30 research outputs found

    A Cooperative Overlay Approach at the Physical Layer of Cognitive Radio for Digital Agriculture

    Get PDF
    In digital agriculture, the cognitive radio technology is being envisaged as solution to spectral shortage problems by allowing agricultural cognitive users to co-exist with noncognitive users in the same spectrum on the field. Cognitive radios increase system capacity and spectral efficiency by sensing the spectrum and adapting the transmission parameters. This design requires a robust, adaptable and flexible physical layer to support cognitive radio functionality. In this paper, a novel physical layer architecture for cognitive radio based on cognition, cooperation, and cognitive interference avoidance has been developed by using power control for digital agriculture applications. The design is based on sensing of spectrum usage, detecting the message/spreading code of noncognitive users, cognitive relaying, cooperation, and cognition of channel parameters. Moreover, the power and rate allocation, ergodic, and outage capacity formulas are also presented

    Adaptive modulation for cognitive radios

    Get PDF
    This thesis examines the benefits of using adaptive modulation in terms of spectral efficiency and probability of bit error for cognitive radio networks. In channels that fluctuate dynamically over time, systems that are based upon the conventional methods of fixed modulation formats do not perform well. Adaptive modulation provides many parameters that can be adjusted relative to the channel fading, including data rate, transmit power, instantaneous BER, symbol rate, and channel code rate or scheme. In this thesis, a systematic study on the increase in spectral efficiency obtained by optimally varying combinations of the modulation formats for a cognitive radio is provided...Simulations show how adaptively changing the modulation schemes improves the performance of the system by meeting a BER constraint over a range of SNR --Abstract, page iii

    Cognitive Radio Dynamic Access Techniques

    Get PDF

    Opportunistic Communication (Cognitive Radio) over Primary Discarded Subchannels by Applying a Double Power Distribution

    Get PDF
    This paper proposes the establishment of a simultaneous cognitive radio communication based on a subdistribution of power made over unselected subchannels which were discarded by the primary user through an initial optimal power allotment. The aim of this work is to show the possibility of introducing an opportunistic communication into a licensed transmission where the total power constraint is shared. The analysis of the proposed transmission scheme was performed by considering 128 and 2048 independent subchannels affected by Rayleigh fading, over 10,000 channel realizations, and three different signal-to-noise ratios (8 dB, 16 dB, and 24 dB). From the system evaluation it was possible to find the optimal power allotment for the primary user, the subdistribution of power for the secondary user, as well as the attenuation and the capacity per subchannel for every channel realization. Moreover, the PDF and CDF of the total obtained capacities, as well as the generation of empirical capacity regions, were estimated as complementary results

    A Comparative Study Of Spectrum Sensing Methods For Cognitive Radio Systems

    Get PDF
    With the increase of portable devices utilization and ever-growing demand for greater data rates in wireless transmission, an increasing demand for spectrum channels was observed since last decade. Conventionally, licensed spectrum channels are assigned for comparatively long time spans to the license holders who may not over time continuously use these channels, which creates an under-utilized spectrum. The inefficient utilization of inadequate wireless spectrum resources has motivated researchers to look for advanced and innovative technologies that enable an efficient use of the spectrum resources in a smart and efficient manner. The notion of Cognitive Radio technology was proposed to address the problem of spectrum inefficiency by using underutilized frequency bands in an opportunistic method. A cognitive radio system (CRS) is aware of its operational and geographical surroundings and is capable of dynamically and independently adjust its functioning. Thus, CRS functionality has to be addressed with smart sensing and intelligent decision making techniques. Therefore, spectrum sensing is one of the most essential CRS components. The few sensing techniques that have been proposed are complicated and come with the price of false detection under heavy noise and jamming scenarios. Other techniques that ensure better detection performance are very sophisticated and costly in terms of both processing and hardware. The objective of the thesis is to study and understand the three of the most basic spectrum sensing techniques i.e. energy detection, correlation based sensing, and matched filter sensing. Simulation platforms were developed for each of the three methods using GNU radio and python interpreted language. The simulated performances of the three methods have been analyzed through several test matrices and also were compared to observe and understand the corresponding strengths and weaknesses. These simulation results provide the understanding and base for the hardware implementation of spectrum sensing techniques and work towards a combined sensing approach with improved sensing performance with less complexity

    Cyclostationary Signatures for Rendezvous in OFDM-Based Dynamic Spectrum Access Networks

    Full text link

    Spectrum Sensing Techniqes in Cognitive Radio: Cyclostationary Method

    Get PDF
    Cognitive Radios promise to be a major shift in wireless communications based on developing a novel approach which attempt to reduce spectrum scarcity that growing up in the past and waited to increase in the future. Since formulating stages for increasing interest in wireless application proves to be extremely challenging, it is growing rapidly. Initially this growth leads to huge demand for the radio spectrum. The novelty of this approach needs to optimize the spectrum utilization and find the efficient way for sharing the radio frequencies through spectrum sensing process. Spectrum sensing is one of the most significant tasks that allow cognitive radio functionality to implement and one of the most challenging tasks. A main challenge in sensing process arises from the fact that, detecting signals with a very low SNR in back ground of noise or severely masked by interference in specific time based on high reliability. This thesis describes the fundamental cognitive radio system aspect based on design and implementation by connecting between the theoretical and practical issue. Efficient method for sensing and detecting are studied and discussed through two fast methods of computing the spectral correlation density function, the FFT Accumulation Method and the Strip Spectral Correlation Algorithm. Several simulations have been performed to show the ability and performance of studied algorithms.fi=Opinnäytetyö kokotekstinä PDF-muodossa.|en=Thesis fulltext in PDF format.|sv=Lärdomsprov tillgängligt som fulltext i PDF-format

    Energy-detection based spectrum sensing for cognitive radio on a real-time SDR platform

    Get PDF
    There has been an increase in wireless applications due to the technology boom; consequently raising the level of radio spectrum demand. However, spectrum is a limited resource and cannot be infinitely subdivided to accommodate every application. At the same time, emerging wireless applications require a lot of bandwidth for operation, and have seen exponential growth in their bandwidth usage in recent years. The current spectrum allocation technique, proposed by the Federal Communications Commission (FCC) is a fixed allocation technique. This is inefficient as the spectrum is vacant during times when the primary user is not using the spectrum. This strain on the current available bandwidth has revealed signs of an upcoming spectrum crunch; hence the need to find a solution that satisfies the increasing spectrum demand, without compromising the performance of the applications. This work leverages on cognitive radio technology as a potential solution to the spectrum usage challenge. Cognitive radios have the ability to sense the spectrum and determine the presence or absence of the primary user in a particular subcarrier band. When the spectrum is vacant, a cognitive radio (secondary user) can opportunistically occupy the radio spectrum, optimizing the radio frequency band. The effectiveness of the cognitive radio is determined by the performance of the sensing techniques. Known spectrum-sensing techniques are reviewed, which include energy detection, entropy detection, matched-filter detection, and cyclostationary detection. In this dissertation, the energy sensing technique is examined. A real-time energy detector is developed on the Software-Defined Radio (SDR) testbed that is built with Universal Software Radio Peripheral (USRP) devices, and on the GNU Radio software platform. The noise floor of the system is first analysed to determine the detection threshold, which is obtained using the empirical cumulative distribution method. Simulations are carried out using MATrix LABoratory (MATLAB) to set a benchmark. In both simulations and the SDR development platform, an Orthogonal Frequency Division Multiplexing (OFDM) signal with Quadrature Phase Shift Keying (QPSK) modulation is generated and used as the test signal

    A Unified Multi-Functional Dynamic Spectrum Access Framework: Tutorial, Theory and Multi-GHz Wideband Testbed

    Get PDF
    Dynamic spectrum access is a must-have ingredient for future sensors that are ideally cognitive. The goal of this paper is a tutorial treatment of wideband cognitive radio and radar—a convergence of (1) algorithms survey, (2) hardware platforms survey, (3) challenges for multi-function (radar/communications) multi-GHz front end, (4) compressed sensing for multi-GHz waveforms—revolutionary A/D, (5) machine learning for cognitive radio/radar, (6) quickest detection, and (7) overlay/underlay cognitive radio waveforms. One focus of this paper is to address the multi-GHz front end, which is the challenge for the next-generation cognitive sensors. The unifying theme of this paper is to spell out the convergence for cognitive radio, radar, and anti-jamming. Moore’s law drives the system functions into digital parts. From a system viewpoint, this paper gives the first comprehensive treatment for the functions and the challenges of this multi-function (wideband) system. This paper brings together the inter-disciplinary knowledge
    corecore