214 research outputs found

    Functionalized Upconversion Nanoparticles for Targeted Labelling of Bladder Cancer Cells.

    Full text link
    Bladder cancer is the ninth most common cancer worldwide. Due to a high risk of recurrence and progression of bladder cancer, every patient needs long-term surveillance, which includes regular cystoscopy, sometimes followed by a biopsy of suspicious lesions or resections of recurring tumours. This study addresses the development of novel biohybrid nanocomplexes representing upconversion nanoparticles (UCNP) coupled to antibodies for photoluminescent (PL) detection of bladder cancer cells. Carrying specific antibodies, these nanoconjugates selectively bind to urothelial carcinoma cells and make them visible by emitting visible PL upon excitation with deeply penetrating near-infrared light. UCNP were coated with a silica layer and linked to anti-Glypican-1 antibody MIL38 via silica-specific solid-binding peptide. Conjugates have been shown to specifically attach to urothelial carcinoma cells with high expression of Glypican-1. This result highlights the potential of produced conjugates and conjugation technology for further studies of their application in the tumour detection and fluorescence-guided resection

    Silica nanospheres entrapped with ultra-small luminescent crystals for protein delivery

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Constructing smart nano-systems for intracellular delivery of functional proteins has been endeavored for diverse biomedical applications, but suffered daunting challenges. Herein silica nanospheres entrapped with photoluminescent CaF2:Tm,Yb nanocrystals were synthesized and decorated with amino molecules for protein delivery. Amino-modified nanospheres presented high protein loading capacity and sustained release phenomenon. The photoluminescence of particles highly corresponded to protein release progress. The preliminary in-vitro study confirmed markedly enhanced cell up-taking efficiency of protein molecules with the nanocomposite developed

    ACS Appl Bio Mater

    Get PDF
    The lateral flow assay (LFA) is a point-of-care diagnostic test commonly available in an over-the-counter format because of its simplicity, speed, low cost, and portability. The reporter particles in these assays are among their most significant components because they perform the diagnostic readout and dictate the test's sensitivity. Today, gold nanoparticles are frequently used as reporters, but recent work focusing on photoluminescent-based reporter technologies has pushed LFAs to better performance. These efforts have focused specifically on reporters made of organic fluorophores, quantum dots, lanthanide chelates, persistent luminescent phosphors, and upconversion phosphors. In most cases, photoluminescent reporters show enhanced sensitivity compared to conventional gold nanoparticle-based assays. Here, we examine the advantages and disadvantages of these different reporters and highlight their potential benefits in LFAs. Our assessment shows that photoluminescent-based LFAs can not only reach lower detection limits than LFAs with traditional reporters, but they also can be capable of quantitative and multiplex analyte detection. As a result, the photoluminescent reporters make LFAs well-suited for medical diagnostics, the food and agricultural industry, and environmental testing.R01 AR072742/AR/NIAMS NIH HHSUnited States/R43 AI118180/AI/NIAID NIH HHSUnited States/U01 CK000512/CK/NCEZID CDC HHSUnited States/U01CK000512/ACL/ACL HHSUnited States

    Graphene Quantum Dots - From Emergence to Nanotheranostic Applications

    Get PDF
    Quantum dots are at the cutting edge of nanotechnology development. Due to their unique optical and physical properties, they have potential applications in many avenues of medicine and biotechnology. With the advancements in nano-sciences, novel applications of quantum dots are constantly being explored for drug delivery and bioimaging. Graphene quantum dots (GQDs) are nanoparticles of graphene with properties of quantum dots as well as graphene. GQDs have ignited remarkable research interest in the field of medicine and biology and are considered as well-suited candidates for nanotheranostic applications due to their excellent biocompatibility and tunable physicochemical properties. The promising emerging implications of GQD platforms for diagnostics and therapeutics advances are the basis of this chapter

    Development of Nanostructured Glucose Biosensor

    Get PDF
    With the development of nanotechnology and nanomaterials, biosensors incorporated with novel nanomaterials and nanostructures have shown significant potential in point-of-care medical devices because of their rapid interaction with target analytes and their miniaturized systems. Nanomaterials and nanostructures with special chemical, physical and biological characteristics are able to enhance biosensors’ performance in terms of sensitivity and selectivity. Therefore, my study focused on development of special nanostructures used for advanced glucose biosensor. Monitoring of blood glucose level is essential for diabetes management. However, current methods require people with diabetes to have blood test with 5-8 times per day. Compared to other methods, optical and magnetic techniques have a potential in developing minimally invasive or non-invasive, and continuous glucose monitoring nanostructured biosensors. Consequently, this thesis presented nanostructured optical and magnetic glucose biosensors by incorporating novel nanomaterials and fabricating nanostructures for the next generation of glucose biosensor in the tears. The glucose biorecognition biomolecule used in the biosensors was Concanavalin A (Con A). Con A is a lectin protein that has strong affinity to glucose. Fluorescence resonance energy transfer (FRET) technique was applied to develop optical glucose biosensors. FRET biosensor is a distance-dependent biosensor. The fluorescence emission of a donor molecule could be used to excite acceptor when the distance between donor and acceptor is close enough (\u3c 20 nm). Three different types of nanostructures were developed and used as the donors of the glucose FRET biosensors. The first type of sensor is a ZnO/quantum dots-based glucose biosensors. Hybrid ZnO nanorod array with decoration of CdSe/ZnS quantum dots were prepared and coated on silicone hydrogel which is a common materials of contact lens. The patterned nanostructured FRET sensor could quickly measure rats’ tear glucose in an extremely small amount (2 µL) of diluted tear sample. The second type of biosensor is based on upconversion nanomaterials. Upconversion NaGdF4: Yb, Er nanoparticles with diameter of about 40±5 nm have been prepared by polyol process and coated on silicone hydrogel to directly sense the tear glucose level on the rats’ eye surface. The results show that the upconversion nanomaterials based lens sensor is able to quickly measure glucose in rats’ blood samples. The third type of sensor utilizes the unique optical properties of carbon nanomaterial, fluorescent carbon dots and graphene oxide nanosheets. The carbon dots with tunable fluorescence were developed by a microwave-assisted process. The carbon dots are used as a fluorescence donor in the biosensor, the chitosan coated graphene oxide acts as the fluorescence acceptor to quench the emission of carbon quantum dots. In the presence of glucose, the emission of carbon quantum dots could be restored as a function of the concentration of glucose. Two linear relationships of the restored emission of the sensor and the concentration of glucose were observed, in the range of 0.2 mM to 1 mM, and 1 mM to 10 mM, respectively. On the other hand, a magnetoresistive (MR) nanostructured glucose biosensor has been developed by exploiting hybrid graphene nanosheets decorated with FeCo magnetic nanopartciles. The Fe3O4/silica core/shell nanoparticles are used as the magnetic label of glucose, which could bind onto the surface of FeCo/graphene nanocomposited sensor. The binding of magnetic label onto the hybrid graphene nanosheets can result in the change of the magnetoresistance. The MR signal as a function of the glucose level of diluted rat blood samples is measured in a range of 2 mM to 10 mM. In summary, novel nanomaterials and nanostructures with special fluorescent and magnetoresistive properties are fabricated for developing nanostructured glucose biosensors, which could bring alternative approaches for convenient management diabetes

    Potential Development of N-Doped Carbon Dots and Metal-Oxide Carbon Dot Composites for Chemical and Biosensing

    Get PDF
    Funding Information: The authors are would like to thank the Department of Chemistry, Government VYT PG Autonomous College Durg, Chhattisgarh, sponsored by DST-FIST (New Delhi), India and the Fundação para a Ciência e a Tecnologia (FCT), Portugal, for the Scientific Employment Stimulus-Institutional Call (CEEC-INST/00102/2018) and the Associate Laboratory for Green Chemistry-LAQV, financed by national funds from FCT/MCTES (UIDB/50006/2020 and UIDP/5006/2020). Publisher Copyright: © 2022 by the authors.Among carbon-based nanomaterials, carbon dots (CDs) have received a surge of interest in recent years due to their attractive features such as tunable photoluminescence, cost effectiveness, nontoxic renewable resources, quick and direct reactions, chemical and superior water solubility, good cell-membrane permeability, and simple operation. CDs and their composites have a large potential for sensing contaminants present in physical systems such as water resources as well as biological systems. Tuning the properties of CDs is a very important subject. This review discusses in detail heteroatom doping (N-doped CDs, N-CDs) and the formation of metal-based CD nanocomposites using a combination of matrices, such as metals and metal oxides. The properties of N-CDs and metal-based CDs nanocomposites, their syntheses, and applications in both chemical sensing and biosensing are reviewed.publishersversionpublishe

    Biodegradable Nitrogen-Doped Carbon Nanodots for Non-Invasive Photoacoustic Imaging and Photothermal Therapy

    No full text
    Multifunctional nanoparticles have been widely investigated for biomedical applications, such as imaging, therapy, and drug delivery. Especially, photoactive nanoparticles have received great attention as theranostic agents because of their heat-generating abilities after exposure to laser irradiation. However, photostability and safety issues have been the technical hurdles for further clinical applications. Here, we designed nitrogen (N)-doped carbon nanodots (N-CNDs) that have strong absorption in the near-infrared region, high photostability, and excellent biodegradability. Optimized N-CNDs can be utilized not only as a new photoacoustic (PA) imaging agent but also as a superior photothermal therapy (PTT) agent in vivo because of their strong optical absorption at a specific wavelength. We used N-CNDs to perform in vivo/ex vivo noninvasive PA imaging of sentinel lymph nodes via local delivery and performed PTT for cancer ablation therapy. Finally, biodegradation and renal clearance were confirmed by performing whole-body PA monitoring and a degradation test

    Biodegradable Nitrogen-Doped Carbon Nanodots for Non-Invasive Photoacoustic Imaging and Photothermal Therapy

    Get PDF
    Multifunctional nanoparticles have been widely investigated for biomedical applications, such as imaging, therapy, and drug delivery. Especially, photoactive nanoparticles have received great attention as theranostic agents because of their heat-generating abilities after exposure to laser irradiation. However, photostability and safety issues have been the technical hurdles for further clinical applications. Here, we designed nitrogen (N)-doped carbon nanodots (N-CNDs) that have strong absorption in the near-infrared region, high photostability, and excellent biodegradability. Optimized N-CNDs can be utilized not only as a new photoacoustic (PA) imaging agent but also as a superior photothermal therapy (PTT) agent in vivo because of their strong optical absorption at a specific wavelength. We used N-CNDs to perform in vivo/ex vivo noninvasive PA imaging of sentinel lymph nodes via local delivery and performed PTT for cancer ablation therapy. Finally, biodegradation and renal clearance were confirmed by performing whole-body PA monitoring and a degradation test.11269Ysciescopu

    Rare earth based nanostructured materials: Synthesis, functionalization, properties and bioimaging and biosensing applications

    Get PDF
    Rare earth based nanostructures constitute a type of functional materials widely used and studied in the recent literature. The purpose of this review is to provide a general and comprehensive overview of the current state of the art, with special focus on the commonly employed synthesis methods and functionalization strategies of rare earth based nanoparticles and on their different bioimaging and biosensing applications. The luminescent (including downconversion, upconversion and permanent luminescence) and magnetic properties of rare earth based nanoparticles, as well as their ability to absorb X-rays, will also be explained and connected with their luminescent, magnetic resonance and X-ray computed tomography bioimaging applications, respectively. This review is not only restricted to nanoparticles, and recent advances reported for in other nanostructures containing rare earths, such as metal organic frameworks and lanthanide complexes conjugated with biological structures, will also be commented on.European Union 267226Ministerio de Economía y Competitividad MAT2014-54852-
    corecore