
REVIEW Open Access

Non-commutative large entries for cognitive
radio applications
Antonia Maria Masucci1* and Merouane Debbah2

Abstract

Cognitive radio has been proposed as a solution for the problem of underutilization of the radio spectrum. Indeed,
measurements have shown that large portions of frequency bands are not efficiently assigned since large pieces of
bandwidth are unused or only partially used. In the last decade, studies in different areas, such as signal
processing, random matrix theory, information theory, game theory, etc., have brought us to the current state of
cognitive radio research. These theoretical advancements represents a solid base for practical applications and even
further developments. However, still open questions need to be answered. In this study, free probability theory,
through the free deconvolution technique, is used to attack the huge problem of retrieving useful information
from the network with a finite number of observations. Free deconvolution, based on the moments method, has
shown to be a helpful approach to this problem. After giving the general idea of free deconvolution for known
models, we show how the moments method works in the case where scalar random variables are considered.
Since, in general, we have a situation where more complex systems are involved, the parameters of interest are no
longer scalar random variables but random vectors and random matrices. Random matrices are non-commutative
operators with respect to the matrix product and they can be considered elements of what is called non-
commutative probability space.Therefore, we focus on the case where random matrices are considered. Concepts
from combinatorics, such as crossing and non-crossing partitions are useful tools to express the moments of
Gaussian and Vandermonde matrices, respectively. Our analysis and simulation results show that free deconvolution
framework can be used for studying relevant information in cognitive radio such as power detection, users
detection, etc.

1 Introduction
In the last decade, recent studies [1] have shown that
future communication systems should be designed to be
able to adapt to their environment in order to tackle the
problem of the underutilization of a precious resource
such as the radio spectrum. Measurements have shown
that large portions of frequency bands are not efficiently
used, that is, for most of the time, large pieces of band-
width are unoccupied or partially occupied [2]. A possible
solution, introduced by Mitola [3,4], is represented by cog-
nitive networks, that can be thought of as self-learning,
adaptive and intelligent networks. In cognitive networks,
unlicensed (secondary) systems improve spectral efficiency
by sensing the environment and filling opportunistically
the discovered holes spectrum (or white spaces) of
licensed systems (primary), which have exclusive right to

operate in a certain spectrum band [5]. The current devel-
opment of microelectronics allows us to suppose that
these wireless systems, for which the spectrum utilization
will play a key role, will be realized in the near future.
These systems provide an efficient utilization of the radio
spectrum based on the methodology understanding-by-
building to learn from the environment and to adapt their
parameters to statistical variations in the input stimuli [6].
The current development in cognitive radio research

is the result of a multidisciplinary study that allows us
to analyze different aspects of cognitive radio. We iden-
tify in signal processing, game theory, information the-
ory, random matrix theory, etc., enabling areas for the
development of cognitive radio.
Signal processing plays a major role in designing cogni-

tive wireless networks, especially in spectrum sensing to
identify spectrum opportunities and in the design of cog-
nitive spectrum access to exploit the identified spectrum
holes. We refer to spectrum sensing as the process where
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devices look for a signal in the presence of noise for a
given frequency band. Several digital signal processing
techniques, such as matched filtering, energy detection,
and cyclostationary feature detection are analyzed [7,8]
to improve radio sensitivity and detect the presence of
primary users. In [9], it is proved that the energy detector
is an efficient spectrum sensing technique when the sec-
ondary user has limited information on the primary
user’s waveform, i.e., only the power of the local noise is
known. The authors of [10] formulate the spectrum sen-
sing problem as a nonlinear optimization problem, mini-
mizing the interference to the primary user and meeting
the requirement of opportunistic spectrum utilization.
Cooperation between users follows as a consequence of
the following constraints: (1) secondary users should not
interfere with the primary transmissions and they should
be able to detect the primary signal even if decoding the
signal may be impossible [9]; (2) secondary users are in
general not aware of the exact transmission scheme used
by primary users. Cooperation among all cognitive users
operating in the same band reduces the detection time
and increases the overall agility with which cognitive
users are able to shift bands [11-13]. Cooperation is
designed in [14] as joint detection among all the coop-
erating users and in [15] as fusion center that makes the
final decision about the occupancy of the band by fusing
the decisions made by all cooperating users. In [16],
cooperation is analyzed for the partial CSI (channel state
information) scenario at the secondary users.
From a game theoretic point of view spectrum sharing

may be considered as a competition. The importance of
studying cognitive radio networks in a game theoretic fra-
mework is multifold. By modeling dynamic spectrum shar-
ing between users as a game, users behaviors and actions
can be analyzed in a formalized structure, where the theo-
retical results in game theory can be fully applied [17,18].
The optimization of spectrum usage is generally a multi-
objective optimization problem, which is very difficult to
analyze and to solve. Moreover, game theory provides us
game models that predict convergence and stability of net-
works [19]. In [20], a game-theoretic adaptive channel
allocation scheme is proposed for cognitive radio net-
works. In particular, a game is formulated to analyze the
selfish and cooperative behaviors of the players. The
players of this game were the wireless nodes and their
strategies were defined in terms of channel selection. In
[21], the convergence dynamics of the different types of
games in cognitive radio systems is studied. Then, a game
theory framework is proposed for distributed power con-
trol to achieve agility in spectrum usage in a cognitive
radio network.
Information theory is used to characterize the achiev-

able rates in a cognitive radio network under different

assumptions on how the secondary systems interfere
with the primary ones. Fundamental understanding on
the capacity of the cognitive systems are provided in
[22-26]. Using recent results on random matrix theory,
the authors of [27,28] propose a new method for signal
detection in cognitive radio, based on the eigenvalues of
the covariance matrix of received signal at the secondary
users. In [29], a spectrum sensing technique that relies
on the use of multiple receivers to infer on the structure
of the received signals using random matrix theory is
proposed. The authors show that their technique is
quite robust and does not require the knowledge of sig-
nal or noise statistics. These methods do not require
any prior information on the primary signal or on the
noise power. In [30,31] two hypothesis tests allowing to
detect the presence of an unknown transmitter using
several sensors are proposed and random matrix theory
is used to provide the error associated with both tests.
We recognize as a crucial point of cognitive radio

development understanding how much it is possible to
infer from the network with the knowledge of just few
observations. In the current study, we use free probabil-
ity theory, through the concept of free deconvolution, to
handle the problem of retrieving useful information
from the network with a limited number of observa-
tions. Free deconvolution, based on the moments
method, has shown to be a interesting tool to attack
this problem.
In cognitive random networks, devices are autonomous

and should take optimal decisions based on their sensing
capabilities. We are particularly interested in measures
such as capacity, signal to noise ratio, and estimation of
the signal power. Such measures are usually related to the
eigenvalues of the channel matrix and not on the specific
structure, the eigenvectors. The fact that the spectrum of a
stationary process is related to the information measure of
the underlying process dates back to Kolmogorov [32].
The entropy rate of a stationary Gaussian stochastic pro-
cess can be expressed by

H = log(πe) +
1
2π

π∫
−π

log(S(f ))df

where S is the spectral density of the considered process.
Therefore, a complete characterization of the information
contained in the process is given in the case the autocorre-
lation of the process is known. Moreover, the authors of
[33,34] have shown that the entropy rate is also related to
the minimum mean squared error (MMSE) of the best
estimator of the process given the infinite past. In wireless
communication, this means that it is possible retrieve one
quantity from the other, especially as many receivers
incorporate an MMSE component. In the discrete case,
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the entropy rate per dimension (or differential entropy) of
a Gaussian stochastic process xi of size n is given by

H = log (πe) +
1
n
logdetR

= log (πe) +
1
n

n∑
i=1

log (λi)

where R = E(xixHi ) is the covariance and li are its
eigenvalues. The knowledge these eigenvalues provides
us with the information on Gaussian networks. In fact,
in order to estimate the rate and in extension the capa-
city which is the difference between two differential
entropies or any other measure which involves perfor-
mance criteria, one needs to compute the eigenvalues of
the covariance. For a number of observations K of the
vector xi, i = 1,..., K, the covariance R is usually esti-
mated by

R̂ =
1
p

p∑
i=1

xixHi

= R1/2SSHR1/2,

(1)

where S = [s1,..., sK ] is an n × K i.i.d zero mean Gaussian
vector with variance 1

K. In cognitive random networks, the
number of samples K is of the same order as n, due to the
high mobility of the network and to the fact that the statis-
tics are considered to be the same within a K number of
samples. Because of this, the use of classical asymptotic
signal processing techniques is not more efficient since
they require a number of samples K >> n. Therefore,our
main problem consists in retrieving information within a
window of limited samples. In this sense, free probability
theory, through the concept of free deconvolution, is a
very appealing framework for the study of cognitive net-
works. The main advantage of free deconvolution frame-
work is that it provides us with helpful techniques to
obtain useful informations from a finite number of obser-
vations. The deconvolution framework comes here from
the fact that we would like to invert Equation (1) and
express R with respect to R̂, since we can only have access
to the sample covariance matrix. This is not possible, how-
ever, one can compute the eigenvalues of R knowing only
the eigenvalues of R̂.
In the following, the general idea of free deconvolution

is presented. We show how the moments method works
in the case where scalar random variables are considered.
However, since in practical situations systems are more
complex, the parameters of interest are no longer scalar
random variables and they need to be represented by ran-
dom matrices. Therefore, we analyze the case where ran-
dom matrices are considered. We analyze moments
method for matrices which show the freeness property and

we show that it can be used to propose algorithmic meth-
ods to compute moments of finite Gaussian random
matrices. Moreover, we analyze the case of matrices for
which freness does not hold: Vandermonde, Hankel, Toe-
plitz. In the end, we present applications showing how the
moments method approach can be used for studying cog-
nitive radio: power detection, users detection, etc. In last
section, we discuss our results presenting conclusions and
open problems.

2 Information plus noise model
The example given in (1) is rarely met in practice in
wireless communication since the transmitted signal si
is, usually, distorted by a medium, given by mi = f(si)
with f any function, and the received signal yi is altered
by some additive noise ni. We consider a finite number
K of observations of the following n × 1 received signal,
known as Information plus Noise model

yi = mi + ni i = 1, . . . ,K (2)

which can be rewritten in a matrix form stacking all
observations as

Y = M +N (3)

with M and N K × n independent random matrices.
We are interested in retrieving information about the
transmitted signal from the received signal, more expli-
citly to obtain the eigenvalues of MMH from the eigen-
values of YYH and NNH . This is exactly the goal of
deconvolution.
In more general terms, the idea of deconvolution is

related to the following problem [35]: Given A, B two n
× n independent square complex Hermitian (or real
symmetric) random matrices:
(1) Can one derive the eigenvalue distribution of A

from those of A + B and B? If feasible in the large n-
limit, this operation is named additive free
deconvolution,
(2) Can one derive the eigenvalue distribution of A

from those of AB and B? If feasible in the large n-limit,
this operation is named multiplicative free
deconvolution.
The techniques generally used to compute the operation

of deconvolution in the large n-limit are the moments
method [35] and the Stieltjes transform method [36]. Each
of these methods has its advantages and its drawbacks.
The moments method only works for measures with
moments and characterizes the convolution only by giving
its moments but it is easily implementable and, in many
applications, one needs only a subset of the moments
depending on the number of parameters to be estimated.
Instead, the Stieltjes transform method works for any mea-
sure and it allows, when computations are possible, to
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recover the densities. Unfortunately, this method works
only in very few cases, since the operations which are
necessary are almost always impossible to implement in
practice and combining patterns of matrices naturally
leads to more complex equations for the Stieltjes trans-
form and can only be performed in the large n-limit.
We analyze the concept of free deconvolution based

on the moments method which uses the empirical
moments of the eigenvalue distribution of random
matrices to obtain information about the eigenvalues.
The moments method has shown to be a fruitful techni-
que in both the asymptotic and the finite setting to
compute deconvolution, as well as the simplest patterns,
sums and products, and products of many independent
matrices.

3 Moments method
3.1 Scalar case
We start by showing how moments method works for
the scalar case. We consider X and Y two independent
random variables and Z = X + Y . We are interested in
retrieving the distribution of X knowing the distribution
of Z and Y . The idea is to consider the moment gener-
ating function

MZ (t) = E
[
etZ

]
= MX (t)MY (t)

from which

MX(t) =
MZ(t)
MY(t)

.

The knowledge of MX(t) gives us the distribution of
the random variable X. However, it is not always easy to
recover the distribution of X from MX(t). Another
approach to solve the problem is to express the inde-
pendence in terms of moments or cumulants. The
cumulants are given by derivatives (at zero) of the func-
tion gX (t) = logE

[
etX

]
. We denote by cn the cumulant

of order n:

cn(X) =
∂n

∂tn| t=0
logE

[
etX

]
.

The main advantage of using cumulants is due to the
fact that for independent variables X and Y

gX+Y (t) = log
[
E

(
et(X+Y

)
)]

= log
[
E
(
etX

)
E
(
etY

)]
= log

[
E
(
etX

)]
+log E

(
etY

)
= gX (t)+gY (t) ,

this means that

cn (X + Y) = cn (X) + cn (Y) .

Moments, denoted by mn (X) = E [Xn], and cumulants
of a random variable can be deduced from each other
by the moment-cumulant formula

mn(X) =
n∑

i=1k1

∑
k1,...,ki≥1
k1+···+ki=n

ck1 (X) . . . cki(X). (4)

Therefore to obtain the distribution of X from the
ones of X +Y and Y one can compute the cumulants of
X by the formula cn(X) = cn(X + Y) − cn(Y) and then
deduce the moments of X from its cumulants.
In the multiplicative case, we consider X and Y inde-

pendent random variables and we are interested in
retrieving the distribution of X from XY and Y. In this
case, the problem can be easily solved since

E[(XY)n] = E[Xn]E[Yn],

then, we obtain E [Xn] = E[(XY)n]
E[Yn]

. Therefore, using the

moments approach, we can compute the moments of X.
The moments method for scalar random variables

seems to be very straightforward, however in general we
have more complex situations. The generalization to
multi-user multi-antenna communication systems has
dramatically changed the nature of wireless communica-
tion problems. Furthermore, multi-dimensional stochas-
tic problems need to be solved since cognitive devices
are required to be simultaneously smarter and able to
collaborate with one another. The random parameters
in these problems are no longer scalar random variables
but potentially vectors and matrices. The computation
of deconvolution for random matrices is more complex
than the scalar case and it is explained in the following.

3.2 Historical perspective
The origin of the moment approach for the derivation
of the eigenvalue distribution of random matrices dates
back to the work of Wigner [37]. Wigner was interested
to the energy levels of nuclei (the positively charged
central core of an atom). These energy levels are linked
to the Hamiltonian operator by the Schrondinger equa-
tion, and the fact that these energy levels can be repre-
sented as the eigenvalues of the matrix representation of
this operator, led Wigner to replace the exact matrix by
a random matrix having the same properties. In most of
the cases, it could be considered the following hermitian
random matrix

H =
1√
n

⎡
⎢⎢⎢⎢⎢⎢⎣

0 +1 +1 +1 −1 −1
+1 0 −1 +1 +1 +1
+1 −1 0 +1 +1 +1
+1 +1 +1 0 +1 +1
−1 +1 +1 +1 0 −1
−1 +1 +1 +1 −1 0

⎤
⎥⎥⎥⎥⎥⎥⎦

where the upper diagonal elements are i.i.d generated
with a binomial distribution. His study revealed that, as
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the dimension of the matrix increases, the eigenvalues of
the matrix become more and more predictable irrespec-
tive of the exact realization of the matrix (see Figure 1).
The idea to show this is to compute, as the dimension
increases, the moments of the matrix H, that is the
trace at different exponent. Consider

dFn(λ) =
1
n

n∑
i=1

δ(λ − λi)

then the moments of the eigenvalue distribution of H
are given by:

m1(H) =
1
n
Tr(H) =

1
n

n∑
i=1

λi =
∫

λdFn(λ)

m2(H) =
1
n
Tr(H2) =

1
n

n∑
i=1

λ2
i =

∫
λ2dFn(λ)

· · · = · · ·

mk(H) =
1
n
Tr(Hk) =

1
n

n∑
i=1

λk
i =

∫
λkdFn(λ)

The traces above can be computed, as the dimension
increases, using combinatorial tools. It turn out that all
odd moments converge to zero, whereas all even
moments converge to what is known as the Catalan
numbers. The only distribution which has all its odd
moments null and all its even moments equal to the
Catalan numbers is the semi-circular law (see Figure 1)
provided by

f (x) =
1
2π

√
4 − x2

with |x| ≤ 2. In this way, the moments approach is
shown to be a useful method for computing the eigen-
values distribution of classical known matrices.
When more than one matrix is considered, the con-

cept of asymptotic freeness [38] leaves us to compute
the eigenvalue distribution of sums and products of ran-
dom matrices.

3.3 Free probability framework
Free probability theory [38] was introduced by Voicu-
lescu in the 1980s in order to attack some problems

Figure 1 Semicircle law and simulation for a 512 × 512 Wigner matrix.
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related to operator algebras and it can be considered as
a generalization of classical probability theory to non-
commutative algebras. The analogy between the concept
of freeness and the independence in classical probability
leaves us to work with noncommutative operators like
matrices that can be considered elements in what is
called a noncommutative probability space. The algebra
of Hermitian random matrices is a particular case of
such a probability space, for which the random vari-
ables, i.e., the random matrices, do not commute with
respect to the matrix product.
Definition 3.1 A non-commutative probability space

(A,ϕ) consists of a unitala non-commutative algebra A
over ℂ and a unital linear function

ϕ : A → C,ϕ (1A) = 1

The elements of A are called non-commutative ran-
dom variables. In our case, A will consist of n × n
matrices or random matrices. For matrices, � will be the
normalized trace defined for any A ∈ A by

tr(A) =
1
n
Tr(A) =

1
n

n∑
i=1

A(i, i),

while for random matrices, � will be the linear func-
tional τ defined by

τ (A) =
1
n
E(Tr(A)) =

1
n

n∑
i=1

E[A(i, i)].

Definition 3.2 Let A and B be n×n hermitian random
matrices and the functional ϕ (A) := limn→∞ 1

nE[Tr(A)]we
say that A and B are aymptotically free if whenever there
exist polynomials pi and qi such that �[pi(A)] = 0 for all i
and �[qj(B)] = 0 for all j, then necessarily

ϕ[p1(A)q1(B)p2(A)q2(B) . . .] = 0.

Given A, B n × n hermitian and asymptotically free
random matrices such that their eigen-values distribu-
tions converge to some probability measure µA and µB,
respectively, then the eigenvalue distributions of A + B
and AB converge to a probability measure which
depends on µA and µB, called additive and multiplicative
free convolution, and denoted by µA ⊞ µB and µA ⊠ µB,
respectively.
Additive free deconvolution: The additive free decon-

volution of a measure r by a measure ν is (when it
exists) the only measure µ such that r = µ ⊞ ν. In this
case, µ is denoted by µ = r ⊟ ν.
Multiplicative free deconvolution The multiplicative

free deconvolution of a measure r by a measure ν is
(when it exists) the only measure µ such that r = µ ⊠ ν.
In this case, µ is denoted by µ = r ⊠ ν.

For a given n × n random matrix A, the p-th moment
of A is defined, if it exists, as:

mn,p
A = E[tr(Ap)] =

∫
λpdρn(λ) (5)

where dρn(λ) = E(1n
∑n

i=1 δ(λ − λi)) is the associated
empirical mean measure, and li are the eigenvalues of
A. The idea of additive and multiplicative free deconvo-
lution stems from the fact that in the asymptotic case

mp
A+B := lim

n→∞
1
n
E[Tr((A + B)p)] = f (m(1)

A , . . . , m(p)
A , m(1)

B , . . . , m(p)
B )

mp
AB := lim

n→∞
1
n
E[Tr((AB)p)] = g(m(1)

A , . . . , m(p)
A , m(1)

B , . . . , m(p)
B )

which means that we can express the moments of A +
B and the moments of AB as a function of the moments
of A and the moments of B. In other words, the joint
distribution of A + B and the joint distribution of AB
depend only on the marginal distributions of A and B.
Even if matrices with finite dimensions are not free,

the free probability framework, based on the moments,
can still be used to propose an algorithmic method to
compute these operations for finite size matrices. This
means that

mn,p
A+B =

1
n
E[Tr((A + B)p)] = f (m(1)

A , . . . , m(p)
A , m(1)

B , . . . , m(p)
B )

mn,p
AB =

1
n
E[Tr((AB)p)] = g(m(1)

A , . . . , m(p)
A , m(1)

B , . . . , m(p)
B )

Hence, when, for n ® ∞, the moment mn,p
A converges

almost surely to an analytical expression mp
A that

depends only on some specific parameters of A (such as
the distribution of its entries).b Therefore, in the finite
setting one is still able by recursion to express all the
moments of A with respect only to the moments of A +
B and B, or AB and B.
We will give a characterization of free deconvolution

in terms of free cumulants, which are polynomials in
the moments with a nice behaviour with respect to the
freeness. The nomenclature comes from classical prob-
ability theory where corresponding objects are well
known. There exists a combinatorial description of
these classical cumulants, which depends on partitions
of sets. In the same way, free cumulants can also be
described combinatorially, the only difference to the
classical case is the replacement of partitions by the so
called non-crossing partitions [39].
Definition 3.3 A partition π of a set {1, 2,..., n} is a

decomposition in subsets Vi: π = {V1,..., Vr} such that⋃r
i=1 Vi = {1, . . . ,n}, with Vi ≠ ∅ and Vi ∩ Vj = ∅ for all

i ≠ j.
The set of all partitions of {1, 2,..., n} is denoted by

P(n), and Vi are called blocks of π.
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For a given random variable X, the relationship
between moments and cumulants given in (4) can be
combinatorially expressed by

E(Xn) =
∑

π∈P(n)

cπ

where cπ =
∏|π |

i=1 c|πi| when π = {π1,..., π|π|}.
Definition 3.4 A partition π of {1,..., n} is non-crossing

if whenever we have four numbers 1 ≤ i < k < j < l ≤ n
such that i and j are in the same block, k and l are in
the same block, we also have that i, j, k, l belong to the
same block.
We denote by NC(n) the set of non-crossing partition

of {1,..., n}, and if this situation does not happen, then
we call π a crossing partition. Examples of non-crossing
and crossing partitions are give in Figures 2 and 3.
The computation of free deconvolution by the

moments method approach is based on the moment-
cumulant formula, which gives a relation between the

moments mp
A ≡ mp

μA and the free cumulants κ
p
A ≡ κ

p
μA of

a matrix A, where µA is the associated measure. It turns
out that the cumulants are quantities much easier to
compute, also thanks to the concept of non-crossing
partitions. The moment-cumulant formula says that

mp
A =

∑
π={V1,...,Vk}∈NC(p)

k∏
i=1

κ
|Vi|
A , (6)

where |Vi| is the cardinality of the block Vi. From (6)
it follows that the first p cumulants can be computed
from the first p moments, and viceversa.
The following characterization allows us to compute

easily the additive free convolution using free cumulants.
Theorem 3.5 [38]Given A and B asymptotically free

random matrices, µA ⊞ µB is the only law such that for all
p ≥ 1

κ
p
μA�μB

= κp
μA

+ κp
μB

(7)

Hence, the deconvolution of µA+B by µB, denoted by µ
(A+B) ⊟ µB, is characterized by the fact that for all p ≥ 1

κ
p
μA+B�μB

= κp
μA+B

− κp
μB
. (8)

The implementation of additive free deconvolution is
based on the following steps: for the two matrices (A +
B) and B, we first compute the free cumulants, then,
considering the relation between the cumulants and the
moments, we can obtain information about the distribu-
tion of the eigenvalues of A.
The moments method, in the multiplicative case, is

based on the relation between the moments mp
A ≡ mp

μA

and the coefficients spA ≡ spμA of the S-transformc of the

measure associated to A. They can be deduced one
from each other from the following relations for all p ≥ 1

m1
As

1
A = 1, spA =

p+1∑
k=1

skA +
∑

p1,...,pk≥1
p1+···+pk=p+1

mp1
A . . .mpk

A .Figure 2 Non-crossing partition {{1, 3, 5}, {2}, {4}} of the set {1,
2, 3, 4, 5}.

Figure 3 Crossing partition {{1, 3, 5}, {2, 4}} of the set {1, 2, 3, 4, 5}.
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Hence, we can compute multiplicative free convolu-
tion by the following characterization.
Theorem 3.6 [38]Given A and B asymptotically free

random matrices, µA ⊠ µB is the only law such that:

SμA�μB = SμASμB

The multiplicative free deconvolution of μAB by μB,
μ(AB) ⊠ μB, is characterized by the fact that for all p ≥ 1

sp
μAB�μB

s1μB
= spμAB

−
p−1∑
k=1

skμAB�μB
sp+1−k
μB

. (9)

Even though freeness usually does not hold for finite
matrices, the moments method can still be used to pro-
pose algorithmic methods to compute their moments.
Focusing on the study of random matrices in the finite
case, the authors of [40] were able to derive the explicit
series expansion of the eigenvalue distribution of various
models, namely the case of non-central Wishart distri-
butions as well as one sided correlated zero mean
Wishart distributions. In particular, they proposed a
general finite dimensional statistical inference frame-
work based on the moments method in the finite case,
which takes a set of moments as input and produces
sets of moments as output with the dimensions of the
matrices considered finite. They focus on the finite
Gaussian case. The formulas of the moments presented
in their contributions have been generated by iterations
through partitions and permutations and concepts from
combinatorics. The first and simplest result concerns
the moments of a product of a deterministic matrix and
a Wishart matrix. Let n, N be positive integers, X be n ×
N standard, complex, Gaussiand matrix and D a (deter-
ministic) n × n matrix. Denoting the moments Dp = tr
(Dp) and Mp = E[tr((D 1

NXX
H)p)] for any positive integer

p, Theorem 1 in [40] allows us to express the moments
Mp in terms of the moments Dp. In particular, the first
three moments can be written as

M1 = D1

M2 = D2 + cD2
1

M3 =
(
1 +

1
N2

)
D3 + 3cD2D1 + c2D3

1

where c = n
N. By a simple recursion, we can express Dp

from Mp. For the first three moments these recursions
become

D1 = M1

D2 = M2 − cM2
1

D3 = (M3 − 3c(M2 − cM2
1)M1 + c2M3

1)
(
1 +

1
N2

)−1

.

Considering the sum of a D deterministic n × N matrix
and X a n × N standard, complex, Gaussian matrix, in
accordance with the [40, Theorem 2], for any positive
integer p the moments Mp = E[tr(( 1

ND + X)(D + X)H)p)]
can be expressed in terms of the moments
Dp = tr(( 1nDDH)p) as the following formulas:

M1 = D1 + 1

M2 = D2 + (2 + 2c)D1 + (1 + c)

M3 = D3 + (3 + 3c)D2 + 3cD2
1 +

(
3 + 9c + 3c2 +

3
N2

)
D1 +

(
1 + 3c + c2 +

1
N2

)

In this case also, by a simple recursion, one can
express Dp from Mp. It is clear how the operation of
deconvolution can be viewed as operating on the
moments: explicit expression for the moments of the
Gram matrices associated to our models (sum or pro-
duct of a deterministic matrix and a complex standard
Gaussian matrix) are found, and are expressed in terms
of the moments of the matrices involved. Hence, decon-
volution means to express the moments, in this case of
the deterministic matrices, in function of the moments
of the Gram matrices.
Similar results are found when the Gaussian matrices

are assumed to be square and selfad-joint. The imple-
mentation of the results is also able to generate the
moments of many types of combinations of independent
Gaussian and Wishart random matrices.
The algorithms are based on iterations through parti-

tions and permutations and they give us rather complex
expression. However, the author of [41] have generated
Matlab codes based on concepts as partitions and per-
mutations in order to implement the above results.
Once known the moments, the Newton-Girard formu-

las [42] can be used to retrieve the eigenvalues from the
moments. These formulas state a relationship between
the elementary symmetric polynomials


1(λ1, . . . , λn) = λ1 + · · · + λn


2(λ1, . . . , λn) =
∑

1≤i<j≤n

λiλj

...


n(λ1, . . . , λn) = λ1 . . . λn,

and the sums of the powers of their variables

Sp(λ1, . . . , λn) =
∑
1≤i≤n

λ
p
i = ntp

(with tp being the p-th moment) through the recur-
rence relation

(−1)mm
∏
m

(λ1, . . . , λn) +
m∑
i=1

(−1)k+mSk(λ1, . . . , λn)
∏
m−k

(λ1, . . . , λn) = 0. (10)
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If the sums of powers Sp(l1,..., ln) are known for 1 ≤
p ≤ n, the relation (10) can be used to compute the ele-
mentary symmetric polynomials ∏m(l1,..., ln) for 1 ≤ m
≤ n. Therefore, the characteristic polynomial

(λ − λ1) . . . (λ − λn)

(the roots of which provide the eigenvalues of the
associated matrix) can be fully charac-terized since its n
− k coefficient is given by (−1)k ∏k(l1,..., ln). In this way
the entire characteristic polynomial can be computed,
and the eigenvalues can also be found.

4 Non free case
In recent works, deconvolution, based on the moments
method, has been analyzed when n ® ∞ for some parti-
cular matrices A and B. For instance, when A is a ran-
dom Vandermonde matrix and B is a deterministic
diagonal matrix [43], or when A and B are two indepen-
dent random Vandermonde matrices [44]. The authors
in [43] developed analytical methods for finding
moments of random Vandermonde matrices with entries
on the unit circle and provide explicit expressions for the
moments of the Gram matrix associated to the models
considered. The explicit expressions found for the
moments are useful for performing deconvolution. In
these cases the moments technique has been shown to be
very appealing and powerful in order to derive the exact
asymptotic moments of “non free matrices”. This type of
matrices occurs in cognitive radio [45].
Definition 4.1 An N × M random Vandermonde

matrix with entries on the unit circle has the form

V =
1√
N

⎡
⎢⎢⎢⎣

1 · · · 1
e−jω1 · · · e−jωM

... · · · ...
e−j(N−1)ω1 · · · e−j(N−1)ωM

⎤
⎥⎥⎥⎦ ,

where the phases ω1,..., ωM are i.i.d. random variables
in [0, 2π].
The asymptotic behaviour of random Vandermonde

matrices is analyzed when N and M are large, both go
to infinity at a given ratio M

N → c, with c constant. The

scaling factor 1√
N and the assumption that the entries

lies on the unit circle guarantee that the analysis will
give limiting asymptotic behaviour.
Definition 4.2 For ρ = {W1, . . . ,Wr} ∈ P(n) , we define

Kρ,ω,N =

1
Nn+1−|ρ|

∫
(0,2π)|ρ|

n∏
k=1

1 − ejN(ωb(k−1)−ωb(k))

1 − ej(ωb(k−1)−ωb(k))
dω1 . . . dω|ρ|, (11)

where ωW1 , . . . ,ωW|ρ| are i.i.d. (indexed by the blocks of
r) with the same distribution of ω and where b(k) is the
block of r which contains k. If the limit

Kρ,ω = lim
N→∞

Kρ,ω,N (12)

exists, we call it a Vandermonde mixed moment
expansion coefficient.
These quantities do not behave exactly as cumulants,

but rather as weights which tell us how a partition in
the moment formula we present should be weighted. In
this respect, the formulas presented for the moments
are different from classical or free moment-cumulant
formulas, since these do not perform this weighting.
The limits Kr,ω may not always exist, and necessary and
sufficient conditions for their existence seem to be hard
to find. In [43], it has been proved that the limit in (12)
exists if the density of ω is continuous. The calculation
is based on combinatorial computation using crossing
partitions since the matrices are not free.
Theorem 4.3 Let ω1,..., ωM be phases independent and

identically distributed in [0, 2π]. we have that

mn = lim
N→∞

E[trM(PVHV)n] =
∑

ρ∈P(n)

Kρ,ωc
|ρ|−1Pρ (13)

exist when M
N → c > 0, Pn = limN®∞ trM(Pn),

Pρ =
∏k

i=1 PWi
.

Remark 1. The fact that all moments exist is not
enough to guarantee that there exists a limit probability
measure having these moments. However, it is proved
in [46] that the Carleman’s condition is satisfied.
Uniform phase distribution plays an important role or

Vandermonde matrices.
Theorem 4.4 For Vandermonde matrices with uniform

phase distribution u, the Vander-monde mixed moment
expansion coefficient

Kρ,u = lim
N→∞

Kρ,u,N (14)

exists ∀r. Moreover, Kr,u satisfies the following proper-
ties

• 0 ≤ Kr,u ≤ 1;
• Kr,u are rational numbers ∀ r;
• Kr,u = 1 ⇔ r is non-crossing partition;
• Let Vω,n = limN→∞E[trM(VH

ωVω)n] (with Vω a Van-
dermonde matrix with phase distribution ω), then
Vu,n ≤ Vω,n.

The importance of uniform phase distribution is also
expressed by the following theorem.
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Theorem 4.5 The Vandermonde mixed moment

expansion coefficient Kρ,ω = lim
N→∞

Kρ,ω,N exist whenever

the density pω of ω is continuous on [0, 2π], then

Kρ,ω = K|ρ|−1
ρ,u

⎛
⎝ 2π∫

0

pω(x)
|ρ|dx

⎞
⎠ . (15)

The behaviour of Vandermonde matrices is different
when the density of ω has singularities and depends on
the density growth rates near the singularities points.
Indeed, for the case of generalized Vandermonde
matrices, whose columns do not consist of uniformly
distributed power, it is possible to define mixed moment
expansion coefficients but the formulas are more
complex.
When many independent Vandermonde matrices are

considered, the following relations hold.
Theorem 4.6 If V1, V2,... are independent Vander-

monde matrices with the same phase distribution ω with
continuous density, then

lim
N→∞

E[trM(P1(N)VH
i1Vi2 · · ·Pn(N)VH

inVi1)] =
∑

ρ≤σ∈P(n)

Kρ,ωc
|ρ|−1Pρ (16)

exist when M
N, with s = {s1, s2} = {{1, 3,... }, {2, 4,... }},

and “≤"denotes the refinement order, i.e., any block of r
is contained within a block of s.
If V1, V2,... are independent Vandermonde matrices

with different phase distribution ωi with continuous den-
sity pωi, Equation (16) still holds with Kr,ω replaced by

K |ρ|−1
ρ,u

⎛
⎝ 2π∫

0

n∏
i=1

pωi(x)
|ρ|dx

⎞
⎠ .

In [44], the authors generalize the above results repla-
cing convergence in distribution with almost sure con-
vergence in distribution.
Such matrices are applied to cognitive radio in [45],

where authors consider a scenario with a primary and a
secondary user wish to communicate with their corre-
sponding receivers simultaneously over frequency selec-
tive channels is considered. Under realistic assumptions
that the primary user is ignorant of the secondary user’s
presence and that the secondary transmitter has no side
information about the primary’s message, the authors
propose a Vandermonde precoder that cancels the inter-
ference from the secondary user by exploiting the
redundancy of a cyclic prefix.

4.1 Toeplitz and Hankel matrices
The same strategy used to compute the moments of
Vandermonde matrices can be used for Hankel and
Toeplitz matrices.

Definition 4.7 We define a Toeplitz matrix

T =
1√
N

⎡
⎢⎢⎢⎢⎢⎢⎣

X0 X1 X2 · · · XN−2 XN−1

X1 X0 X1 · · · XN−2

X2 X1 X0
...

...
...

XN−1 XN−2 · · · X1 X0

⎤
⎥⎥⎥⎥⎥⎥⎦
, (17)

where Xi are i.i.d., real-valued random variables with
unit variance.
Theorem 4.8 [44]We denote by Mi the asymptotic

moments of order 2i of a Toeplitz matrix T, then we
have

M1 = 1

M2 =
8
3

M3 = 11.

Similar results hold for Hankel matrices.
Definition 4.9 We define an Hankel matrix

H =
1√
N

⎡
⎢⎢⎢⎢⎢⎢⎣

X1 X2 · · · XN−1 XN

X2 X3 XN XN+1
... XN+1 XN+2

. . .
XN N + 1 · · · X2N−2 X2N−1

⎤
⎥⎥⎥⎥⎥⎥⎦
, (18)

where Xi are i.i.d., real-valued random variables with
unit variance.
Theorem 4.10 [44]We denote by Mi the asymptotic

moments of order 2i of a Hankel matrix H, then we have

M1 = 1

M2 =
8
3

M3 = 14.

Toeplitz and Hankel matrices are structured matrices
used for compressive wide-band spectrum sensing
schemes [47,48] and for direction of arrival estimation
[49].

5 Application
5.1 Power estimation
We consider a multi-user MIMO system where the
received signal can be expressed by

yi = WP
1
2 si + σni

(19)

where W, P, si, and ni are respectively the N × K
channel gain matrix, the K × K diagonal power matrix
due to the different distances from which the users
emit, the K × 1 matrix of signals and the N × 1 matrix
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representing the noise with variance s. In particular, W,
si, ni are independent standard, complex, Gaussian
matrices and vectors. We are interested in estimating
the power with which the users send information, from
M observations (during which the channel gain matrix
stays constant) of the vector yi. We consider the 2 × 2-
matrix

P
1
2 =

(
1.5 0
0 0.5

)
(20)

and we apply additive deconvolution at first, and then
multiplicative deconvolution twice (each application
takes care of one Gaussian matrix). We can estimate the
eigenvalues of P when we have an increasing number L
of observations of the matrix Y = [y1,..., yM], represent-
ing the signals received (we average across several block
fading channels). Hence, we estimate the moments of
the matrix P based only on the moments of the matrix
YYH. Knowing the moments of P, we can estimate the
eigenvalues using Newton-Girard formulas. When L
increases, we get a prediction of the eigenvalues which
is closer to the true eigenvalues of P. Figure 4 illustrates
the estimation of eigenvalues up to L = 1000

observations. The actual powers are 2.25 and 0.25, the
variance s of the noise is assumed to be equal to 0.1.

5.2 Understanding the network in a finite time
In cognitive MIMO networks, one must learn and con-
trol the “black box” (for instance the wireless channel)
with multiple inputs and multiple outputs within a frac-
tion of time and with finite energy. The fraction of time
constraint is due to the fact that the channel (black box)
changes over time. Of particular interest is the estima-
tion of the capacity within the window of observation.
Let y be the output vector, x and n respectively the

input signal and the noise vector, so that

y = x + σn. (21)

In the Gaussian case, the rate is given by

C = H
(
y
) − H

(
y|x)

= log2 det(πeRY) − log2 det(πeRN)

= log2

(
det(RY)
det(RN)

)

where RY is the covariance of the output signal and
RN is the covariance of the noise. Therefore, one can
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Figure 4 Estimation of the powers for the model (19), where the number L of observations increases, the sizes of the matrices are K =
N = M = 2 and s = 0.1. The actual powers are 2.25 and 0.25.
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fully describe the information transfer in the system by
knowing only the eigenvalues of RY and RN. Unfortu-
nately, the receiver has only access to a limited number
L of observations of y and not to the covariance of RY.
However, in the case where x and n are Gaussian vec-

tors, y can be written as y = R
1
2
Y u

where u is an i.i.d

standard Gaussian vector. The problems falls therefore
in the realm of inference with a correlated Wishart

model

(
1
L

∑L
i=1 yiy

H
i = R

1
2
i

1
L

∑L
i=1 uiuH

i R
1
2
Y

)
.

In the simulation we have taken n as an i.i.d. standard
Gaussian vector of dimension 2 and

RY =
(
1.22 0
0 0.42

)
. (22)

Considering L observations of (21), we stack the obser-
vations as columns in a compound matrix to get an
unbiased estimate of the moments of RY . In Figure 5, we
can observe the convergence of the estimated capacity to
the true one.
In Figure 6, we estimate the eigenvalues of the matrix

RY versus the number of observations L. Once again, we

observe the convergence of the estimated eigenvalues to
the true eigenvalues.

5.3 Users detection
We consider M mobile users, each with a single
antenna, communicating with a base station equipped
with N receiving antennas, arranged as a uniform linear
array (ULA). The N × 1 received signal at the base sta-
tion is given by

y = VP
1
2 x + n (23)

where x is the M × 1 input signal transmitted by the
M users, satisfying E[xxH] = IM, and n is the additive
Gaussian noise such that E[nnH] = σ 2IM. We suppose
that the components in x and n are independent. The
matrix P = diag(p1,..., pM) represents the power with
which users send information. In the case of a line of
sight between the mobile users and the base station, the
N × M matrix V has the following form

V(θ) =
1√
N
[v(θ1), . . . , v(θM)],
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Figure 5 Estimation of the capacity for the model (21) up to L = 500 observations, with s = 0.5.
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where

v(θ) =
[
1, e−j2π

d
λ
sin(θ), . . . , e−j2π

d
λ
(N−1) sin(θ)

]T
,

and θ1,..., θM are the angles of the users and are sup-
posed to be i.i.d. and uniform on [−a, a], d is the inter-
spacing distance between the antennas of the ULA, and
l is the wave-length of the signal.
We are interested in estimating the number of users

from a finite number K of observations of the received
signal. Stacking all observations in a matrix

Y = [y1, . . . , yK] = VP
1
2 [x1, . . . , xK] + [n1, . . . , nK](24)

we can have access to the sample covariance matrix

W =
1
K
YYH. (25)

For estimation of the number of users M, we assume
that the power distribution of P is known. Based on the
knowledge of the power distribution, we are able to esti-
mate the number of users in the system. Thanks to the

moments method it is possible to estimate the moments
of the sample covariance matrix in (25) from the
moments of the power matrix P.
Proposition 5.1 [43]Given the phase distribution ω

and pω its density function, we define

In = (2π)n−1

π∫
−π

pω(x)ndx.

Denoting the moments of P and the moments of the
sample covariance matrix W, respectively, by

Pi = trM(Pi) (26)

Wi = trN(Wi) (27)

then

W1 = c2P1 + σ 2

W2 = c2p2 + (c22I2 + c2c3)(P1)2+

2σ 2(c2 + c3)P1 + σ 4(1 + c1)

0 50 100 150 200
−0.5

0

0.5

1

1.5

2

2.5

3

Number of observations

E
ig

en
va

lu
es

 

 
Estimated eigenvalue
Estimated eigenvalue
True eigenvalues
True eigenvalues

Figure 6 Estimation of the eigenvalues for the 2×2-matrix RY of (22) for various number of observations.
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W3 = c2

(
1 +

1
K2

)
P3 +

(
3
(
1 +

1
K2

)
c22I2 + 3c2c3

)
P1P2+(

c32I3

(
1 +

1
K2

)
+ 3c22c3I2 + c2c23

)
(P1)3+

3σ 2
(
(1 + c1) +

c1c2
KM

)
c2P2+

3σ 2
[(

(1 + c1) +
c1c2
KM

)
c22I2 + c3(c3 + 2c2)

]
(P1)2+

3σ 4
(
c21 + 3c1 + 1 +

1
K2

)
c2P1+

σ 6
(
c21 + 3c1 + 1 +

1
K2

)
,

where c1 = limN→∞ N
K , c2 = limN→∞ M

N and

c3 = limN→∞ M
K .

Knowing the matrix P, we can compute the moments
Pi. From the moments Pi, using the above expressions is
possible to get the moments Wi of the sample covar-
iance matrix. We consider some candidate values of the
number M of users. The estimate of M is chosen as the
one which minimizes the sum of the square errors
between the moments Wi and the moments of the
observed sample covariance matrix.
In Figures 7 and 8 we have taken N = 100, M = 30,

σ =
√
0.1, the distance d = 1 and the wavelength l = 2d.

We take the values of the matrix P equals to 0.5, 1.5, 2
with equal probability. Therefore just the first three
moments are considered. We see that in Figure 8 the
approximation is better even for a small number of
observations.

5.4 Wavelength detection
We know that in cognitive radio, mobile users are inter-
ested in understanding which band of transmission is
occupied. Considering the model (23), we estimate the

wavelength l using the moments method. As before, we
consider some realizations of the sample covariance
matrix and we estimate its moments in function of the
moments of the power matrix, supposed to be known. In
Figure 9, we consider K = 10, L = 30, N = 100, and
σ =

√
0.1, in addition to l = 2, d = 1,α = π

4. Candidate
values of the wavelength are taken in the interval [0.5, 4]
with step 0.1 and the estimate value is chosen as the one
which minimizes the sum of the squared errors of the
first three moments between the moments Wi and the
moments of the observed sample covariance matrix.

6 Conclusions and open problems
In the last decade, researchers and practitioners have
devised cognitive radio as a possible solution for the pro-
blem of underutilization of the radio spectrum. These the-
oretical ad-vancements in cognitive radio research have
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Figure 7 Estimation of the number of users. Actual value of M =
25 and K = 1. The powers are 0.5, 1.5, 2 with equal probability for
various number of observations.
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Figure 8 Estimation of the number of users. Actual value of M =
25 and K = 10. The powers are 0.5, 1.5, 2 with equal probability for
various number of observations.

0 20 40 60 80 100
0

2

4

6

8

10

Number of observations



 

 

Estimate of 
Actual value of 

Figure 9 Estimation of the wavelength. Actual value of l = 2
and K = 10. The powers are 0.5, 1, 1.5 with equal probability for
various number of observations.
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set up a solid base for practical applications and even
further developments. However, still open questions need
to be answered. In particular, in the current work, we use
free probability theory, through the concept of free decon-
volution, to attack the problem of retrieving useful infor-
mation from the network with a limited number of
observations. Free deconvolution, based on the moments
method, has shown to be a interesting tool to tackle this
problem. First, we show how the moments method works
in the case where scalar random variables are considered.
Then, since in practical situations systems are so complex
that the parameters of interest need to be represented by
vectors and matrices and can not be modeled by scalar
random variables, we analyze the case where random
matrices are considered. We propose algorithm method to
compute the moments of various models such as Gaussian
and Vandermonde matrices. Matlab codes for cognitive
radio is developed to implement this algorithm method. In
the applications free deconvolution framework can be
used for retrieving relevant information such as power
with which users send information, number of users, etc.
We have analyzed how free deconvolution framework

works for random matrices and how random matrices
behave differently depending on their structure. Differ-
ent directions of research can be followed in this frame-
work. In Vandermonde matrix model, the deconvolution
techniques have been performed taking into account
only diagonal matrices. It could be interesting to address
the case of general deterministic matrices. In this way,
correlation between users can be considered. The
knowledge of the correlation could be a relevant ele-
ment to improve the cooperation among the users in a
cognitive system.
The extension of free deconvolution techniques to

more general functions of matrices is a hard task. The
difficulty is related to the fact that up to now there is
not a general hypothesis that guarantees the application
of free deconvolution to any random matrix. This exten-
sion can take into account more general models that
represent more realistic situations.
For future perspective we would like also to take into

account a second order analysis. The study of the covar-
iance matrices can improve the accuracy of the estima-
tions related to the free deconvolution framework.
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Endnotes
aAn algebra is unital if it contains a multiplicative identity element, i.e., an
element1A with the property1A · x = x · 1A = x for all elements x of
the algebra. bNote that in the following, when speaking of moments of
matrices, we refer to the moments of the associated measure. cLet X be a

random variable and MX(z) :=
∑∞

m=0 ϕ(Xn)zn, we define the S-
Transform of X as

SX(z) =
1 + z

z
M<−1>

X (z)

where (·) < −1 >denotes the inverse (under composition) (i.e.,
M<−1>

X (MX(z)) = MX(M<−1>
X (z)) = z). dA standard complex

Gaussian matrix X has i.i.d. complex Gaussian entries with zero mean and
unit variance (in particular, the real and imaginary parts of the entries are
independent, each with zero mean and variance 1/2).
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