3 research outputs found

    Visualization of Tensor Fields in Mechanics

    Get PDF
    Tensors are used to describe complex physical processes in many applications. Examples include the distribution of stresses in technical materials, acting forces during seismic events, or remodeling of biological tissues. While tensors encode such complex information mathematically precisely, the semantic interpretation of a tensor is challenging. Visualization can be beneficial here and is frequently used by domain experts. Typical strategies include the use of glyphs, color plots, lines, and isosurfaces. However, data complexity is nowadays accompanied by the sheer amount of data produced by large-scale simulations and adds another level of obstruction between user and data. Given the limitations of traditional methods, and the extra cognitive effort of simple methods, more advanced tensor field visualization approaches have been the focus of this work. This survey aims to provide an overview of recent research results with a strong application-oriented focus, targeting applications based on continuum mechanics, namely the fields of structural, bio-, and geomechanics. As such, the survey is complementing and extending previously published surveys. Its utility is twofold: (i) It serves as basis for the visualization community to get an overview of recent visualization techniques. (ii) It emphasizes and explains the necessity for further research for visualizations in this context

    Analysis and Visualization of Higher-Order Tensors: Using the Multipole Representation

    Get PDF
    Materialien wie Kristalle, biologisches Gewebe oder elektroaktive Polymere kommen häufig in verschiedenen Anwendung, wie dem Prothesenbau oder der Simulation von künstlicher Muskulatur vor. Diese und viele weitere Materialien haben gemeinsam, dass sie unter gewissen Umständen ihre Form und andere Materialeigenschaften ändern. Um diese Veränderung beschreiben zu können, werden, abhängig von der Anwendung, verschiedene Tensoren unterschiedlicher Ordnung benutzt. Durch die Komplexität und die starke Abhängigkeit der Tensorbedeutung von der Anwendung, gibt es bisher kein Verfahren Tensoren höherer Ordnung darzustellen, welches standardmäßig benutzt wird. Auch bezogen auf einzelne Anwendungen gibt es nur sehr wenig Arbeiten, die sich mit der visuellen Darstellung dieser Tensoren auseinandersetzt. Diese Arbeit beschäftigt sich mit diesem Problem. Es werden drei verschiedene Methoden präsentiert, Tensoren höherer Ordnung zu analysieren und zu visualisieren. Alle drei Methoden basieren auf der sogenannte deviatorischen Zerlegung und der Multipoldarstellung. Mit Hilfe der Multipole können die Symmetrien des Tensors und damit des beschriebenen Materials bestimmt werden. Diese Eigenschaft wird in für die Visualisierung des Steifigkeitstensors benutzt. Die zweite Methode basiert direkt auf den Multipolen und kann damit beliebige Tensoren in drei Dimensionen darstellen. Dieses Verfahren wird anhand des Kopplungs Tensors, ein Tensor dritter Ordnung, vorgestellt. Die ersten zwei Verfahren sind lokale Glyph-basierte Verfahren. Das dritte Verfahren ist ein erstes globales Tensorvisualisierungsverfahren, welches Tensoren beliebiger Ordnung und Symmetry in drei Dimensionen mit Hilfe eines linienbasierten Verfahrens darstellt.Materials like crystals, biological tissue or electroactive polymers are frequently used in applications like prosthesis construction or the simulation of artificial musculature. These and many other materials have in common that they change their shape and other material properties under certain circumstances. To describe these changes, different tensors of different order, dependent of the application, are used. Due to the complexity and the strong dependency of the tensor meaning of the application, there is, by now, no visualization method that is used by default. Also for specific applications there are only a few methods that address the visual analysis of higher-order tensors. This work adresses this problem. Three different methods to analyse and visualize tensors of higher order will be provided. All three methods are based on the so called deviatoric decomposition and the multipole representation. Using the multipoles the symmetries of a tensor and, therefore, of the described material, can be calculated. This property is used to visualize the stiffness tensor. The second method uses the multipoles directly and can be used for each tensor of any order in three dimensions. This method is presented by analysing the third-order coupling tensor. These two techniques are glyph-based visualization methods. The third one, a line-based method, is, according to our knowledge, a first global visualization method that can be used for an arbitrary tensor in three dimensions
    corecore