC representation for geometrical representation at each step of the

simulation.

3. A stress-based crack by storing tensors in each triangle of the geometrical

representation.

3.2.4 Variables

The set of variables can be divided into:

1. The biologic process: magnitude of the underlying velocity field for the growth

bounded to be less than one, eccentricity factor in the opposite direction of

gravity, shape parameter, for the Weibull distribution, with value equal to two,

minimum length edge for a subdivision of the mesh during the growth to be

less than one.

2. Mesh representation: water-tight polygonal mesh and tetrahedralized for

volume information, vertex-attributes to define growth direction and texture

mapping.

3. Cracking-bark modeling: stress direction as horizontal, vertical, or loaded by a

predefined path, relaxation steps for the emergence of a crack in the range of
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one to ten, vertex-id-attribute for coupling with the texture map and grow

direction making the crack evolve coherently.

3.2.5 Evaluation

The thesis evaluation will be:

1. Simulation of interaction with obstacles, holes, and bark appearance as shown

in images of Figure. 3.2.

2. Interactive response.

3.3 Pipeline

The following is a graphical representation of the pipeline.

3.4 Summary

This chapter provided the framework and methodology to be used in the

woodification process. The process can be decomposed in two main events: (1)

mesh operations, and (2) stress definitions. The next chapter provides

implementation details for each step of the pipeline, adding some preliminary results

as example images of the woodification application.
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Figure 3.1. A polygonal model is converted to a tetrahedral mesh during
pre-processing. The mesh is evolved by using the DSC and growth model
while, at the same time, is covered by cracks and checked for collisions
in the surrounding environment. The user can control, by a brush tool
attached to mouse events, the definition of the cracks and the growth
function. The output can be selected to be a polygonal mesh or the full
tetrahedral mesh.
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(a) Tree growing into obstacles.

(b) Tree affecting itself.

(c) Tree bark.

Figure 3.2. Phenomena to simulate. To the right a photo of a real tree,
to the left mesh result from the simulation.
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CHAPTER 4. IMPLEMENTATION

The following describes the mathematical and physical assumptions, for the

proposed pipeline of Woodification of polygonal meshes, see Figure 3.1.

4.1 Deformable Simplicial Complex

The method is initialized by converting the polygonal mesh into a single

layer of tetrahedral mesh. Afterwards, each vertex, xi, is moved, from tn to

tn+1 := tn + ∆t, by an Eulerian integration along the normal ni, i.e.

xn+1
i = xn

i + s (xi, tn)nt
i

where xn
i := xi (tn). The function s represents the growth speed. Depending on the

control required by the user, the speed and direction can be modified to produce

more appealing, although not physically accurate, results (see Figure 4.4).

The apparent issue of topological changes during the mesh deformation,

generated by local and global self-intersection, is solved maintaining an interior and

exterior tet-mesh to generate a flag once a tet crosses the surface boundary.

DSC will propagates each vertex to a possible destination considering to not

invert a tet during the path. In case of a hitting a flag for inverting a tet, the tet

geometry is locally re-meshed to remove the degeneracy and continue with the

motion, see Figure 4.1.
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Figure 4.1. 2D sketch and 3D graphical representation of the Deformable
Simplicial Complex.
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In addition, surface re-meshing, tet-smoothing, and adaptive refinement can

be applied to improve the quality of the mesh.

4.2 Growth Model

The surface is then evolved in time using the built-in evolution method of

the DSC providing the direction and speed of growth for each vertex. The default

direction considers the vertex normal while the speed can be selected from: (1)

biologically-motivated allometric equations, (2) reversed growth, or (3) user-defined

by a brush-tool.

4.2.1 Lateral

As stated by J. Landsberg and Sands (2011a), the standard Weibull

function, with shape parameter c > 0, is a plausible growth model deduced from

field-measurements:

s (t) = ctc−1e−t
c

(4.1)

The plot of the function, Figure 4.2, indicates a growth peak showing a transition

from early to mature stages of development. Parameter c represents the stretching

strength associated to the surface growth.
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Figure 4.2. Graph of Weibull distribution, Eq. (4.1), for different values
of shape parameter c in the range [0, 2].



23

A modification to consider eccentricity, denoted as a real number δ, defines

the speed as

se (t,x) = (1 + δn · ŷ) s (t)

where ŷ represents the unit vertical direction of the coordinate system. For the

results shown in next chapter the frame is defined by the canonical orthonormal

basis x̂ = (1, 0, 0), ŷ = (0, 1, 0), ẑ = (0, 0, 1), and origin at (0, 0, 0). The provided

dot product, n · ŷ, is measured using the Euclidean distance in R3. A compression

growth is modeled by negative eccentricity whereas tension is defined by positive

eccentricity.

4.2.2 User-Defined Growth

The above description of growth is fully automatic and parametric. To

provide extra control a brush-tool for changing the growth direction is also

supported.

To allow a procedural change in the growth direction the normals are

updated at each time step with the set of new selected directions to evolve. Thus, at

each iteration the user can select surface triangles to be modified via Ray-casting.

Once the ray hits the surface a Gaussian filter distance decay is used to modify the

neighborhood, Figure 4.3.

Another feature of the growth selection is to change the speed allowing

velocity gradients. As with the normal, once the region is selected the growth

direction can be increased or decreased. To allow smooth transition in the gradient,

a factor which measures the frames per second is used as multiplier in the growth

re-sizing, see Figure 4.4.
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(a) Brush represented as the

illuminated pink region. Growth

directions shown as green.

(b) Effect of growing by (4.1) with

brushed directions.

Figure 4.3. User can define the growth direction with a brushing tool
attached to mouse events.

Figure 4.4. User defined growth. Left, the initial polygonal mesh. Middle
left, the initial growth directions as green. Middle right, editing the ears,
head, back, and chest of the kitten. Right, the resulting mesh after edition.
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4.2.3 Obstacles

Realistic growth requires interaction with obstacles such as fences or sign

posts. After the stem collides with the obstruction, the bark continues growing

around it to eventually be absorbed into the interior of the tree.

DSC simplifies the detection of an obstacle to its internal data structure.

Since the tet-mesh maintains the current polygonal mesh as one of the layers, it is

possible to test if the movement of a vertex will fall inside an obstacle at each step.

When a collision occurs, then the growth of such a vertex is frozen. Once a vertex is

stopped, the underlying exterior and interior tet-mesh will change the possible space

in which a vertex can move. The self-check of topology by DSC provides a robust

method to avoid penetration inside the obstacle.

Furthermore, the extraction of normals from DSC can be overloaded to

consider re-computation of face or vertex normal after modification of the surface

mesh. Coupled with the update of normals to re-define the directions of growth, the

front eventually surrounds the obstruction creating a wounded-region which persists

through future iterations.

Figure 4.5. Growth around obstacle continues surrounding the
obstruction.
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4.3 Bark Model

Faithful representation of bark requires the addition of texturing to

reproduce visual impact. DSC allows to add attributes to each vertex to consider

material properties while the growth occurs. Thus, a texture mapping is added to

the surface mesh. With this in hand, it is possible to represent a static bark at any

given time. In the following section we will cover the automatic extension provided

by DSC to preserve coherent texture mapping while the expansion takes place.

Even more, the next chapter will cover the application of texturing to the cracking

model reproducing in total fractured and bulged tree image.

4.3.1 Persistent Texturing

Initially, during the model loading, each vertex of the surface mesh

propagates and carries the parametric information for texturing. As DSC supports

local re-meshing the texture coordinate requires to also update. If a new vertex is

added during the subdivision its texture attribute is acquired by averaging the ends

where it is inserted. For deleted vertices, their texture attribute is also removed.
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Figure 4.6. Top, texture mapping added to one of the DSC vertex
attributes. Middle, the image is maintained over the growth. Bottom,
subdivision is also supported by interpolation.
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4.4 Cracking model

A stress field is defined over the polygonal mesh to recreate a crack once a

surface stress threshold is surpassed. Defining the fractures as a consequence of a

force field allows to transfer the tension generated by the stretching of the growth

model over the surface.

4.4.1 Stress Field

As shown in Figure 4.7 the stress is defined per triangle adding to it a tensor

σ of rank−2. The tensor encapsulates forces acting per area and their stiffness. The

forces, per vertex, are then computed distributing the tensor along median rays.

(a) Color encodes stress magnitude. A crack

will appear in the region of high stress

alleviating the magnitude by a relaxation

step.

(b) Force, f , distributed along the

vertices.

Figure 4.7. Cracking construction. To the left stress field representation,
to the right stress tensor, σ, stored per triangle face.

Suppose a triangle has vertices pi, i = {1, 2, 3}. The associated orthonormal

basis can be computed as e1 = û, e2 = e1 × e3, and e3 = û× v̂, where {u, v} are the

associated vectors to the triangle, i.e. u = pΠ(i) − pΠ(j), v = pΠ(i) − pΠ(k), i 6= j 6= k,

and Π is a permutation of indices to create counter-clockwise vectors. The

definitions of ei are built to be a right-handed coordinate system if the set {u, v} is

linearly independent and rotates in the positive direction.
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Once the basis is defined, a force vector f can be decomposed in tensile f+,

parallel to e1, and compressive f−, parallel to e2, for each vertex. Hence, it is

possible to define a separation tensor as

ζ =
1

2

 ∑
h∈{f+}

hT ⊗ h +
∑

l∈{f−}

lT ⊗ l


where ⊗ denotes the outer product of a vector. Σ represents a square matrix for

which the largest positive eigenvalue is obtained to determine the possibility of a

crack in a vertex.

4.4.2 Mesh Update

A priority queue is used to store the largest positive eigenvalue of each vertex

computed in the previous section. When the eigenvalue exceeds a given threshold, a

new edge (crack) is inserted using the vertex position and the orthogonal direction

associated to the eigenvector. A local re-mesh is required for the newly created

crack to preserve triangulation and a well-suited surface mesh. To avoid a poor

quality mesh, if the crack generated is too close to an edge, the crack is replaced by

the edge via a merging operation.

Once a crack appears, a change in stress is performed to alleviate the tensor

in adjacent faces. The factor to relief varies from 0 to 1 indicating a completely

removing stress or a zero change in value, respectively.

Additionally, a virtual displacement is computed and stored each time step ,

i.e. no actual movement of vertices caused by the forces. The main reason for using

virtual storing is to avoid numerical instabilities of time integration. However, this
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value is used for distributing the stress to resemble a diffusion process during the

relaxation step.

4.4.3 Relaxation

The relaxation step transfers stress from regions of high magnitude to

regions of low magnitude. The distribution avoids concentration of cracks over a

region, providing better visual appearance, see Figure 4.8.

Figure 4.8. Different crack patterns. Left, horizontal pattern. Middle,
vertical pattern. Right, random pattern.

The propagation of stress is simulated by a diffusion process. Thus, defining

the deformation as

∆σ = η∆p (4.2)

for η the Euclidean symmetric strain tensor

ηij =
1

2

(
pβikβkj + p [βjkβki]

T
)

where p is the world space coordinate of a vertex and βij is the matrix formed by

the barycentric coordinates of a triangle. In Eq.(4.2) the quantity ∆p is associated
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to the virtual displacement computed during the mesh update. The diffusion

direction can be also controlled to follow a predefined direction.

4.5 Level of detail

Once a region of crack is generated by the relaxation step, a tessellation

shader is used to provide a level of detail in the region as shown in Figure 4.9

Figure 4.9. Left, shaded triangles as region where a crack will occur.
Right, a level of detail using a tessellation shader is used to provide a
compelling crack.

4.6 Coupling

The generated meshes at each time step from the surface expansion are

coupled with the cracks transferring the set of cracks and the stress tensor between

time steps. Moving the attributes of the cracks between meshes maintains the

consistency in the simulation and allows to reproduce living wood over an object,

see Figure 4.10.

To transfer attributes, an unique vertex identifier is used in case a new

triangle is inserted. Similar to the texture, and interpolation is needed to get the

stress value for the new triangles.

4.7 Rendering

The visualization of the simulation is done using OpenGL. The DSC is being

rendered by a checker-board shader to recognize when a texture has been loaded.
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The cracking exploits the geometry and tessellation capabilities of the shader

language to do small scale detail when a triangle is being fractured.

Figure 4.10. Growth and cracking patterns coupling. The surface growth
according to Eq.(4.1) generating a polygonal mesh each time. The cracks
and attributes of a triangle are transferred between temporal meshes to
maintain coherence in the appearance. Top of images. Initial step of
simulation. Bottom images. Cracks added as mesh grows.
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Figure 4.11. Cracking rendering pipeline. The tessellation shader controls
the level of detail and local dimensions of a crack as shown in Figure 4.9.
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Figure 4.12. Polygonal mesh rendering. Top, knot mesh without texture
information. Bottom, knot mesh as checkerboard pattern to represent
texture information load
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CHAPTER 5. RESULTS

The system of the simulation is implemented using C++ for the computation

and management of client code. The window system is managed by Qt, version 4.8.

The third party libraries used are: DSC for the simplex representation of a mesh,

TetGen for the preprocessing of polygonal meshes to a tet-mesh, GLEW for the

extensions of OpenGL required in the core profile, and GLUT for the creation of a

minimal graphical user interface during the experiments.

Figure 5.1. Left, growth rings. Right, positive eccentricity (white)
overlaying non eccentric growth (red)

The DSC library needs some functionality from C++11, such as constructor

by a list initializer, requiring a current compiler of C++. The following results are

generated on a desktop computer equipped with an Intel Core i7-2600K processor

clocked at 2.0Ghz with 16GB of RAM and a NVIDIA GeForce GTX 480 GPU with

1.5GB of memory.

Figure 5.1(a) shows the inner structure of a tree with rings generated by the

lateral growth model. Figure 5.1(b) represents the usage of positive eccentricity
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during the growth (white layer) and the comparison with ordinary growth (red

layer).

Figure 5.2 shows an example of selecting some polygons of the mesh to

generate cracks in that region.

Figure 5.3 has two woodified objects. After objects start to expand, sharp

edges are being smoothed by bloating, a feature provided when combining lateral

growth in DSC. The boundaries eventually close two fronts.

Figure 5.2. An example of selecting a region for cracking. Left, initial
mesh with selected triangles. Right, generation of cracks in selected
regions shown as lines and different texture.

The material for a crack can also be manipulated as shown in Figure 5.4.

The image is transformed to a crack render via texture mapping. Chapter 3,

Figure 3.2 shows different frames of a growing trunk which respond to the fence

obstacle. The DSC adaptivity allows a smooth transition when the object hits the

obstacle, wrapping around it.

Topological changes of an object, Figure 5.5. The last example, Figure ??,

shows another set of polygonal meshes woodified.
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Figure 5.3. Three polygonal meshes woodified. Left, input mesh as solid
polygons with wireframe overlay and no texturing. Right, output mesh
as solid polygons with texture, mesh growth, and cracks.
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Figure 5.4. Different texture mapping of object material and crack
material.
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Figure 5.5. The growth model change the mesh’s topology. The images
shown how DSC handles these changes automatically.
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Figure 5.6. Sequence of tree growing around obstacle. The DSC handle
the wrapping automatically subdividing the regions of collision.
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Figure 5.7. Comparison of photos, left, of two types of cracks with the
ones generated by the simulation, right.
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CHAPTER 6. CONCLUSIONS

A framework for woodifying polygonal meshes has been presented. The

process starts by converting the mesh to a tetrahedral representation which provides

volumetric information necessary for the Deformable Simplicial Complex method.

The evolution is automated by a growth function based on the Weibull

distribution. Using the up direction and a scalar value we modify the growth

function to represent eccentricity. Also, a sketch tool for interactively modify

direction and speed of expansion is provided. The DSC has been extended to

consider collision detection with objects when the mesh is propagating, including

the adaptation of the surface to consider topological and geometrical changes, such

as merging and subdivision. Such extension also maintains the texture coordinates

during the expansion, via an interpolation, allowing to reproduce texture material

with no additional effort.

The growth is coupled to a force-based cracking model which accounts for

the stress on the face of the polygonal mesh. At each iteration, the cracks are

transferred to maintain coherent appearance throughout the simulation. Cracks can

be defined following a predefined pattern, such as vertical strips or uniform

distribution, or can be applied directly by the user via a sketching tool. Such

arrangements are computed by distributing forces along vertices of a triangle and

defining a relaxation method to mark a path to be converted into a crack. In

previous chapters we have shown the result of applying different texture maps onto

a crack to have a more realistic appearance. The level of detail for the crack is

control by a tessellation shader, providing quality results.

Since the most time consuming step of the simulation is the expansion of the

surface using DSC, caused by adding vertices and edges when subdividing or the

collision response between object and obstacle, an optimization of the method is
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required as future work. An interesting problem to explore will be the addition of

other attributes to simulate other surface features, such as knots, imperfections, or

cellular-features, like moss or dust. Also, a comparison of the simulation with data

from forestry and biology research would give more support to the presented model.

In this aspect, the evolution and cracking of the mesh is done in the CPU by a

single thread, delegating the GPU for the visualization only. Transferring the

methods to a parallel version will provide an easier tool to test and manipulate the

woodification idea.

Finally, although some comparison between photographs and images from

the simulation are provided, Figure. 3.2, more scenarios to intent to reproduce by

the simulation will provide robustness to the method.
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