6 research outputs found

    Adaptive image synthesis for compressive displays

    Get PDF
    Recent years have seen proposals for exciting new computational display technologies that are compressive in the sense that they generate high resolution images or light fields with relatively few display parameters. Image synthesis for these types of displays involves two major tasks: sampling and rendering high-dimensional target imagery, such as light fields or time-varying light fields, as well as optimizing the display parameters to provide a good approximation of the target content. In this paper, we introduce an adaptive optimization framework for compressive displays that generates high quality images and light fields using only a fraction of the total plenoptic samples. We demonstrate the framework for a large set of display technologies, including several types of auto-stereoscopic displays, high dynamic range displays, and high-resolution displays. We achieve significant performance gains, and in some cases are able to process data that would be infeasible with existing methods.University of British Columbia (UBC Four Year Doctoral Fellowship)Natural Sciences and Engineering Research Council of Canada (Postdoctoral Fellowship)United States. Defense Advanced Research Projects Agency (DARPA SCENICC program)Alfred P. Sloan Foundation (Sloan Research Fellowship)United States. Defense Advanced Research Projects Agency (DARPA Young Faculty Award)University of British Columbia (Dolby Research Chair at UBC

    Superimposing Dynamic Range

    Get PDF
    We present a simple and cost-efficient way of extending contrast, perceived tonal resolution, and the color space of static hardcopy images, beyond the capabilities of hardcopy devices or low-dynamic range displays alone. A calibrated projector-camera system is applied for automatic registration, scanning and superimposition of hardcopies. We explain how high-dynamic range content can be split for linear devices with different capabilities, how luminance quantization can be optimized with respect to the non-linear response of the human visual system as well as for the discrete nature of the applied modulation devices; and how inverse tone-mapping can be adapted in case only untreated hardcopies and softcopies (such as regular photographs) are available. We believe that our approach has the potential to complement hardcopy-based technologies, such as X-ray prints for filmless imaging, in domains that operate with high quality static image content, like radiology and other medical fields, or astronomy

    Adaptive image synthesis for compressive displays

    Full text link

    Appearance-based image splitting for HDR display systems

    Get PDF
    High dynamic range displays that incorporate two optically-coupled image planes have recently been developed. This dual image plane design requires that a given HDR input image be split into two complementary standard dynamic range components that drive the coupled systems, therefore there existing image splitting issue. In this research, two types of HDR display systems (hardcopy and softcopy HDR display) are constructed to facilitate the study of HDR image splitting algorithm for building HDR displays. A new HDR image splitting algorithm which incorporates iCAM06 image appearance model is proposed, seeking to create displayed HDR images that can provide better image quality. The new algorithm has potential to improve image details perception, colorfulness and better gamut utilization. Finally, the performance of the new iCAM06-based HDR image splitting algorithm is evaluated and compared with widely spread luminance square root algorithm through psychophysical studies

    High-dynamic-range displays : contributions to signal processing and backlight control

    Get PDF

    Photometric image processing for high dynamic range displays

    No full text
    Many real-world scenes contain a dynamic range that exceeds conventional display technology by several orders of magnitude. Through the combination of several existing technologies, new high dynamic range displays, capable of reproducing a range of intensities much closer to that of real environments, have been constructed. These benefits come at the cost of more optically complex devices; involving two image modulators, controlled in unison, to display images. We present several methods of rendering images to this new class of devices for reproducing photometrically accurate images. We discuss the process of calibrating a display, matching the response of the device with our ideal model. We then derive series of methods for efficiently displaying images, optimized for different criteria and evaluate them in a perceptual framework.Science, Faculty ofComputer Science, Department ofGraduat
    corecore