261,356 research outputs found

    Advanced Communication and Sensing Protocols Using Twisted Light and Engineered Quantum Statistics

    Get PDF
    Advanced performance of modern technology at a fundamental physical level is driving new innovations in communication, sensing capability, and information processing. Key to this improvement is the ability to harness the power of physical phenomena at the quantum mechanical level, where light and light-matter interactions produce technological advancement not realizable by classical means. Theoretical investigation into quantum computing, sensing capability beyond classical limits, and quantum information has prompted experimental work to bring state-of-the-art quantum systems to the forefront for commercial use. This dissertation contributes to the latter portion of the work. A set of preliminaries is included highlighting pertinent physical foundations for the experiments herein. Three experiments are then presented: (1) using twisted coherent light in multimode fibers for secure communication with machine learning, (2) conditional measurements for signal-to-noise ratio improvement of quantum plasmonic sensors, and (3) post-selected photon-number resolving measurements for quantum information processing using twisted pseudo-thermal light, with key results discussed for each investigation

    Viability of Numerical Full-Wave Techniques in Telecommunication Channel Modelling

    Get PDF
    In telecommunication channel modelling the wavelength is small compared to the physical features of interest, therefore deterministic ray tracing techniques provide solutions that are more efficient, faster and still within time constraints than current numerical full-wave techniques. Solving fundamental Maxwell's equations is at the core of computational electrodynamics and best suited for modelling electrical field interactions with physical objects where characteristic dimensions of a computing domain is on the order of a few wavelengths in size. However, extreme communication speeds, wireless access points closer to the user and smaller pico and femto cells will require increased accuracy in predicting and planning wireless signals, testing the accuracy limits of the ray tracing methods. The increased computing capabilities and the demand for better characterization of communication channels that span smaller geographical areas make numerical full-wave techniques attractive alternative even for larger problems. The paper surveys ways of overcoming excessive time requirements of numerical full-wave techniques while providing acceptable channel modelling accuracy for the smallest radio cells and possibly wider. We identify several research paths that could lead to improved channel modelling, including numerical algorithm adaptations for large-scale problems, alternative finite-difference approaches, such as meshless methods, and dedicated parallel hardware, possibly as a realization of a dataflow machine

    Context Aware Service Oriented Computing in Mobile Ad Hoc Networks

    Get PDF
    These days we witness a major shift towards small, mobile devices, capable of wireless communication. Their communication capabilities enable them to form mobile ad hoc networks and share resources and capabilities. Service Oriented Computing (SOC) is a new emerging paradigm for distributed computing that has evolved from object-oriented and component-oriented computing to enable applications distributed within and across organizational boundaries. Services are autonomous computational elements that can be described, published, discovered, and orchestrated for the purpose of developing applications. The application of the SOC model to mobile devices provides a loosely coupled model for distributed processing in a resource-poor and highly dynamic environment. Cooperation in a mobile ad hoc environment depends on the fundamental capability of hosts to communicate with each other. Peer-to-peer interactions among hosts within communication range allow such interactions but limit the scope of interactions to a local region. Routing algorithms for mobile ad hoc networks extend the scope of interactions to cover all hosts transitively connected over multi-hop routes. Additional contextual information, e.g., knowledge about the movement of hosts in physical space, can help extend the boundaries of interactions beyond the limits of an island of connectivity. To help separate concerns specific to different layers, a coordination model between the routing layer and the SOC layer provides abstractions that mask the details characteristic to the network layer from the distributed computing semantics above. This thesis explores some of the opportunities and challenges raised by applying the SOC paradigm to mobile computing in ad hoc networks. It investigates the implications of disconnections on service advertising and discovery mechanisms. It addresses issues related to code migration in addition to physical host movement. It also investigates some of the security concerns in ad hoc networking service provision. It presents a novel routing algorithm for mobile ad hoc networks and a novel coordination model that addresses space and time explicitly

    Fundamental Limits of Nanophotonic Design

    Full text link
    Nanoscale fabrication techniques, computational inverse design, and fields from silicon photonics to metasurface optics are enabling transformative use of an unprecedented number of structural degrees of freedom in nanophotonics. A critical need is to understand the extreme limits to what is possible by engineering nanophotonic structures. This thesis establishes the first general theoretical framework identifying fundamental limits to light--matter interactions. It derives bounds for applications across nanophotonics, including far-field scattering, optimal wavefront shaping, optical beam switching, and wave communication, as well as the miniaturization of optical components, including perfect absorbers, linear optical analog computing units, resonant optical sensors, multilayered thin films, and high-NA metalenses. The bounds emerge from an infinite set of physical constraints that have to be satisfied by polarization fields in response to an excitation. The constraints encode power conservation in single-scenario scattering and requisite field correlations in multi-scenario scattering. The framework developed in this thesis, encompassing general linear wave scattering dynamics, offers a new way to understand optimal designs and their fundamental limits, in nanophotonics and beyond.Comment: PhD thesi

    Limits on Fundamental Limits to Computation

    Full text link
    An indispensable part of our lives, computing has also become essential to industries and governments. Steady improvements in computer hardware have been supported by periodic doubling of transistor densities in integrated circuits over the last fifty years. Such Moore scaling now requires increasingly heroic efforts, stimulating research in alternative hardware and stirring controversy. To help evaluate emerging technologies and enrich our understanding of integrated-circuit scaling, we review fundamental limits to computation: in manufacturing, energy, physical space, design and verification effort, and algorithms. To outline what is achievable in principle and in practice, we recall how some limits were circumvented, compare loose and tight limits. We also point out that engineering difficulties encountered by emerging technologies may indicate yet-unknown limits.Comment: 15 pages, 4 figures, 1 tabl

    Some Thoughts on Hypercomputation

    Full text link
    Hypercomputation is a relatively new branch of computer science that emerged from the idea that the Church--Turing Thesis, which is supposed to describe what is computable and what is noncomputable, cannot possible be true. Because of its apparent validity, the Church--Turing Thesis has been used to investigate the possible limits of intelligence of any imaginable life form, and, consequently, the limits of information processing, since living beings are, among others, information processors. However, in the light of hypercomputation, which seems to be feasibly in our universe, one cannot impose arbitrary limits to what intelligence can achieve unless there are specific physical laws that prohibit the realization of something. In addition, hypercomputation allows us to ponder about aspects of communication between intelligent beings that have not been considered befor
    • ā€¦
    corecore