88 research outputs found

    Adaptive video delivery using semantics

    Get PDF
    The diffusion of network appliances such as cellular phones, personal digital assistants and hand-held computers has created the need to personalize the way media content is delivered to the end user. Moreover, recent devices, such as digital radio receivers with graphics displays, and new applications, such as intelligent visual surveillance, require novel forms of video analysis for content adaptation and summarization. To cope with these challenges, we propose an automatic method for the extraction of semantics from video, and we present a framework that exploits these semantics in order to provide adaptive video delivery. First, an algorithm that relies on motion information to extract multiple semantic video objects is proposed. The algorithm operates in two stages. In the first stage, a statistical change detector produces the segmentation of moving objects from the background. This process is robust with regard to camera noise and does not need manual tuning along a sequence or for different sequences. In the second stage, feedbacks between an object partition and a region partition are used to track individual objects along the frames. These interactions allow us to cope with multiple, deformable objects, occlusions, splitting, appearance and disappearance of objects, and complex motion. Subsequently, semantics are used to prioritize visual data in order to improve the performance of adaptive video delivery. The idea behind this approach is to organize the content so that a particular network or device does not inhibit the main content message. Specifically, we propose two new video adaptation strategies. The first strategy combines semantic analysis with a traditional frame-based video encoder. Background simplifications resulting from this approach do not penalize overall quality at low bitrates. The second strategy uses metadata to efficiently encode the main content message. The metadata-based representation of object's shape and motion suffices to convey the meaning and action of a scene when the objects are familiar. The impact of different video adaptation strategies is then quantified with subjective experiments. We ask a panel of human observers to rate the quality of adapted video sequences on a normalized scale. From these results, we further derive an objective quality metric, the semantic peak signal-to-noise ratio (SPSNR), that accounts for different image areas and for their relevance to the observer in order to reflect the focus of attention of the human visual system. At last, we determine the adaptation strategy that provides maximum value for the end user by maximizing the SPSNR for given client resources at the time of delivery. By combining semantic video analysis and adaptive delivery, the solution presented in this dissertation permits the distribution of video in complex media environments and supports a large variety of content-based applications

    JMIR Bioinform Biotech

    Get PDF
    Background:Venous thromboembolism (VTE) is a preventable, common vascular disease that has been estimated to affect up to 900,000 people per year. It has been associated with risk factors such as recent surgery, cancer, and hospitalization. VTE surveillance for patient management and safety can be improved via natural language processing (NLP). NLP tools have the ability to access electronic medical records, identify patients that meet the VTE case definition, and subsequently enter the relevant information into a database for hospital review.Objective:We aimed to evaluate the performance of a VTE identification model of IDEAL-X (Information and Data Extraction Using Adaptive Learning; Emory University)\u2014an NLP tool\u2014in automatically classifying cases of VTE by \u201creading\u201d unstructured text from diagnostic imaging records collected from 2012 to 2014.Methods:After accessing imaging records from pilot surveillance systems for VTE from Duke University and the University of Oklahoma Health Sciences Center (OUHSC), we used a VTE identification model of IDEAL-X to classify cases of VTE that had previously been manually classified. Experts reviewed the technicians\u2019 comments in each record to determine if a VTE event occurred. The performance measures calculated (with 95% CIs) were accuracy, sensitivity, specificity, and positive and negative predictive values. Chi-square tests of homogeneity were conducted to evaluate differences in performance measures by site, using a significance level of .05.Results:The VTE model of IDEAL-X \u201cread\u201d 1591 records from Duke University and 1487 records from the OUHSC, for a total of 3078 records. The combined performance measures were 93.7% accuracy (95% CI 93.7% 1293.8%), 96.3% sensitivity (95% CI 96.2% 1296.4%), 92% specificity (95% CI 91.9% 1292%), an 89.1% positive predictive value (95% CI 89% 1289.2%), and a 97.3% negative predictive value (95% CI 97.3% 1297.4%). The sensitivity was higher at Duke University (97.9%, 95% CI 97.8% 1298%) than at the OUHSC (93.3%, 95% CI 93.1% 1293.4%; P<.001), but the specificity was higher at the OUHSC (95.9%, 95% CI 95.8% 1296%) than at Duke University (86.5%, 95% CI 86.4% 1286.7%; P<.001).Conclusions:The VTE model of IDEAL-X accurately classified cases of VTE from the pilot surveillance systems of two separate health systems in Durham, North Carolina, and Oklahoma City, Oklahoma. NLP is a promising tool for the design and implementation of an automated, cost-effective national surveillance system for VTE. Conducting public health surveillance at a national scale is important for measuring disease burden and the impact of prevention measures. We recommend additional studies to identify how integrating IDEAL-X in a medical record system could further automate the surveillance process.CC999999/ImCDC/Intramural CDC HHSUnited States

    Signal enhancement for automatic recognition of noisy speech

    Get PDF
    Also issued as Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1994.Includes bibliographical references (p. 81-84).Supported by the Staff Associate Program at MIT Lincoln Laboratory.Shawn M. Verbout

    Signal enhancement for automatic recognition of noisy speech

    Get PDF
    Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1994.Includes bibliographical references (p. 81-84).by Shawn M. Verbout.M.S

    Ultra-high-speed imaging of bubbles interacting with cells and tissue

    Get PDF
    Ultrasound contrast microbubbles are exploited in molecular imaging, where bubbles are directed to target cells and where their high-scattering cross section to ultrasound allows for the detection of pathologies at a molecular level. In therapeutic applications vibrating bubbles close to cells may alter the permeability of cell membranes, and these systems are therefore highly interesting for drug and gene delivery applications using ultrasound. In a more extreme regime bubbles are driven through shock waves to sonoporate or kill cells through intense stresses or jets following inertial bubble collapse. Here, we elucidate some of the underlying mechanisms using the 25-Mfps camera Brandaris128, resolving the bubble dynamics and its interactions with cells. We quantify acoustic microstreaming around oscillating bubbles close to rigid walls and evaluate the shear stresses on nonadherent cells. In a study on the fluid dynamical interaction of cavitation bubbles with adherent cells, we find that the nonspherical collapse of bubbles is responsible for cell detachment. We also visualized the dynamics of vibrating microbubbles in contact with endothelial cells followed by fluorescent imaging of the transport of propidium iodide, used as a membrane integrity probe, into these cells showing a direct correlation between cell deformation and cell membrane permeability

    The direction of technical change in AI and the trajectory effects of government funding

    Get PDF
    Government funding of innovation can have a significant impact not only on the rate of technical change, but also on its direction. In this paper, we examine the role that government grants and government departments played in the development of artificial intelligence (AI), an emergent general purpose technology with the potential to revolutionize many aspects of the economy and society. We analyze all AI patents filed at the US Patent and Trademark Office and develop network measures that capture each patent’s influence on all possible sequences of follow-on innovation. By identifying the effect of patents on technological trajectories, we are able to account for the long-term cumulative impact of new knowledge that is not captured by standard patent citation measures. We show that patents funded by government grants, but above all patents filed by federal agencies and state departments, profoundly influenced the development of AI. These long-term effects were especially significant in early phases, and weakened over time as private incentives took over. These results are robust to alternative specifications and controlling for endogeneity

    Analysis and correction of the helium speech effect by autoregressive signal processing

    Get PDF
    SIGLELD:D48902/84 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    Use of Pattern Classification Algorithms to Interpret Passive and Active Data Streams from a Walking-Speed Robotic Sensor Platform

    Get PDF
    In order to perform useful tasks for us, robots must have the ability to notice, recognize, and respond to objects and events in their environment. This requires the acquisition and synthesis of information from a variety of sensors. Here we investigate the performance of a number of sensor modalities in an unstructured outdoor environment, including the Microsoft Kinect, thermal infrared camera, and coffee can radar. Special attention is given to acoustic echolocation measurements of approaching vehicles, where an acoustic parametric array propagates an audible signal to the oncoming target and the Kinect microphone array records the reflected backscattered signal. Although useful information about the target is hidden inside the noisy time domain measurements, the Dynamic Wavelet Fingerprint process (DWFP) is used to create a time-frequency representation of the data. A small-dimensional feature vector is created for each measurement using an intelligent feature selection process for use in statistical pattern classification routines. Using our experimentally measured data from real vehicles at 50 m, this process is able to correctly classify vehicles into one of five classes with 94% accuracy. Fully three-dimensional simulations allow us to study the nonlinear beam propagation and interaction with real-world targets to improve classification results
    • …
    corecore