3,864 research outputs found

    Discrete time quantum walks on percolation graphs

    Get PDF
    Randomly breaking connections in a graph alters its transport properties, a model used to describe percolation. In the case of quantum walks, dynamic percolation graphs represent a special type of imperfections, where the connections appear and disappear randomly in each step during the time evolution. The resulting open system dynamics is hard to treat numerically in general. We shortly review the literature on this problem. We then present our method to solve the evolution on finite percolation graphs in the long time limit, applying the asymptotic methods concerning random unitary maps. We work out the case of one dimensional chains in detail and provide a concrete, step by step numerical example in order to give more insight into the possible asymptotic behavior. The results about the case of the two-dimensional integer lattice are summarized, focusing on the Grover type coin operator.Comment: 22 pages, 3 figure

    Recurrence for discrete time unitary evolutions

    Full text link
    We consider quantum dynamical systems specified by a unitary operator U and an initial state vector \phi. In each step the unitary is followed by a projective measurement checking whether the system has returned to the initial state. We call the system recurrent if this eventually happens with probability one. We show that recurrence is equivalent to the absence of an absolutely continuous part from the spectral measure of U with respect to \phi. We also show that in the recurrent case the expected first return time is an integer or infinite, for which we give a topological interpretation. A key role in our theory is played by the first arrival amplitudes, which turn out to be the (complex conjugated) Taylor coefficients of the Schur function of the spectral measure. On the one hand, this provides a direct dynamical interpretation of these coefficients; on the other hand it links our definition of first return times to a large body of mathematical literature.Comment: 27 pages, 5 figures, typos correcte

    Quantum walks: a comprehensive review

    Full text link
    Quantum walks, the quantum mechanical counterpart of classical random walks, is an advanced tool for building quantum algorithms that has been recently shown to constitute a universal model of quantum computation. Quantum walks is now a solid field of research of quantum computation full of exciting open problems for physicists, computer scientists, mathematicians and engineers. In this paper we review theoretical advances on the foundations of both discrete- and continuous-time quantum walks, together with the role that randomness plays in quantum walks, the connections between the mathematical models of coined discrete quantum walks and continuous quantum walks, the quantumness of quantum walks, a summary of papers published on discrete quantum walks and entanglement as well as a succinct review of experimental proposals and realizations of discrete-time quantum walks. Furthermore, we have reviewed several algorithms based on both discrete- and continuous-time quantum walks as well as a most important result: the computational universality of both continuous- and discrete- time quantum walks.Comment: Paper accepted for publication in Quantum Information Processing Journa

    Evaluating the CDMA System Using Hidden Markov and Semi Hidden Markov Models

    Get PDF
    CDMA is an important and basic part of today’s communications technologies. This technology can be analyzed efficiently by reducing the time, computation burden, and cost by characterizing the physical layer with a Markov Model. Waveform level simulation is generally used for simulating different parts of a digital communication system. In this paper, we introduce two different mathematical methods to model digital communication channels. Hidden Markov and Semi Hidden Markov models’ applications have been investigated for evaluating the DS-CDMA link performance with different parameters. Hidden Markov Models have been a powerful mathematical tool that can be applied as models of discrete-time series in many fields successfully. A semi-hidden Markov model as a stochastic process is a modification of hidden Markov models with states that are no longer unobservable and less hidden. A principal characteristic of this mathematical model is statistical inertia, which admits the generation, and analysis of observation symbol contains frequent runs. The SHMMs cause a substantial reduction in the model parameter set. Therefore in most cases, these models are computationally more efficient models compared to HMMs. After 30 iterations for different Number of Interferers, all parameters have been estimated as the likelihood become constant by the Baum Welch algorithm. It has been demonstrated that by employing these two models for different Numbers of Interferers and Number of symbols, Error sequences can be generated, which are statistically the same as the sequences derived from the CDMA simulation. An excellent match confirms both models’ reliability to those of the underlying CDMA-based physical layer

    Dynamics of disordered and measured systems

    Get PDF

    Convex Relaxations for Permutation Problems

    Full text link
    Seriation seeks to reconstruct a linear order between variables using unsorted, pairwise similarity information. It has direct applications in archeology and shotgun gene sequencing for example. We write seriation as an optimization problem by proving the equivalence between the seriation and combinatorial 2-SUM problems on similarity matrices (2-SUM is a quadratic minimization problem over permutations). The seriation problem can be solved exactly by a spectral algorithm in the noiseless case and we derive several convex relaxations for 2-SUM to improve the robustness of seriation solutions in noisy settings. These convex relaxations also allow us to impose structural constraints on the solution, hence solve semi-supervised seriation problems. We derive new approximation bounds for some of these relaxations and present numerical experiments on archeological data, Markov chains and DNA assembly from shotgun gene sequencing data.Comment: Final journal version, a few typos and references fixe

    Rotor walks on general trees

    Full text link
    The rotor walk on a graph is a deterministic analogue of random walk. Each vertex is equipped with a rotor, which routes the walker to the neighbouring vertices in a fixed cyclic order on successive visits. We consider rotor walk on an infinite rooted tree, restarted from the root after each escape to infinity. We prove that the limiting proportion of escapes to infinity equals the escape probability for random walk, provided only finitely many rotors send the walker initially towards the root. For i.i.d. random initial rotor directions on a regular tree, the limiting proportion of escapes is either zero or the random walk escape probability, and undergoes a discontinuous phase transition between the two as the distribution is varied. In the critical case there are no escapes, but the walker's maximum distance from the root grows doubly exponentially with the number of visits to the root. We also prove that there exist trees of bounded degree for which the proportion of escapes eventually exceeds the escape probability by arbitrarily large o(1) functions. No larger discrepancy is possible, while for regular trees the discrepancy is at most logarithmic.Comment: 32 page

    Non-Markovian decay beyond the Fermi Golden Rule: Survival Collapse of the polarization in spin chains

    Full text link
    The decay of a local spin excitation in an inhomogeneous spin chain is evaluated exactly: I) It starts quadratically up to a spreading time t_{S}. II) It follows an exponential behavior governed by a self-consistent Fermi Golden Rule. III) At longer times, the exponential is overrun by an inverse power law describing return processes governed by quantum diffusion. At this last transition time t_{R} a survival collapse becomes possible, bringing the polarization down by several orders of magnitude. We identify this strongly destructive interference as an antiresonance in the time domain. These general phenomena are suitable for observation through an NMR experiment.Comment: corrected versio
    corecore