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Introduction

We may regard the present state of the universe as the effect of its past and the cause of its future.
An intellect which at a certain moment would know all forces that set nature in motion, and all
positions of all items of which nature is composed, if this intellect were also vast enough to submit
these data to analysis, it would embrace in a single formula the movements of the greatest bodies
of the universe and those of the tiniest atom; for such an intellect nothing would be uncertain and
the future just like the past could be present before its eyes.
—Pierre Simon Laplace, A Philosophical Essay on Probabilities [1].

In 1814, Pierre-Simon Laplace articulated the idea that, given the state of the universe at one instant
in time, an entity with perfect knowledge of the laws of nature and sufficient computational power
(referred to as Laplace’s demon by other authors) could predict the state of the universe at any given
past or future time [1]. In the following we focus on his statement about the future. Three immediate
problems with Laplace’s idea come to mind:

1. The state: Obtaining “the state of the universe” is impossible since the universe is very large and
not entirely observable.

2. The calculation: The enormous size of the universe adds too many variables to its future, such
that the calculation is impossible.

3. Determinism: The very idea of future events being completely determined by a past state is
doubtful since the arrival of quantum mechanics.

While perfect knowledge of the state and sufficient computational power are obviously impossible
premises which are taken for granted in the quote for the sake of the Gedankenexperiment, the third
problem is less obvious and goes against its main statement. It manifests itself in the quantum me-
chanical description of a measurement: The state of the system can be thought of as attributing
probabilities to the different measurement outcomes, instead of encoding a definitive result of a given
measurement. As soon as the measurement is performed, the state changes according to its outcome
(backaction), such that the course of the future is affected. In other words, if a measurement takes
place during the time evolution of a state, different possible outcomes of this measurement correspond
to different possible future states, and we generally do not know with certainty which of these quan-
tum trajectories the state will follow. There are other interpretations of quantum mechanics, but an
interpretation can by definition not overcome a “lack of predictive power” of the theory.

As a consequence, it is both practically as well as fundamentally impossible to accurately and
completely determine the future, according to our present knowledge of the laws of nature.

Despite all of these problems, many physics research projects can be described as predictions of
aspects of the future. In particular, dynamics is directly concerned with the time evolution of a system
from a given initial state. Interestingly, even if the system of interest is just a tiny subsection of the
universe, all three problems listed above still impact this task. In the following we relate them to the
broader scope of this thesis.
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Introduction

Fortunately, a complete and exact description of the initial state is often not necessary to make
strong predictions. Instead, particularly in large systems, it is often beneficial to employ a statistical
point of view, deriving system properties from an assumed distribution of states or state properties.
For instance, the assumption of disorder lays a basis for a generic description of a complicated state,
giving rise to powerful predictions. As an example, consider a piece of metal. A lot of information
about its state can be compressed by assuming that the constituent ions are arranged in a crystal
lattice. By specifying a basis for the lattice, the underlying structure of the metal is described,
no matter its size. However, this crystal structure is not sufficient to calculate, for example, the
conductivity of the metal at low temperatures. Taking a closer look, one realizes that the dynamics of
the electrons is actually crucially influenced by impurities of the metal [2]—spots, where the crystal
structure is distorted and perturbed in some way. Such imperfections are in fact commonly present
in solid objects [3]. Determining the position of each impurity is again impractical and in fact for
many purposes not necessary. Instead, we can assume their positions to be disordered—described by
a probability distribution. In this way, disorder enters the description of the state as an assumed
“classical” source of randomness. This assumption allows one to correctly predict for example the
Drude conductivity of the metal [2].

Regarding the computational aspect, great progress has been made since Laplace’s time due to the
establishment of the computer. Numerical methods allow us to perform brute-force physics simulations
to confirm results from other methods. The probabilistic nature of quantum measurements and disorder
make such simulations particularly useful. By repeating a simulation with random elements many
times we can obtain information about the distribution of different values an observable can take.
In particular, we can use simulations to follow individual quantum trajectories, by choosing random
measurement outcomes according to the Born rule; thus performing a “numerical experiment” to get
a grasp of the typical behavior of the system.

Lastly, studying the dynamics of a system, one clearly has to reconcile with quantum mechanics.
The quantum mechanical time evolution of a state is governed by two different paradigms: Unitary
time evolution, which is governed by the Schrödinger equation and deterministic, and projective mea-
surements, which are associated with probabilistic outcomes and the collapse of the wave function to
the measured state.
Relying on the first paradigm only, we can calculate the expectation values of different measurement
outcomes after an interval of unitary time evolution, which in turn already provide a lot of information.
However, when a measurement takes place, the system has to follow one particular quantum trajectory
and the measurement thus influences the dynamics.
One of the striking implications of quantum mechanical measurements on the dynamics of a system
was first formalized in Ref. [4]: If a system is measured repeatedly, with little time in between two
measurements for unitary time evolution, there is a high probability that each measurement resets
the system to the same eigenstate of the measured observable, thus effectively “freezing” its time evo-
lution. This is called the quantum Zeno effect, alluding to Zeno’s paradox of a flying arrow which
supposedly can not actually move, since at every individual moment of observation it is at one precise
location. In quantum mechanics, the Zeno effect is more than just a paradox or a thought experiment.
Experimental observations are reported for example in Refs. [5–7].

In summary, overcoming the difficulties in calculating dynamical properties of a large system moti-
vates the study of disorder and quantum measurements. Both of these “sources of randomness” lead
to interesting dynamical phenomena, as we elaborate below.
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Disorder, measurements, localization, and randomness

A seminal work that gave rise to the discovery of a whole class of dynamical phenomena in disordered
systems was published by P. W. Anderson in 1958 [8]: If disorder of is added to a quantum lattice,
the system can become localized. As an example, in non-interacting one and two dimensional lattices
the introduction of disorder implies spatially exponential decay of every single eigenstate, provided
a sufficiently large system [9, 10]. This prevents particles from propagating through the system and
thus leads to the absence of diffusion (as put by Anderson) and to exponential suppression of transport
quantities like the conductivity. Part of what makes localization fundamentally important is the implied
absence of thermalization—familiar concepts of statistical mechanics are not applicable to localized
systems, as equilibration between subsystems is inhibited [11].

While disordered one- and two-dimensional non-interacting systems are always strongly localized in
above sense, localization in higher dimensional lattices depends on the strength of disorder [9, 10] which
can be thought of as the standard deviation of the governing random distribution. Therefore, higher
dimensional lattices feature a transition in their behavior as a function of the disorder strength [8, 10],
which comes with its own intricacies. Other than in transport quantities, the Anderson transition also
manifests itself in the scaling of the entanglement between different parts of the system as a function
of the system size [12]. Roughly speaking, localization reduces the number of spatially overlapping
single-particle wave functions, thus also reducing correlations and entanglement.
Below the critical disorder strength, disorder can lead to weak localization, reducing the conductivity
and slowing down transport.

The generalization of Andersons ideas to interacting, disordered systems [13–15] is called many-body
localization [11, 16–19] and is still an active field of research. As a function of disorder and interaction
strength, a one-dimensional system can exhibit different phases that are either thermal or localized.
These phases are separated by the many-body localization transition, which also present itself in the
dynamics of transport observables as well as in the scaling of the entanglement entropy.

Disorder-induced localization offers up a parallel to the dynamics of measured systems and the
quantum Zeno effect, which can also spatially localize a state. Intuitively, repeated projective mea-
surements of spatially local quantities can prevent the spatial spreading of entanglement. The interest
in measurement-influenced dynamics has spiked recently due to the conceptualization of measure-
ment induced transitions [20–39], where the system-size-scaling of the entanglement entropy exhibits
a transition as a function of characteristics of the measurements (for example the measurement fre-
quency [22]). On this basis it was argued, that measurement-induced transitions and many-body
localization transitions are fundamentally linked [40]. In Refs. [38, 41] a connection between measure-
ment induced transitions in D > 1 dimensional systems of free fermions and Anderson transitions in
D + 1 dimensions was established based on the mathematical descriptions of these transitions.

Measurements however can not only hinder the spreading of entanglement. Choosing appropriate
measurement operators, measurements can create entanglement as well [30, 42]. Most generally, the
backaction of specifically designed measurements may be used to control and steer a system to a
specific target state. This interesting direction for measured dynamics is called measurement induced
steering [43–45]. It is relevant for both theory and experiment: While the design of measurement
protocols that allow for efficient steering is an interesting theoretical task, the advantages of being able
to set up the initial state of an experiment at will is clear. Also for quantum computing it is desirable
to be able to steer the state as a means to encode data for a computation.
The versatility of measurements offers another reason to consider measurements and disorder in the
same context. If they are brought together in the same system, their interplay may lead to the
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Introduction

destruction of localization, or to the emergence of novel phases, depending on the character of the
measurements [46, 47]. Measurements may serve as a controllable source of noise, to induce transport
in an otherwise localized system [48]; elaborate measurement protocols may even induce correlations
into non-interacting systems to mimic interaction- and disorder effects.

Both disorder as well as measurements can be regarded as sources of randomness. While measure-
ments add an inherent, quantum mechanical element of randomness to the dynamics of a system,
disorder (in the context of this thesis) is a classical source of randomness, written into the Hamiltonian
in the form of random numbers that follow a given distribution. For this reason, some of the tools
to analyze disordered and measured systems are similar. To make general statements about systems
with random elements, distributions of possible outcomes should be considered. This suggests taking
averages over random quantities, investigating the possibility of deducing properties of the system from
“typical” realizations.
An interesting parallel between all of our projects presented below is the emergence of classical random
walk descriptions for aspects of the dynamics, which inherit from the underlying quantum nature. Such
descriptions can come about due to measurement-induced state changes on a lattice [49, 50], differ-
ent paths for quantum mechanical propagation in a disordered system [51] or the interplay between
Hamiltonian time evolution and measurements [52, 53].

For above reasons, the dynamics of measured and disordered systems is an important subject of study.
Both measurements and disorder separately are associated with interesting dynamical phenomena.
There are reasons to believe that it is beneficial to think about them on similar grounds. Moreover,
their interplay can give rise to additional puzzles.
In the following we introduce the three projects that are presented in this thesis, explaining motivation
and goals, and relating them to the research topics outlined above. The chapters are arranged to build
on each other conceptually.

Measurements on an Anderson chain Chapter 1 is based on Ref. [53].
The setup for this project is a single particle on a one-dimensional, disordered Anderson chain. As all
eigenfunctions of such a chain are localized [8–10], if the particle is placed on one of the chain sites, the
probability to find it in the vicinity of this site after arbitrary times is still large. On the individual
sites of the chain, projective measurements are performed in regular time intervals. Each measurement
can have one out of just two different results—the particle is at the measured site or it is not there.
Each of these outcomes implies the corresponding collapse of the wave function, manifesting in the
dynamics of the particle.

We investigate two general directions: The impact of measurements at random locations on the
dynamics of the system, and the possibility of measurement induced spatial steering of the particle,
choosing the measurement locations deliberately.

The first issue addresses the generic interplay of localization and measurements, and possible im-
plications for the dynamics. Specifically, we ask about the fate of localization in the presence of
measurements, with respect to the exponential shape of the wave function as well as with respect to
transport. The possibility of measurement-induced transitions in disordered systems was investigated
in non-interacting [46] and interacting [47] systems of multiple fermions. Considering just a single
particle, we do not discuss entanglement. However, as it turns out, measurements of arbitrary fre-
quency indeed induce diffusive transport via a click-outcome governed random walk. In this sense, the
introduction of measurements does imply a dynamical transition. At the same time, the exponential
shape of the wave functions is preserved, such that the distribution of wave function spreads (related

vi



to the “local” localization length in a small window around the center site) enters the random walk
waiting time, controlling the diffusion constant. We demonstrate, that the tail of the resulting waiting
time distribution falls off fast, such that diffusion is indeed the generic result.

Regarding the second issue, we find that we can use the measurement induced random walk to
steer the particle over a distance of L sites within O(L3) measurements, without having access to the
detector readout anywhere but on the target site. If all readouts are available, ballistic steering can
be achieved.

Regarding the models, the following two chapters branch into slightly different directions, Chapter 2
being concerned with general properties of a disordered system (without measurements); and Chapter 3
addressing an interacting system-detector model (without disorder).

Memory effects in the imbalance in delocalized disordered systems Chapter 2 is based on
Ref. [54].
In this chapter, we investigate disorder effects in the absence of strong localization. In particular, we
calculate how an initial state characterized by spatial variation at a short length scale decays in the
presence of disorder. This decay is captured by the density imbalance between even and odd sites of a
lattice, which is subject to many experimental and numerical studies of many-body localization [55–
58] due to its sensibility to localization: Initially, a state of maximal imbalance is set up, alternating
between occupied and empty sites. If the system is strongly localized, the imbalance of this state
does not completely decay, but keeps an “infinite memory” (and a finite imbalance) of its initial
state. However, localization can be inhibited by interaction effects [59, 60] or the dimensionality
of the system [9]. If this happens, one could think that strongly imbalanced initial states decay
exponentially quickly, because particles only have to travel a short distance to even out the imbalance.
This expectation contradicts the observation of power-laws in the imbalance on the delocalized side of
the many-body localization transition [57, 59–61]. These power-laws were proposed to emerge from a
mechanism related to scattering paths returning to their starting points after diffusive motion (“return
processes”) by the authors of Ref. [57]. Such a mechanism is known to contribute long-time tails in
disordered systems to other observables [62, 63].

Using the diagrammatic technique for disorder averaging, we calculate corrections from return pro-
cesses to the imbalance, confirming the origin of the imbalance long-time tails in these processes. Due
to the relation with the return probability, the power-law exponent depends on the dimension of the
system. We obtain a universal relation between imbalance- and mean-square exponents, which was
predicted in Ref. [59]. We discuss weak-localization corrections to our results.

Employing a phenomenological modification of the diffusion propagator, we generalize our results to
the subdiffusive phase on the ergodic side of the many-body localization transition.

Our calculation is supported by numerical simulations of non-interacting two-dimensional systems.
In two dimensions, there is a parameter regime where l � ξ � L, where l is the mean free path, ξ
is the localization length, and L is the system size [64]. Even though all states are localized in two
dimensions at arbitrarily weak disorder in the thermodynamic limit, this regime allows us to confirm
our predictions without having to go to the large Hilbert space of an interacting system.

Ancilla measurements on a two-level system Chapter 3 was written in parallel with Ref. [65].
In this project, we look into the dynamics of a two-site “chain” under ancilla measurements: One

particle is placed on the chain. The two-level ancilla “detector”—initially prepared in a specific, known
state—interacts with the density on one of the chain sites during a fixed interval of time evolution (the
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total density on the chain is conserved). The detector is then projectively measured, and afterwards
reset to its initial state. These steps are repeated many times.

The outcome of the projective measurement on the detector can give information about the state
of the chain. The amount of information obtained by a single measurement depends on the system
parameters. Our setup comprises one of the simplest non-trivial models of ancilla measurements.
As such, it is well suited to investigate principal differences between projective- and more general
measurements that emerge from joined system-detector unitary dynamics [66].

The authors of Ref. [67] demonstrated, that a similar model in the continuous measurement limit
shows generalized quantum-Zeno phenomenology, with a “cascade of transitions in the system dy-
namics”. As it turns out, considering arbitrary parameters in our model, a complicated structure of
different dynamical phases emerges.

Main object of our investigation is the distribution of states of the chain immediately after the
measurements, averaged over time and different measurement outcomes, which turns out to live on a
one-dimensional circle for most parameter sets. The exponential branching of possible quantum trajec-
tories due to different measurement outcomes leads to complex behavior of this distribution of states.
It exhibits transitions between different types of behavior as a function of the system parameters,
that manifest themselves also in the average of individual wave functions over time instances after the
measurements.

Discretizing the state manifold, we obtain a random walk on a graph structure, which can reduce
to a one-dimensional random walk in a special case. At finite discretization, the random walk on the
graph exhibits a transition between ergodic- and non-ergodic phases as a function of the time interval
between measurements, and the strength of the chain-detector coupling. We show that the non-ergodic
phase is a true feature of the continuous process, and argue, that this process indeed also possesses
an ergodic phase. The distributions on the circle can be either sharply peaked around few angles, or
broadly distributed—reminiscent of the Anderson transition between localized- and delocalized phases
as a function of disorder [10]. The connection to the Anderson transition is established by calculating
a quantity similar to the typical value of the local density of states, which is used as an indicator of
the Anderson transition [10, 68].

Interestingly, our distribution curves can also exhibit a fractional box-counting dimension, reminis-
cent of multi-fractality of wave functions across the Anderson transition [10].

A connection between measurement-induced transitions and Anderson transitions emerges from an
analogy in their field-theoretical descriptions as was recently established in Refs. [38, 41, 69–71].

Developing physical intuition for this simple system helps to understand more complex situations,
for example a more elaborate detector, or a larger measured system, or a “crystal” of measured sites
with ancillas, which is expected to feature a measurement induced transition [39].

Structure

Measurements on an Anderson chain After the introduction of Chapter 1 in Sec. 1.1, we begin
with some fundamentals. Localization is introduced from a phenomenological point of view, in terms
of localized wave functions in Sec. 1.2.1. Measurements in quantum mechanics are recapitulated on
the example at hand (density measurements on the Anderson chain), and compared to unitary time
evolution in Sec. 1.2.2. We also introduce random walks, as well as diffusion and subdiffusion in the
random walk framework 1.2.3.
In Sec. 1.3 we introduce the model and the time evolution protocol, and in Sec. 1.4 we motivate
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the characterization of quantum trajectories by the moments of the wave function. In Sec. 1.5, we
investigate the fate of localization in the presence of measurements in terms of these moments. Our
setup provides a natural platform for spatial steering, which we concentrate on in Sec 1.6. Finally, we
formalize the connection to the random walk in Sec. 1.7. We conclude in Sec. 1.8.

Memory effects in the imbalance in delocalized disordered systems Chapter 2 is introduced
in Sec. 2.1. We introduce the diagrammatic technique for disorder averaging [2, 64] in Sec. 2.2.1.
In Sec. 2.2.2 we outline, how diffusion and weak localization can be understood in the diagrammatic
framework. To get a better intuition of these mechanisms and to understand how localization can
be inhibited by interactions (“dephasing”) [2, 64] we briefly outline the interference interpretation of
localization in Sec. 2.2.3. In Sec. 2.3, we show how the imbalance is related to the density-density
response function, which we then analyze with the diagrammatic technique. In Sec. 2.4 we explain
how power-law tails of the relaxation of a density perturbation are related to the return probability
of a random walk and calculate the resulting long-time relaxation tails of the imbalance in one- and
two dimensions. Using a phenomenological approach to subdiffusion, we extend our arguments to the
slow-relaxation phase near the many-body localization transition in one dimension. Our numerical
approach 2.5 is based on properties of localization specific to two-dimensional systems. To confirm the
validity of our numerics, we explore these properties further in Appendix A.1. We conclude in Sec. 2.6.

Ancilla measurements on a two-level system Chapter 3 is introduced in Sec. 3.1. We then present
the definition and some basic properties of our system-detector model and an intuitive physical discus-
sion for the ancilla measurements in Sec. 3.2. In Sec. 3.3 we show that the dynamics of our model can
be characterized by a distribution on a circle on the Bloch-sphere. After presenting two special cases
for which the distribution can be obtained analytically in Sec. 3.4, we demonstrate that it can often be
calculated from a time average of a single quantum trajectory or as the stationary state of a Master-
equation (Sec. 3.5). In Sec. 3.6, we present examples of distributions in the generic case, obtained from
numerical methods. In Sec. 3.7, we characterize such distributions for a range of parameters in terms
of different observables. We conclude in Sec. 3.8.
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1 Chapter 1

Measurements on an Anderson chain

In this chapter, we study the interplay between disorder and measurements on the dynamics of a single
particle in a one dimensional system. In quantum mechanics, there are two very different paradigms
of time evolution: Usually, time evolution is governed by a unitary operator, which is constructed
from the Hamiltonian of the system. However, if a measurement is performed, the state of the system
is projected into an eigenstate of the measured operator. This process is generally not reversible,
and does not correspond to a unitary operation. Therefore, time evolution protocols encompassing
unitary evolution as well as measurements can lead to unique dynamical effects. In the presence of
disorder, a non-interacting one-dimensional system becomes Anderson localized: The eigenstates of
the system decay exponentially in real space. In this chapter, we ask whether localization is affected if
measurements are performed on such a system, and about the particular effects of combining localization
and measurements. We find that the application of measurements at random localization leads to
delocalization of the ensemble of quantum trajectories across the system. At the same time, typical
quantum trajectories still correspond to localized wave functions. The measurement induced random
motion of a trajectory is found to be diffusive, by a comparison to a random walk. We find, that
coordinated measurements can be used to induce transport in a predetermined way, and to steer the
particle towards a designated location.

The contents of this chapter are based on Ref. [53]. Large passages of Secs. 1.1, 1.4, 1.5, 1.6, 1.7,
and 1.8 are direct quotes, and the Figures in these sections are adapted from this publication1. The
results were developed and discussed together with my coauthors.

1.1 Introduction

In quantum mechanics, a measurement on the state of the system leads to the collapse of the wave
function to an eigenstate of the measured observable. This behavior is drastically different from unitary
time evolution governed by the system Hamiltonian. The interplay between unitary time evolution and
measurements of varying strength and frequency in different systems is a recently very active subject
of research [21–37]. Examples for emergent dynamical effects are transitions in the asymptotics of
the entanglement entropy in quantum circuit models [27] and Hamiltonian systems [28–33], as well as
statistical properties of measurement outcomes in quantum lattices [49, 50]. Similar observations are
made in related systems with noise or dissipation instead of measurements [72–74].

1Reprinted excerpts / figures with permission from [Paul Pöpperl, Igor V. Gornyi, and Yuval Gefen, Phys. Rev. B 107,
174203 Published 9 May 2023]
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1 Measurements on an Anderson chain

If disorder is introduced into a one-dimensional non-interacting chain, the system becomes Anderson-
localized [8, 9, 75]. All eigenstates decay exponentially, and transport from one end of the chain to
the other is exponentially suppressed with the size of the system. Because of this special property
of the eigenstates, it is natural to ask about measurements in this context. In particular, one may
wonder whether the introduction of measurements could destroy localization and establish transport.
A related issue of noise-induced dynamics in a localized system was discussed in Ref. [48].

In the present chapter, we consider local projective measurements of the site occupation. If such a
measurement occurs within the localization length of a localized particle, the particle is often detected
at the measured site. In these cases, the center of the wave function shifts to the measured site
as a consequence of the projection, and the wave function starts spreading around this site. This
spreading may be influenced by the localization volume, by the next detection of the particle, or by
some putative mechanism introduced by the measurement backaction after a no-click event that may
impact the localization properties of the system. Repeated measurements are therefore expected to
induce transport in the system. With this idea in mind, we follow two general directions: On the one
hand, we choose measurement locations at random and investigate the consequent dynamics. On the
other hand, we try to manipulate the state of the system in a controlled way, by designing “measurement
protocols” that aim for spatial steering of the particle through a chosen sequence of measured sites.
The engineering and manipulation of quantum states through measurements was explored in Refs. [43,
76–78]. Based on the fact that a projective measurement collapses the particle’s wave function to the
measured site when occupation one is measured, there are different intuitive expectations that one
may have for the average behavior of the particle position. On the one hand, in the limit of very
frequent measurements, the particle is confined to its initial site as a consequence of the quantum Zeno
effect [4, 79–81]. On the other hand, if the time between two measurements is sufficiently large for the
time evolution to spread the wave function to its exponential envelope, diffusion would be a natural
expectation for the spread of an ensemble of particle positions. The latter case of large time intervals
between two measurements is investigated in this chapter.

While diffusion may first come to mind, thinking about a click-driven “classical random walk” of the
localized wave function, the distribution of the spread of the wave functions may spoil this behavior.
In fact, the site with the largest probability to host a click event is typically the center of the wave
function, where the previous click has occurred. Depending on the probability of long successions of
click events on the same site, “waiting” of the particle in rare regions of small wave function spread
may potentially lead to subdiffusion. Indeed, it was shown in Ref. [48] that rare regions can provide
bottlenecks for the dynamics in the related case of a disordered system with temporal noise, leading to
subdiffusion on intermediate, parametrically large, time scales. Another issue is related to the impact
of no-click events on the wave function. A no-click event, measuring zero occupation on the site,
produces a “hole” at the measured position, where the particle is then known to not be. The total
probability to find the particle is consequently redistributed by the normalization among all other sites.
A priori, it is not clear whether this procedure of making a hole and renormalizing the wave function
favors localization or delocalization. Localization may be favored, because no-click events are more
likely to occur in the tail of the wave function, removing weight from the tail and shifting it towards the
center via normalization, such that the probability of a subsequent click event within the localization
volume would increase. Delocalization may be favored, because holes close to the center have a larger
impact on the wave function, as a larger portion of the wave function is redistributed—also into the
tails. Overall, the no-click events could then enhance the probability of large wave function spread
such that long jumps due to click events become more likely.

In this chapter, we formalize and investigate these questions about the fate of localization of the
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1.2 Fundamentals

wave function, as well as transport in the ensemble of particle positions, under sequences of repeated
projective measurements. We follow individual quantum trajectories (sequences of measurement out-
comes for given sequences of measurement positions in a fixed disorder realization) to acquire statistics
that allows us to obtain averaged observables.

In the case of random measurement locations, our key observation is that while the particle position is
randomized over the entire system, the wave function typically remains exponentially localized around
its center site. Considering averages over measurement outcomes, measurement locations, as well as
over disorder realizations, we investigate the spread of the ensemble of wave-packet centers throughout
the system and modifications to the wave function spread due to the measurements. Supported by
a connection to a classical random walk, we argue that the particle trajectories of different random
realizations spread diffusively in the long-time limit. The idea of measurement-induced random walks
was addressed in Ref. [82]. In Ref. [52], the authors used a mapping to a classical random walk to
model dynamical properties of quantum systems subject to measurements and disorder. The authors
of Ref. [46] investigate a measured and disordered non-interacting fermionic Anderson chain (as we
do), but their system features multiple particles, and instead of projective measurements, they perform
continuous monitoring of the chain. Their work focusses on the possibility of a measurement-induced
transition.

Regarding steering, we analyze and compare different kinds of protocols, either using the detector
readout only at a designated target site, or at every measurement location. Having access to all
readouts allows us to induce ballistic transport. In this sense, both types of steering, passive [43]
and active [76], are considered. Diffusion due to random measurements allows for polynomial steering
times, even if only reading out the target site.

The chapter is structured as follows. In Sec. 1.2 we introduce the basic concepts of Anderson lo-
calization, quantum mechanical time evolution, and random walks. We introduce our time evolution
protocol for random measurements in Sec. 1.3 and describe the resulting dynamics qualitatively, mo-
tivating the discussion of particle trajectories and corresponding observables in Sec. 1.4. With these
observables, we investigate “delocalization” due to measurements in Sec. 1.5. We present the numeri-
cal results on steering by non-random measurements in Sec. 1.6. Finally, in Sec. 1.7, the relation to
a classical random walk is formalized, and, based on that, our numerical results are further discussed.
We conclude in Sec. 1.8.

1.2 Fundamentals

To set the stage for the following discussion of the interplay of Anderson-localization and measure-
ments, we give a brief introduction to Anderson localization from a phenomenological point of view in
Sec. 1.2.1. In Sec. 1.2.2, we recapitulate projective measurements and compare them to unitary time
evolution. Classical random walks and the concept of diffusion are introduced in Sec. 1.2.3.

1.2.1 Disorder and localization

If disorder is introduced to a non-interacting one-dimensional chain, the system becomes localized [8–
10]. This means, that each one-particle eigenfunction |ε〉 in the space of the chain sites

∣∣i〉, i ∈ {1, . . . , L}
can be characterized by a center position j0 and a localization length ξ such that [10, 83, 84]〈

i
∣∣ε〉 ∝ e−|i−j0|/ξ, (1.1)
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1 Measurements on an Anderson chain
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Figure 1.1: Examples for localized eigenfunctions of the Anderson Hamiltonian: Three eigen-
functions of a Hamiltonian of the form (1.2) with disorder strength W = 5, at system
size L = 500. The blue lines are exponential fits in ranges ∆i = 30 to estimate the
localization lengths.
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Figure 1.2: Average localization lengths ξ̄(W ) of the Anderson Hamiltonian (1.2), in the center
of the band. Orange disks: Uniform disorder, εi ∈ [−W,W ]. Blue crosses: Gaussian
disorder, the εi are drawn from a normal distribution of standard deviation σW =
W/

√
3. The dashed line shows the weak disorder asymptotics ξ̄ ∝ W−2 as a guide

for the eye. The dotted line shows the strong disorder asymptotics ξ̄ ∝ 1/ log
(
W
)

as
a guide for the eye.

in the limit L → ∞. As an example, consider an Anderson Hamiltonian of the form

H =
L∑

i,j=1

[
Jδ〈i,j〉 + εiδi,j

] ∣∣i〉 〈j∣∣ , (1.2)

δ〈i,j〉 :=

1 i, j nearest neighbors
0 else,

(1.3)

with nearest neighbor hopping of amplitude J ≡ 1, and an onsite disorder potential, defined by
random numbers {ε}. Let us draw these random numbers from a uniform distribution εi ∈ [−W,W ].
W (controlling the standard deviation of these random numbers) is called the disorder strength.

In Fig. 1.1 we show probability amplitudes |
〈
i
∣∣ε〉 |2 of three different eigenfunctions of such a Hamil-

tonian with W = 5. Indeed, these eigenfunctions decay exponentially with respect to different center
positions. Fitting the exponential slope in windows |j0 − i| ∈ [0, 30], we obtain localization lengths
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1.2 Fundamentals

ξ ∈ [2.6, 4.4]. As the localization lengths depend on the given disorder realization (the configuration of
random numbers {ε}), they are random quantities themselves. However, the localization lengths are
self-averaging: The variance of the distribution of localization lengths obtained from different wave
functions decreases with increasing size of the considered window ∆i = |j0 − i| [85]. As ∆i → ∞, the
tail of almost every wave function is characterized by the same average localization length ξ̄ which only
depends on the disorder strength and energy.

The average localization length can also be obtained by averaging the approximate localization
lengths from small windows ∆i from many different eigenfunctions [85]. If the disorder strength
increases, the average localization length decreases. At weak disorder W � 1, the average localization
length scales as ξ̄(W ) ∝ W−2. At strong disorder W � 1, the average localization length scales
as ξ̄(W ) ∝ 1/ log

(
W
)
. By restricting the eigenenergies of the considered eigenfunctions, the average

localization length can be energy resolved. Localization lengths are largest in the band center, and
decrease towards the band edges.

In Fig. 1.2 we show average localization lengths for Hamiltonian (1.2) calculated in the band center,
for W ∈ [1, 10]. Orange disks correspond to uniform disorder, blue crosses correspond to a normal
distribution with a standard deviation σW = W/

√
3 (same standard deviation as a uniform distribution

at the same W ). The black dashed (dotted) line serves as a guide for the eye and shows the W �
1 (W � 1) limit ξ ∝ W−2 (ξ ∝ 1/ log

(
W
)
). In the considered disorder range, we have average

localization lengths between 0.5 and 30 sites.
The localized nature of the eigenfunctions has implications for the time evolution of a localized

system. If an eigenstate of the chain
∣∣i0〉 is prepared as an initial state, this state shares significant

overlap only with a small number of eigenfunctions that have their center position within few local-
ization lengths of i0 (overlap with other eigenfunctions being suppressed exponentially). The overlap
between two sites due to time evolution up to arbitrary times is thus suppressed exponentially as well:∣∣∣〈j∣∣U(t)

∣∣i0〉∣∣∣ :=
∣∣∣〈j∣∣ e−iHt ∣∣i0〉∣∣∣ (1.4)

=

∣∣∣∣∣∣
∑
α

e−iεαt
〈
j
∣∣εα〉 〈εα∣∣i0〉

∣∣∣∣∣∣ (1.5)

∼

∣∣∣∣∣∣
∑
α

e2/ξα + 1
e2/ξα − 1

e−iεαte−|j−iα|/ξαe−|i0−iα|/ξα

∣∣∣∣∣∣ (1.6)

.
∑
α

e2/ξα + 1
e2/ξα − 1

min
(
e−|j−iα|/ξα , e−|i0−iα|/ξα

)
(1.7)

∼ 1 + e1/ξ̄

cosh
(
1/ξ̄

)e− |j−i0|
2ξ̄ . (1.8)

As a consequence, transmission through the system and any kind of transport is suppressed exponen-
tially with the system size. In Fig. 1.3 we show the time evolution of the probability density from an
initial state |50〉, %i(t) = |

〈
i
∣∣U(t) |50〉 |2, for t ∈ [0, 200] at W = 2. Up to t ≈ 10, the wave function

spreads into an exponential envelope (note the logarithmic colorscale). After this initial phase, the
wave function does not spread further but remains localized.
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Figure 1.3: Example: Unitary time evolution according to time evolution operator U(t) = e−iHt

with a Hamiltonian of the form (1.2) with disorder strength W = 2, at system size
L = 100; starting from initial state |50〉.
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Figure 1.4: Example of the possible outcomes of a measurement with operator n6 = |6〉 〈6|.
Left panel: On-site probabilities |

〈
i
∣∣ψ〉 |2 for some example state

∣∣ψ〉, before the
measurement is applied. Middle panel: Black marker: Click outcome. The state
is projected to the measured site. Grey markers: Non-measured wave function for
comparison. Left panel: Black markers: No-click outcome. The state is projected
away from the measured site and renormalized. Grey markers: Non-measured wave
function for comparison.

1.2.2 Time evolution and projective measurements

In quantum mechanics, there are two different paradigms of time evolution. Usually, time evolution is
governed by the Schrödinger equation, or equivalently, a unitary time evolution operator [86], which
reads for a time interval t and the simplest case of a time-independent Hamiltonian H

U(t) = exp
(
−itH

)
. (1.9)

As U(t) is a unitary operator, its effect on a system can be reverted by applying the inverse operator
U−1(t). As long as the time evolution of a system is governed by unitary time evolution, the initial
state can be reconstructed at any point. This situation changes as soon as a projective measurement is
performed to determine some property of the system. In quantum mechanics, a measurement typically
changes the state of the system [86], thus constituting a form of time evolution that takes place in
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1.2 Fundamentals

the time instant the measurement is performed. The effect of the measurement on the state is called
backaction.

A projective measurement is formulated as follows [66]: Any measurement is associated with an
observable M = ∑

mmPm, where Pm projects onto the eigenspace of M with eigenvalue m. The Pm
form a complete set of orthogonal projectors,∑

m

Pm = 1 (1.10)

PmP
′
m = δm,m′Pm. (1.11)

The measurement has ∑m different possible outcomes, corresponding to the different projectors. Given
the state of the system

∣∣ψ〉 before the measurement, there is a probability

pm =
〈
ψ
∣∣Pm ∣∣ψ〉 (1.12)

that the measurement projects the system into the corresponding eigenstate of the operator

∣∣ψ〉 → Pm
∣∣ψ〉

√
pm

. (1.13)

Eq. (1.12) is called the Born rule. Due to the completeness of the projectors, the probabilities of all
different outcomes sum to one; some outcome is always realized.
Using this, we formulate the on-site measurements that we want to apply to the chain: Consider our
lattice spanned by a number of sites i ∈ {1, . . . , L}. The wave function is

∣∣ψ〉 =
L∑
i=1

ci
∣∣i〉 , (1.14)

where |ci|2 is the probability to find the particle on site i ∈ [1, L] of a one-dimensional lattice. In
this system, let us consider the set of observables {nj :=

∣∣j〉 〈j∣∣}, j ∈ {1, . . . , L}. For each of these
observables, we can define projectors

P (j)
c :=

∣∣j〉 〈j∣∣ (1.15)
P (j)

nc := (1−
∣∣j〉 〈j∣∣). (1.16)

Measuring nj tells us, whether or not the particle is located at a given site j. There are two possible
outcomes to this measurement, corresponding to the projector decomposition of the observable: With
probability pc = |

〈
j
∣∣ψ〉 |2 = |ci|2, the particle is, in fact, found at site j by the measurement (an

imaginary measurement apparatus clicks), the wave function after the measurement is given by∣∣ψc
〉

=
∣∣j〉 (1.17)

∝
∣∣j〉 〈j∣∣ψ〉 . (1.18)

With probability pnc =
〈
ψ
∣∣ [1 − nj ]

∣∣ψ〉 = 1 − |
〈
j
∣∣ψ〉 |2 = 1 − pc the particle is not found at the given
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1 Measurements on an Anderson chain

site (no-click event), the state after the measurement is determined from the second projector

∣∣ψnc
〉

=
∑
i 6=j ci

∣∣i〉
√

1 − pc
(1.19)

∝
[
1−

∣∣j〉 〈j∣∣] ∣∣ψ〉 . (1.20)

Sometimes, we refer to the outcome of the measurement as the detector readout, again alluding to
an imaginary measuring device. As an example, see Fig. 1.4: The site-space density |

〈
i
∣∣ψ〉 |2 of an

example wave function
∣∣ψ〉 before a measurement is displayed in the left panel. This wave function is

measured on site 6. Grey crosses indicate the wave function before the measurement for comparison in
the other panels. The result of a click outcome (projection to site 6) is displayed in the middle panel.
This outcome occurs with a probability of |

〈
6
∣∣ψ〉 |2 ≈ 0.12, according to the Born rule. The result of a

no-click outcome is displayed in the right panel: The wave function component on site 6 is set to zero,
and the wave function is renormalized. The probability of this outcome is p = 1 − |

〈
6
∣∣ψ〉 |2 ≈ 0.88.

A projection corresponding to a click event immediately destroys information about the state of the
system prior to the measurement. Clearly, after a click-event, there is no way to reconstruct the wave
function from before the measurement: Any wave function with a finite component on the click-site is
a possible candidate for the pre-measurement state. In this way, measurements render time evolution
irreversible.

At every time instance a measurement takes place, there is a branching of possible states corre-
sponding to different outcomes of the measurement. Repeated measurements can therefore lead to an
exponentially large number of different wave functions that may all result from the same time evolution
protocol at the same time instance. In this context, a single time dependent wave function (correspond-
ing to one particular sequence of measurement outcomes) is referred to as a quantum trajectory [87].
The existence of possibly exponentially many different quantum trajectories poses complications for
the analysis of a measured system, because:

1. Different quantum trajectories can behave completely differently from each other. Instead of
analyzing “the wave function” we have to describe a collection of different wave functions in
some meaningful way.

2. Analyzing all quantum trajectories becomes unfeasible after few measurements, if their number
grows exponentially.

In this chapter, we describe the ensemble of different quantum trajectories statistically, for example by
averaging observables over different quantum trajectories. Instead of performing a complete average
over all trajectories, we often use Monte-Carlo simulations to obtain an average over a much smaller
number Nit of trajectories. For this, the time evolution protocol is repeatedly applied to the same
initial state. If a measurement occurs, the outcome is chosen at random, with the probability of click-
and no-click event dictated by the Born rule (1.12), and the state is updated with Eq. (1.13) according
to the outcome.2 Importantly, one instance of the simulation always follows one random quantum
trajectory (a pure state). Nit is chosen such that the value of the considered observable converges to

2As an example, consider a density measurement on site i. Let the amplitude of the wave function on site i at the time
of the measurement be |

〈
i
∣∣ψ〉 |2 =: p. In our simulation, we generate a random number q, drawn from a uniform

random distribution in the interval [0, 1]. If q ≤ p, the measurement outcome is taken to be a click (the particle is
detected) and the wave function is updated accordingly. Otherwise, the wave function is updated according to the
no-click outcome.
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1.2 Fundamentals

sufficient accuracy. This works, if the ensemble average of the trajectory is dominated by “typical”
trajectories (that do not correspond to comparably unlikely sequences of measurement outcomes).

A simple and prominent example for the drastic impact that measurements can have on the time
evolution of a state is the quantum Zeno effect [4]. The idea is to apply measurements in rapid
succession, with very short periods of unitary time evolution in between. Short means here, that the
unitary time evolution operator is close to a unity, in the sense of barely affecting the state the system
was projected into by the measurement. Therefore, the probability to find the system in exactly
the same state again is almost one at the instant of the next measurement. In this way, frequent
measurements can “freeze” the state of a system, by resetting it to the same measurement eigenstate
over and over again: In a quantum system, repeatedly looking at the arrow actually slows it down [4].

Numerical implementation of projective measurements and unitary time evolution

To simulate a quantum trajectory starting from a given initial state
∣∣Ψ〉, we can perform unitary time

evolution and projective measurements numerically. For a single particle on a lattice of L sites, this is
straightforwardly done in the basis of lattice sites {|1〉 , . . . ,

∣∣L〉} as follows:

• Unitary time evolution for a time interval ∆t: Calculate the matrix exponential Ui,j(∆t) :=
[e−i∆t[H]]i,j where [H] is the Hamiltonian in site space with elements [H]i,j =

〈
i
∣∣H ∣∣j〉 (com-

putational complexity of order O(L3)). Calculate the evolved state as
〈
i
∣∣∣Ψ(∆t)

〉
=: Ψi(∆t) =∑L

j=1 Ui,j(∆t)Ψj . (Computational complexity of order O(L2)).

• Calculating the probability of a click-event at site a: pa = |Ψa|2 (complexity of order O(1)).

• Updating the state after a click-outcome on site a: Replace the wave function by Ψj = δa,j
(complexity of order O(1)).

• Updating the state after a no-click outcome on site a: Set Ψa = 0 and renormalize the wave
function (complexity of order O(L)).

If a time evolution protocol involving unitary evolution and a projective density measurement at every
step is iterated for Nt steps, the complexity is accordingly of order O(L3Nt) for variable ∆t, and
O(L3 + L2Nt) for fixed ∆t (the matrix exponential is calculated only once).

The computational cost can be reduced by performing the calculation in the basis where H is
diagonal. Say, the corresponding basis transformation from site space is described by a matrix [V ]
with elements [V ]i,α :=

〈
i
∣∣εα〉 such that

[[V †][U(∆t)][V ]]α,β = δα,βe−i∆tεα α, β ∈ {1, . . . , L} (1.21)

where the εα are the eigenenergies of the Hamiltonian. To calculate the click probability on site a, the
corresponding site-component of the wave function is restored within O(L) operations:

Ψa =
L∑
α=1

Va,α
〈
εα
∣∣Ψ〉 (1.22)

The components of the state after a click event on site a are obtained as〈
εα
∣∣i〉 = V †

α,i (1.23)
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1 Measurements on an Anderson chain

and after a no-click event on site a the corresponding on-site component is removed according to

〈
εα
∣∣Ψ〉− 〈εα|a〉

〈
a
∣∣Ψ〉 =

〈
εα
∣∣Ψ〉−

 L∑
β=1

Va,β
〈
εβ
∣∣∣Ψ〉

V †
α,a; (1.24)

afterwards, the state is renormalized.
All of these state updates can be performed within O(L) operations. Therefore, time evolution of

the state can be performed in O(L3 + LNt) operations, by

• Diagonalizing the Hamiltonian to obtain the eigenenergies {εα} and the matrices [V ] and [V †]
(O(L3) operations). This determines the time evolution operator Uα,β(∆t) for any ∆t.

• Performing unitary time evolution according to
〈
εα
∣∣∣Ψ(∆t)

〉
= Uα,α(∆t)

〈
εα
∣∣Ψ〉 within O(L)

operations.

• Calculating the probability of measurement outcomes and updating the state according to Eqs. (1.22), (1.23),
and (1.24) within O(L) operations.

Calculating observables can require rotating back into site space (O(L2) operations).

Projective measurements on several non-interacting fermions

Our example of projective density measurements on a lattice with sites i ∈ {1, . . . , L} can be generalized
to a many-body situation with several particles on the lattice. In this section we discuss the example
of non-interacting spinless fermions, which is convenient from a numerical point of view [88].

If we consider a fixed number of N spinless fermions on a lattice of L sites, the Hilbert space is
spanned by

(L
N

)
states. A possible basis is given by all different “bit-strings” with N 1s and L−N 0s,

where a one (zero) designates an occupied (empty) site. For example, if N = 2 and L = 4, these basis
states are

|0011〉 , |0101〉 , |0110〉 , |1001〉 , |1010〉 , |1100〉 (1.25)

or in terms of creation and annihilation operators

a†
3a

†
4 |0〉 , a†

2a
†
4 |0〉 , a†

2a
†
3 |0〉 , a†

1a
†
4 |0〉 , a†

1a
†
3 |0〉 , a†

1a
†
2 |0〉 . (1.26)

where a†
i creates a particle on site i. Importantly, the size of the basis is for an extensive number

of particles N ∝ L exponential in the number of sites L (instead of linear as for a single particle).
Choosing for example half-filling N = L/2, the number of basis states is(

L

L/2

)
∼ 2L/

√
Lπ/2. (1.27)

As a consequence, only small systems L ∈ O(10) are accessible to numerical methods without further
approximations, if the entire Hilbert space is relevant for the calculation.

In second quantization, density measurements can be described in analogy to the single particle case
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1.2 Fundamentals

using the projectors

P (j)
c := nj , (1.28)
P (j)

nc := 1− nj , (1.29)

where nj = a†
jaj is the density operator with creation and annihilation operators on site j, a†

j and aj .
Again, immediately after a click outcome, the density on the measured site is one; after a no-

click outcome it is zero. The Born rule probabilities and the wave functions after the measurements
can be constructed from the projectors as before. Note however, that the correspondence between the
measured density profile and the wave function is not as intuitive as in the single particle case—density
one on a single site does not completely specify the wave function.

An important tool for the numerical (measured) time-evolution of a non-interacting fermionic system
are fermionic Gaussian states (in the following just “Gaussian states”) [28, 38, 46, 88]. A Gaussian
state

∣∣Ψ〉 is by definition3 completely characterized by two-point correlation functions [88]〈
Ψ
∣∣ a†
jai
∣∣Ψ〉 := Di,j (1.30)

(in general we also need correlators with two creation or annihilation operators, but we limit ourselves
in the following to cases where those vanish).

In our example of a lattice with L sites, there are L2 such correlators. If the time evolution of a
many-body system takes place in the subspace of Gaussian states, this means that we can represent the
state much more compactly by those correlators, than by all the projections on different Hilbert state
basis vectors. Indeed, unitary time evolution with a quadratic Hamiltonian preserves Gaussianity [88].
Importantly, projective density measurements as described above do so as well. This means if we
initialize the system in a Gaussian state its time evolution due to a non-interacting Hamiltonian
and projective density measurements takes place entirely in the space of Gaussian states, allowing
for an efficient representation with just L2 numbers. This technique is commonly used to analyze
non-interacting measured fermionic systems numerically [28, 38, 46].

This is for example done as follows [28, 46, 88]: Let us consider a pure Gaussian state of the form

∣∣Ψ〉 =
N∏
k=1

 L∑
j=1

Mk
j a

†
j

 |0〉 (1.31)

=
N∏
k=1

c†
k |0〉 c†

k :=
L∑
j=1

Mk
j a

†
k (1.32)

3its density operator can be written as an exponential of a “Hamiltonian” quadratic in creation- and annihilation
operators [88]
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1 Measurements on an Anderson chain

where the numbers Mk
j describe N orthonormal single-particle states on the lattice:

δk,k′ = 〈0| ckc†
k′ |0〉 (1.33)

=
L∑

j,j′=1
(M∗)kjMk′

j′ 〈0| aja†
j′ |0〉 (1.34)

=
L∑
j=1

(M∗)kjMk′
j . (1.35)

The state can be described by an L × N matrix [M ] with elements [M ]j,k := Mk
j . The orthonormal-

ity condition in terms of this matrix reads [M †][M ] = 1N . The c†
k, ck are fermionic creation- and

annihilation operators fulfilling anticommutation relations

{ck, ck′} = {c†
k, c

†
k′} = 0, (1.36)

{c†
k, ck} =

L∑
j,j′=1

(M∗)kjMk′
j′ δj,j′ = δk,k′ , (1.37)

{ck, a†
i} = (M∗)ki . (1.38)

The correlation matrix of the Gaussian state can be calculated using Wick’s theorem

Di,j =
〈
Ψ
∣∣ a†
jai
∣∣Ψ〉 = 〈0| cNcN−1 . . . c1a

†
jaic

†
1 . . . c

†
N |0〉 (1.39)

=
L∑
k=1

(M∗)kjMk
i = ([M ][M †])i,j . (1.40)

Here, we used Eq. (1.38) for contractions between a and c operators. i = j is a necessary condition for
a non-zero contraction, since otherwise the remaining operators contract to zero. From Eq. (1.40) it
can be seen that the matrix M (and thus the wave-function) can be reconstructed from the correlation
matrix using eigendecomposition.

The time-evolution (unitary, and projective density measurements) can be entirely described in terms
of the correlation matrix. Consider first unitary time evolution with an operator U(t) = e−itH where
H = ∑L

i,j=1[H]i,ja†
iaj :

Di,j(t) =
〈
Ψ
∣∣U †(t)a†

jaiU(t)
∣∣Ψ〉 =

〈
Ψ
∣∣ a†
j(t)ai(t)

∣∣Ψ〉 (1.41)

=
L∑

l,l′=1
[U(t)]i,l[U †(t)]l′,jDl,l′ (1.42)

⇒ [D(t)] = [U †(t)][D][U(t)] (1.43)

12



1.2 Fundamentals

using

∂al(t)
∂t

= i[H, al](t) = i
L∑

i,j=1
[H]i,j [a†

iaj , al](t) = −i
L∑
j=1

[H]l,jaj(t) (1.44)

⇒ al(t) =
L∑
j=1

[U(t)]l,jaj . (1.45)

Next we consider a click event on site i, described by the operator ni. Taking into account normalization
of the state, the components D′

j,k of the correlation matrix after the click are related to the components
Dj,k before the click as

D′
j,kDi,i =

〈
Ψ
∣∣nia†

kajni
∣∣Ψ〉 =

〈
Ψ
∣∣ a†
ia

†
kajai

∣∣Ψ〉+ δi,jδi,kDi,i (1.46)

=
N∑

l,l′=1
(1 − δl,l′)M∗l

i M
∗l′
k

[
−M l

jM
l′
i +M l′

j M
l
i

]
+ δi,jδi,kDi,i (1.47)

= −Di,jDk,i +Di,iDj,k + δi,jδi,kDi,i (1.48)

where we again used Wick’s theorem to calculate the expectation value. The resulting click transfor-
mation can be summarized as

D′
j,k = δi,jδi,k +Dj,k − Di,kDj,i

Di,i
=


Dj,k − Di,kDj,i

Di,i
i 6= j and i 6= k

1 i = j and i = k

0 (i = j and i 6= k) or (i = k and i 6= j).
(1.49)

With an analogous calculation the correlation matrix after a no-click event on site i can be expressed
as

D′
j,k = Dj,k + Dj,iDi,k

1 −Di,i
+ δi,jδi,kDi,i − δi,jDi,k − δi,kDj,i

1 −Di,i
(1.50)

=

Dj,k + Dj,iDi,k

1−Di,i
i 6= j and i 6= k

0 else.
(1.51)

Using Eqs. (1.42), (1.49), and (1.51) time-evolution of a random quantum trajectory with a measure-
ment protocol combining unitary time evolution and a projective density measurement in one time
step can be performed in O(L3Nt) computational complexity, where Nt is the number of time steps:

• Calculating the matrix exponential U(t) in the single-particle basis costs O(L3) operations.

• Unitary time evolution according to Eq. (1.42) costs O(L3) operations for every time step, as it
can be written as two matrix multiplications4.

• The click- and no-click transformations (1.49) and (1.51) cost O(L2) operations each, since L2

components have to be calculated and each component requires O(1) operation (note that i is
fixed, it is the measured site).

4We assume the basic matrix multiplication algorithm.
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1 Measurements on an Anderson chain

If a large number of time steps is considered, it is again beneficial to consider the time evolution in
the eigenbasis of the single-particle Hamiltonian [H]i,j where the operator [U(t)]i,j is diagonal—as in
the single particle case. Let the corresponding basis transformation be denoted by a matrix [V ],

[V ]†[U ][V ] := [Ũ ] = diag(. . .), (1.52)
D̃ = [V †][D][V ] (1.53)

Clearly, unitary time evolution in this basis costs only O(L2) operations5,

[D̃(t)] = [Ũ †(t)][D̃][Ũ(t)] (1.54)
D̃i,j(t) = Ũ †

i (t)D̃i,jŨj(t) Ũi(t) := Ui,i(t). (1.55)

But what about the measurement transformations? The probability to find a particle at site i is

pi = Di,i = ([V ][D̃][V †])i,i =
L∑

j,k=1
Vi,jD̃j,kV

†
k,i, (1.56)

and can thus be calculated within O(L2) operations (“matrix-vector multiplications”). It can be seen
that click- and no-click measurements can be expressed as

D̃′
j,k =


V †
j,iVi,k + D̃j,k − 1

pi

[∑L
i1=1 Vi,i1D̃i1,k

] [∑L
i2=1 D̃j,i2V

†
i2,i

]
click

D̃j,k + 1
1−pi

[∑L
i1=1 Vi,i1D̃i1,k

] [∑L
i2=1 D̃j,i2V

†
i2,i

]
+

V †
j,iVi,kpi−V †

j,iVi,i1D̃i1,k−D̃j,i′V
†

i′,i
Vi,k

1−pi
no-click

(1.57)

and both transformations still cost O(L2) operations (note that the sums in above expression do not
have to be calculated for each component but only once).

As a result, time-evolution in the eigenbasis of [H] can be performed in O(L3 +NtL
2) operations:

• Diagonalization of the Hamiltonian costs O(L3) operations. The eigenvalues are used to con-
struct the time evolution operator in its diagonal basis in O(L) operations. [D̃] = [V †][D][V ] is
calculated within O(L3) operations.

• Each step of the time evolution protocol can involve constructing a time evolution operator
given the time interval of unitary time evolution, performing the time evolution according to this
operator, and performing a density measurement at a total cost of O(L2) operations.

To calculate observables, rotating back to the original basis can be necessary (at a cost of O(L3) opera-
tions). However, if the observable is not needed at every time step, employing the basis transformation
is still beneficial.

Measurement-induced transitions

The following discussion is based on Ref. [38].

5There is no summation, each of the L2 components is calculated within O(1) operations.
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1.2 Fundamentals

Let us put the numerical method described in the previous section to use, to illustrate the quantum
Zeno effect and the idea of measurement-induced transitions. Consider a simple time-evolution protocol
consisting of repeating the steps

• Unitary time evolution with Hamiltonian H = −J
∑L
i=1(a†

iai+1 + hc.)

• Projective density measurement on a randomly chosen site i

until time tmax is reached. The durations of the time intervals of unitary time evolution are drawn
from a random exponential distribution such that the rate of measurements per site and unit time 1/J
is Γ.

To demonstrate the dynamics governed by this protocol, we show the time evolution of density
profiles corresponding to four different measurement rates Γ ∈ {0.01, 0.1, 0.5, 2} in Fig. 1.5. The
profiles were obtained by initializing a state with N = 100 particles at random sites in a system of size
L = 200, and performing time evolution according to above protocol up to tmaxJ = 200, following a
single random quantum trajectory. Increasing the rate gradually, we can observe how the measurements
alter the density profile. At a small rate Γ = 0.01 (upper left panel) few measurements take place per
unit time and unitary time evolution distributes the density evenly over the system. Click (no-click)
outcomes are visible as yellow (blue) spots in the density profile, forcing an occupied (empty) site.
As the measurement rate is increased, many projections lead to a noise-like density profile (upper
right panel). At an even higher measurement rate, streaks of the same outcome begin to form as the
unitary time intervals between two projections become comparably short (lower left panel). This is
a manifestation of the quantum Zeno effect. At the highest displayed measurement rate, the density
profile consists of long streaks of occupation one and zero as the rapid succession of measurements
freezes the density eigenstates over long time intervals (lower right panel).

Changing the measurement rate clearly leads to qualitative changes in the system dynamics as
observed in the density profile—from uniform spreading of the density, to freezing of the initial state.
It is natural to ask whether these changes can be associated with a transition in the thermodynamic
limit.

Usually, to identify a measurement induced transition, the entanglement entropy is considered [22].
The entanglement entropy measures how strongly different parts of a system in a pure state are
entangled with each other. Unitary time evolution is associated with increasing entanglement, while
a local projective measurement disentangles the measured site from the system. The idea is that
a critical measurement rate distinguishes between qualitatively different behavior of the outcome-
averaged entanglement entropy in the thermodynamic limit [22].

The entanglement entropy is calculated by partitioning the system into two complementary parts,
say A and Ā. In our example, A ⊂ {1, 2, . . . , L} and Ā = {1, 2, . . . , L}\A. A reduced density matrix
ρA of subsystem A is defined by tracing the density matrix of the system ρ over the basis of Ā:

ρA := trĀ(ρ). (1.58)

The entanglement entropy SA is defined as the von Neumann entropy of the reduced density matrix

SA := −tr(ρA ln ρA). (1.59)

If there is no entanglement between A and Ā, ρA corresponds to a pure state and SA = 0. Otherwise,
ρA corresponds to a mixed state and SA > 0.
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Figure 1.5: Figure adapted from Ref. [38]. Time evolution of density profiles for individual quan-
tum trajectories according to the measurement protocol described in Sec. 1.2.2. The
system is initialized by randomly occupying L/2 sites. Unitary time evolution is
governed by nearest neighbor hopping. Projective measurements are performed at
random sites and and random times, such that the expected rate of measurements
per site is Γ. A small rate corresponds to few measurements per time interval; unitary
time evolution distributes the density evenly over the system (upper left panel). Yel-
low (blue) spots are visible where click (no-click) outcomes force an occupied (empty)
site. At a high measurement rate, a fast succession of measurements on the same site
can freeze the occupation of that site due to the quantum Zeno effect, thus leading
to long traces of the same occupation eigenstate (lower right panel).
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1.2 Fundamentals

As a simple example, consider the entanglement entropy between the first site and the rest of the
system S{1} for L = 3 sites with N = 2 particles. If the first site is not entangled with the rest of the
system, the reduced density matrix corresponds to a pure state and the entanglement gives zero. For
example, if the system is in a state

∣∣Ψ1
〉

=
∣∣1, 1, 0〉 or

∣∣Ψ2
〉

= 2−1/2(
∣∣1, 1, 0〉 +

∣∣1, 0, 1〉), the reduced
density matrix in the basis |0〉 , |1〉 reads

ρ{1} =
(

0 0
0 1

)
(1.60)

and thus6 S{1} = 0. On the other hand, if the first site is entangled with the rest of the system, say∣∣Ψ〉 = 2−1/2(
∣∣1, 0, 1〉+

∣∣0, 1, 1〉), we obtain a density matrix corresponding to a mixed state, here

ρ{1} = 1
2

(
1 0
0 1

)
(1.61)

and S{1} = 2 ln(2) > 0.
In terms of the entanglement entropy, a measurement induced transition is diagnosed by determining

the scaling of its average with the size of the subsystem |A| in the thermodynamic limit |A| → ∞.
For this purpose, the entanglement entropy is averaged over different quantum trajectories (weighed
by their Born-rule probabilities). Possible regimes are for example volume-law scaling (the averaged
entanglement entropy is proportional to |A| or |L|) or area-law scaling (the averaged entanglement
entropy is proportional to the size of the boundary between A and Ā). A third possibility is sub-linear
scaling of the entanglement entropy with the sub-system size, for example logarithmically (critical
phase). Volume-law scaling is associated for example with typical thermal many-body states [89]. A
measurement induced transition manifests in a transition between two qualitatively different types of
scaling in the entanglement entropy, for example at a critical measurement rate, in the thermodynamic
limit. For example, interacting many-body systems with measurements and unitary time evolution have
been reported to feature a transition from volume-law to area-law [90–92].

For one-dimensional, non-interacting fermionic systems as the one described above, the existence of
a measurement-induced transition at a finite transition parameter has been under debate. Transitions
from critical to area-law phase were reported in Refs. [28, 29, 46]. On the other hand, Refs. [32, 93]
suggest that measurements always lead to an area-law in such systems.

For above model it was found in Ref. [38] that the entangelement entropy is always characterized by
area-law scaling, without a transition. However, to observe the area law, one has to consider subsystem
sizes above a correlation length lcorr that grows exponentially with the inverse measurement rate [38].
Below lcorr a transient regime with critical scaling is predicted. Due to the fast growth of the correlation
length with Γ−1 the growing extension of the transient phase can easily be mistaken for a measurement
induced transition in a numerical study, because a slight decrease of Γ can push the sub-system size
required to observe the area-law far beyond the considered system size.

The mathematical derivation of these findings establishes a connection between the measured system
in d spatial dimensions and a disordered system in d + 1 spatial dimension [38, 41]. Indeed, in
two-dimensional disordered systems, the localization length grows exponentially as a function of the
mean-free path [64]. On this basis, measurement induced transitions of free fermions in higher spatial
dimensions d > 1 were predicted, in analogy to Anderson transition in disordered systems with d >

6Understanding the term 0 ln(0) as limε→0 ε ln(ε) = 0.
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1 Measurements on an Anderson chain

2 [38, 41] where the system transitions between delocalization and localization as a function of the
disorder strength [10].

1.2.3 Classical random walk and diffusion

In many instances, it is helpful to consider a (possibly simplified) picture of the dynamics in a system
in the form of a classical random walk7. A random walk is a stochastic process, which can be described
as “successive summation of independent, identically distributed random variables” [96]. As a simple
example, consider the discrete position i ∈ [1, L] of a random walker on a one-dimensional chain, with
one step of the process defined as a step of the random walker either to the left, or to the right, both
with probability 1/2. Equivalently, this could be formulated as randomly summing values ±1. This
is a memoryless Markov-process (the future state only depends on the present state [97]) on the state
space of chain sites, described by a transition matrix

Mi,j := 1
2δ〈i,j〉 (1.62)

δ〈i,j〉 =
(
δi,j+1 + δi,j−1

)
(1.63)

where Mi,j describes the probability for a random walker to transition from site j to site i. The
probability Wi to find the random walker after Nt time steps on some chain site i is then given by

[WNt ]i =
N∑
j=1

[[M ]Nt ]i,j [W0]j , (1.64)

where [M ] is the matrix with elements {Mi,j}, i, j ∈ {1, . . . , L} and the [W0]i comprise the initial
probability distribution of the random walker over the chain.
The time evolution simplifies in a basis where MN is diagonal:

[D]WNt = [D][M ]Nt [D−1][D]W0 (1.65)
Dk,i := eiik (1.66)

⇒ [WNt ]i =
∑
k

∑
j

e−iik cosNt(k)eikj [W0]j (1.67)

=



(
1
2

)Nt ∑
j|j−i even

 Nt
j−i−Nt

2

 [W0]j Nt even

(
1
2

)Nt ∑
j|j−i odd

 Nt
j−i−Nt

2

 [W0]j Nt odd
(1.68)

7In this thesis, by random walk, we always mean a “classical random walk” governed by a Master equation with transition
probabilities. This should be contrasted with a “quantum walk” [94, 95], governed by the Schrödinger equation and
generated by the matrix elements of the Hamiltonian.
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(Ignoring boundary effects.) If the random walker is initially at site j0, WNt is described by a binomial
distribution. For example, for even j0, i and Nt

[WNt ]i =
(

1
2

)Nt
 Nt
j0−i−Nt

2

 . (1.69)

If Nt � 1 and (j0 − i−Nt)/2 � 1, this distribution is well approximated by a Gaussian

[WNt ]i ≈ 1
σ

√
2π

exp

−1
2

(
(Nt − i− j0)/2 − µ

σ

)2
 (1.70)

µ = Nt/2 σ =
√
Nt/4. (1.71)

A closely related process can be formulated in continuous time and space [96]:

[WNt+1]i − [WNt ]i =
∑
j

(Mi,j − δi,j)[WNt ]j (1.72)

⇒ [WNt+1]i − [WNt ]i = 1
2
(
[WNt ]i+1 + [WNt ]i−1 − 2[WNt ]i

)
(1.73)

→ ∂

∂t
W(t, x) = D

∂2

∂x2 W(t, x) (1.74)

In the last step we introduced continuous coordinates x = ∆x · i, t = ∆t ·Nt, took the limits ∆t, a → 0
and defined the diffusion coefficient D := ∆x2/(2∆t). The diffusion equation (1.74) with a localized
initial condition is solved by a Gaussian distribution.
Using this result, we can compute the time dependence of the spreading of an ensemble of random
walkers over the chain. This can be measured by the mean-square displacement

r2(t) :=
∫

dxW(x, t)x2. (1.75)

If W(x, t) is given by a Gaussian, we can see, that the mean-square displacement asymptotically be-
haves as r2(t) ∝ tγdiff with the diffusive exponent γdiff = 1.
We just discussed one specific model of a random walk, limiting ourselves to one dimension, and sym-
metric transition probabilities to neighboring sites. Generalization to higher dimensions is straightfor-
ward (the diffusive exponent γdiff = 1 stays the same in d dimensions), and regarding the transitions,
the diffusion law holds true on a much more general basis [96]. This can be understood from the inter-
pretation of a random walk as a summation of random variables, due to the central limit theorem [96].
The central limit theorem states that a sum of independent, identically distributed random numbers
is Gaussian distributed, as long as the probability distribution of the random numbers has finite mean
and variance. The aforementioned process can thus be generalized for example by introducing a ran-
domly distributed waiting time between two transitions, or a more complex distribution of transition
distances (jump distribution) [98], while the diffusion law still holds true.

However, the diffusion law can in fact break down in a random walk, for example if above assumptions
about the waiting time or the jump distance are not fulfilled: If these distributions feature long power-
law tails, such that mean or variance diverges, the central limit theorem does not hold true [98]. In
some cases, conclusions on the asymptotics of the process can still be drawn, but the characteristics of
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Figure 1.6: Picture of the model. Blue disks are sites of a one-dimensional lattice. According to
Hamiltonian (1.2), each site i has an onsite energy εi which is drawn from a random
distribution. Each site is coupled to its two nearest neighbors via tunneling J ≡ 1.
We perform projective measurements of the observables {ni} that indicate whether
or not site i is occupied.

the diffusive process are violated (anomalous diffusion). In particular, if the mean square displacement
scales as

r2(t) ∝ tα (1.76)

the process is called subdiffusive, if α ∈ (0, 1) and superdiffusive if α > 1 [99].

1.3 Model

Having introduced the basic concepts for this chapter, we move on to introduce the model and time
evolution protocol to be discussed in the following, which combines unitary evolution and projective
measurements. In the remainder of this chapter we consider of single particle quantum trajectories.

We consider a one-dimensional Anderson chain, described by the Hamiltonian (1.2), again with
J ≡ 1. The random onsite energies {εi} are are drawn from a Gaussian distribution with zero mean
and standard deviation σW = W/

√
3. (“Disorder strength W” often refers to a uniform distribution

of width 2W in the literature. Such a distribution has standard deviation W/
√

3. By choosing the
standard deviation of our Gaussian distribution accordingly, we get comparable localization lengths
etc. at equal disorder strengths, see Fig. 1.2.) The chain is initially prepared in a one-site state

∣∣i0〉,
and subsequently time evolved by iterating N times the two-step protocol

1. Unitary time evolution with U = exp
(
−iH∆t

)
.

2. With probability p, projective measurement of a randomly chosen site.

The time interval ∆t is chosen sufficiently large for the wave function to spread within its exponential
envelope, ∆t ≥ ξ̄. The measured sites i∆t·m, m ∈ [1, N ] define the measurement path it. Fig. 1.6 shows
a sketch of the model.

Several sources of randomness are contained within the model. One quantum trajectory is defined by
the disorder realization {εi}, the measurement path it, as well as the set of all measurement outcomes
(click or no click) nt ∈ {0, 1}.

These different sources of randomness give rise to different kinds of averages which can be performed
on observables in the system. In the following, we use the notation

〈O〉ψ :=
〈
ψ
∣∣O ∣∣ψ〉 (1.77)
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Figure 1.7: Figure adapted from Ref. [53]. Example probability density obtained from a single
quantum trajectory at parameters W = 2 p = 1, ∆t = 10. The black line shows the
particle trajectory r1(t) (cf. Eq. (1.78)). The grey lines show r1(t) ± ξeff(t) with the
effective localization length (1.81).

for the quantum mechanical average with the wave function
∣∣ψ〉, and subscripts o (outcomes), p (mea-

surement paths) and d (disorder realization) to indicate averaging over Monte-Carlo simulations with
the subscripted quantities chosen at random between different runs. For example, 〈O〉o,p denotes that
observable O is calculated from separate runs with randomly chosen outcomes and measurement paths8

The outcome average is necessarily always a part of any average, because the outcome probabilities
must be governed by the Born rule to get a physically sensible result. It would not make sense to fix the
outcomes and average over disorder realizations for example, since this would lead to atypical quantum
trajectories where the outcomes would on average not correspond to the Born rule probabilities.

1.4 Particle trajectories and observables

In order to get a feeling for some general aspects of the time evolution protocol, we show the probability
density obtained from a single quantum trajectory with disorder strength W = 2, p = 1, and ∆t = 10
in Fig. 1.7. In this example, several important aspects of the dynamics are represented: Initially, the
system is prepared in state |51〉. Due to localization, the wave function remains localized in a region
of size O(ξ̄) around this initial site during time evolution with the Anderson Hamiltonian. Similarly
after measurements 87, 132, and 207 at sites 31, 29 and 28 which feature click outcomes, projecting
the wave function on the respective site. The first click outcome leads to a large jump over 20 sites,
which has a low probability due to the spatially exponential decay of the wave function. All other click

8If we only average over different measurement outcomes (keeping the disorder realization and the measurement path
fixed) the complete outcome average can be performed in O(N2) operations: The n-th measurement has two different
outcomes. If a click event takes place, the state is projected to the measured site, regardless the previous state. So the
click outcomes from all existing quantum trajectories can be tracked by adding the corresponding click probabilities
weighted by the probability of the quantum trajectory, and attaching the result to one new trajectory (the new one-site
state) that is added to the list of time evolved trajectories. All previously existing trajectories are modified according
to a no-click outcome. Thus, the number of kept trajectories increases by one at every measurement time step, which
gives rise to a computational effort of O

(∑N

n=1 n
)

∈ O(N2) operations. We can use this to verify the Monte-Carlo
averaging up to N ∼ 104 evolution steps.
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1 Measurements on an Anderson chain

events are “typical”, taking place close to the center site, where the probability density is high. The
probability to have a click outcome for any measurement is pclick = 1

N

∑N
i=1 ρi = 1/N , therefore the

expected number of clicks during N ∈ [1, 250] is 2.5.
All other measurements result in no-click events, which correspond to black pixels at the respective

time and position. Since ξ̄ � L, most no-clicks have only a small renormalization effect on the wave
function, as the redistributed amount of weight is exponentially small. As a result, the wave function
remains well localized, even throughout long sequences of no-click events.

This should be compared to the non-measured time evolution, Fig. 1.3: Without any measurements,
the wave function remains localized indefinitely in the vicinity of the initial position. The occurrence
of click events allows shifts of the wave function center by projection to a different region of the chain.
No-click measurements lead to slight broadening of the wave function—note how the tail of the wave
function grows between N = 140 and N = 200 in Fig. 1.7.
The observation, that a typical quantum trajectory corresponds to a well localized wave function,
performing occasional click-induced jumps motivates a simplified description in terms of moments of
the probability density

rq(t) :=
L∑
i=1

ρi(t)iq. (1.78)

In particular, we refer to the first moment r1(t) as the particle trajectory, which tracks the path of the
localized wave function through the system. The black line in Fig. 1.7 shows the particle trajectory
corresponding to the probability density example. In the left panel of Fig. 1.8, an ensemble of 10 such
particle trajectories is shown, obtained for parameters W = 2, p = 1, and ∆t = 100, from a single
disorder realization and measurement path; starting at i0 = 51. As a result of random measurement
outcomes, the ensemble spreads with time over the system in reminiscence of a jump-facilitated random
walk. In the right panel of Fig. 1.7, we summarize the particle trajectories corresponding to all possible
measurement outcomes of a fixed random disorder realization and measurement path with the quantity

Πi(t) := 1
No

∑
o
δ[r(o)

1 (t)],i (1.79)

where r(o)
1 is the expected position of the wave function for outcome sequence o rounded to the nearest

integer, and No is the number of sequences. In this quantity, every measurement at a position which did
not appear previously in the measurement creates a new line of non-zero probability, which is continued
by no-click outcomes. This is best observed at early times N ∈ [1, 10], where measurements take place
far from i0, leading to dark lines representing a low probability. Over time, the line corresponding to the
initial site darkens and evolves into a wider region of moderate probability, as the ensemble of particle
trajectories spreads over the system due to click events. Eventually, at times t & 103, the ensemble
spreads over a large fraction of the system. Based on two main observations—“delocalization” of the
ensemble of particle trajectories over the system, while individual wave functions remain localized—we
introduce two observables to further investigate this behavior: The spread of the ensemble of wave
functions is described by the displacement

∆µ(t) = [〈r2(t)〉µ − 〈r1(t)〉2
µ]1/2. (1.80)

Here and in the following, µ denotes the different averages which were taken. Sensible averages are

22



1.4 Particle trajectories and observables
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Figure 1.8: Figure adapted from Ref. [53]. Left panel: Colorful lines: Ensemble of 10 particle
trajectories from random outcome sequences at fixed random disorder realization
and measurement path. Black line: i0 ±∆class

o (t) averaged over the displayed particle
trajectories, see Eq. (1.82). Right panel: Time evolution of the position histogram of
all possible particle trajectories at fixed random disorder realization and measurement
path. The parameters for both plots are W = 2, p = 1, ∆t = 102, and i0 = 51.

(see also the explanation in the beginning of this section):

• No average over realizations at all (no index µ).

• Average over outcomes (µ = o).

• Average over outcomes and measurement path (µ = o, p).

• Average over outcomes and disorder realization (µ = o,d).

• Average over outcomes, disorder realization, and measurement path (µ = o,d,p).

In Sec. 1.5 we discuss and compare the effects of different averages. The observable also carries an
average index µ, since it may give different results for different averages. To highlight that a result
does not depend on the type of average, we use the index µ without specification.

The displacement captures contributions from the spreading of individual wave functions, as well as
the spreading of the ensemble of particle trajectories. If strongly localized trajectories spread equally
over the entire chain, the spread is given by ∆µ(t) = L/

√
12 if L � 1.

In order to capture the localized nature of individual quantum trajectories, we introduce the “effective
localization length” [100]

ξeff
µ (t) =

√√√√〈〈[x̂− r1(t)
]2〉

ψ(t)

〉
µ

, (1.81)

which serves as a dynamical definition of the “local” localization length, sensitive to changes in the
shape of the wave function due to the interplay of localization and measurements. Importantly, the
effective localization length quantifies by definition the spread of a wave function with respect to its
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1 Measurements on an Anderson chain

center site. As opposed to the “true” localization length ξ the spread is determined by the wave
function coefficients close to the center site and not by its long exponential tail. For this reason, the
effective localization length is not self-averaging. Instead, the variance of its distribution is independent
of the system size9 [85, 100, 101]. For our purposes, the “spread” ξeff

µ and not the self-averaging ξ is
relevant as becomes clear in the following. The average spread is related to the average localization
length.

Averaging over an ensemble of point-like densities, ξeff
µ = 0. For a wave function exactly of the

form (1.1) (without any fluctuations of the exponent ξ) ξeff
µ = ξ/

√
2 if L � ξ and ξ & 1—therefore,

the average localization length is related to the average effective localization length.
In Fig. 1.7 we show the effective localization length (grey lines) relative to the particle trajectory

r1(t), confirming our observation by eye of a localized wave function despite measurements.
If we do not perform any kind of average over measurement runs, ξeff(t) = ∆(t). In general, it holds√

∆2
µ(t) − [ξeff

µ (t)]2 =
√

〈r2
1(t)〉µ − 〈r1(t)〉2

µ

=: ∆class
µ (t) ∈ R. (1.82)

where ∆class
µ is the classical spread of the ensemble of particle trajectories. In Fig. 1.8 we show ∆class

o
relative to the initial position i0 (black lines). As we can see, ∆class

o captures the spread of different
particle trajectories over the system. The spread ∆µ captures the spread of particle trajectories as
well as the spread of individual wave functions, such that delocalization in either quantity leads to an
increase in ∆µ. In summary, we have three observables that capture the spread of different things:

• ξeff
µ : Average spread of a wave function with respect to its center site. In the non-measured

system related to the average localization length ξ̄. For a single wave function, ξeff describes the
spread of that wave function with repect to its center site (a “local” localization length near the
center of the wave function).

• ∆class
µ : Spread of the ensemble of particle trajectories r1. For a single wave function ∆class = 0.

If the particle trajectories are spread out evenly over the system, ∆class
µ = L/

√
12.

• ∆µ: Spread of the ensemble of wave functions. For a single wave function ∆ = ξeff . If the particle
trajectories or the individual wave functions are spread out evenly over the system, ∆µ = L/

√
12.

All observables are calculated immediately before measurements. This is important to capture the
effect of the localization length: The system is given enough time to spread to its envelope after the
possible occurrence of a projection.

1.5 Measurement induced delocalization

In the previous section, we introduced the observables ∆µ(t)—quantifying the spread of the particle
trajectories—and the effective localization length ξeff

µ (t). In the absence of measurements, these ob-
servables assume their final values within O(ξ̄) hopping times, as a consequence of the eigenfunction’s
localization in the Anderson chain. In this case, both observables measure the usual disorder localiza-
tion length in a small window, as the particle remains confined to its initial position. In the following,

9In this regard the “effective localization length” is more similar to the participation ratio
∑

i
|ψi|4 than to the actual

localization length ξ.
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1.5 Measurement induced delocalization

100 102 104 106

N

101

102

∆
o

p = 1
p = 0

100 102 104 106

N

4

5

6
7
8

ξeff o

100 102 104 106

N

800

805

810

〈r
1〉

o

Figure 1.9: Figure adapted from Ref. [53]. Upper panels: Displacement (left) and effective local-
ization length (right) for a system of L = 1600 sites, with fixed disorder realization
(ξ̄ ≈ 7), ∆t = 100 and fixed random measurement path and initial site i0 = 801.
Time is measured in units of ∆t; t = N∆t. The data is averaged over 4 · 103 mea-
surement outcome sequences. The dashed line in the left panel corresponds to a
power-law with ∆o(t) ∝ t0.59. Lower panel: Position expectation value in the same
system. In all panels grey (blue) lines represent p = 0 (p = 1).

we quantify the impact of uniformly distributed measurements on the dynamics of the system through
these observables.

1.5.1 Different averages

Figure 1.9 shows the observables ∆o, ξeff
o and 〈r1〉o obtained from an outcome average over 4 · 103 runs

in a system of L = 1600 sites, with a fixed disorder realization for W = 2 corresponding to ξ̄ ≈ 7
and fixed random measurement path with p = 1 (blue lines) and ∆t = 100. Grey, dashed lines show
the same observables in the non-measured case p = 0 for comparison. Throughout section 1.5, we use
periodic boundary conditions.

Let us first consider the outcome-averaged position expectation value: At p = 0 this value fluctuates
by O(ξ̄) sites around the initial position. These fluctuations are due to the unitary time evolution,
mediating between

∣∣i0〉 and O(ξ̄) neighboring sites through the localized eigenfunctions. In contrast,
at p = 1, the fluctuations are less pronounced, as they average out over different quantum trajectories.
At N ∼ L = 1600, however, the average position starts to slowly drift away from the initial position,
reaching i ≈ 810 at N ≈ 105. The drift velocity is very small v ≈ 1/104 � 1. At N ≥ 105 the average
drift continues even more slowly, while fluctuations of magnitude O(1) emerge.
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1 Measurements on an Anderson chain

Since p = 0 corresponds to a single quantum trajectory, only the spread of the wave function
contributes to the displacement ∆. Accordingly, ξeff and ∆ are equal in this case, and ∆ = ξeff ∼ ξ̄.
This is similar for the measured case up to N � L/p = 1600, where again both quantities behave
similarly (not shown), since all quantum trajectories away from the initial position are very unlikely—
few click events occur up to this point and there are also few impactful no-click events up to N ∼
L/(pξ) ≈ 250. In consequence, there is no classical contribution to ∆o from the displacement of the
wave function center, and the shape of the wave function is largely determined by the unitary time
evolution. At N ∼ L, however, ξeff

o at p = 1 is increased compared to non-measured ξeff , while ∆o
continues to grow as an approximate power law ∝ tγ with γ ≈ 0.59 (close to the diffusive exponent
γdiff = 1/2).

At N = L for p = 1, we expect O(1) click-events for each trajectory, shifting the positions of the
wave functions; and no-click events close to the center of the wave functions, redistributing the weight
which is projected away from the measured site. Importantly, however, ξeff

o � L, validating the picture
of an effective localization length that is still defined in the presence of measurements. Considering
the entire time interval, we notice slow fluctuations in the local power law exponent of ∆o; ξeff

o reaches
a local minimum at t ∼ 104 and slightly increases at later times.

If we redraw the measurement path between runs, in addition to considering random outcome
sequences for every run, the features of the plots are largely similar to the exclusively outcome averaged
case (not shown). This is expected even for N � L, when measurements play an important role. The
outcome-average alone spatially separates the particle trajectories over time, and at this point different
trajectories experience independent measurement locations in their vicinities anyway. There may be
subtle differences at intermediate time scales, where many trajectories are still overlapping. However,
we are mostly interested in the long-time behavior.

Finally, we consider the observables ∆o,p,d ξ
eff
o,p,d, 〈r1〉o,p,d and ∆class

o,p,d with averages over outcomes,
paths and disorder at the same parameters W = 2, L = 1600, p = 1, ∆t = 100 (Fig. 1.10). In
addition, ∆o,p,d and ξeff

o,p,d are plotted together in the lower right panel, to demonstrate the difference
between ∆class

o,p,d(t) (1.82) and ∆o,p,d(t). Averaging over disorder realizations and paths, we remove all
spatial inhomogeneities from the averaged quantities. As a result, 〈r1〉o,p,d is constant up to finite
sample fluctuations, also in the measured case. The remaining fluctuations can be explained as follows
by the finite sample average: ∆class

o,p,d(t) growing with time means that the mean position r1 of a given
trajectory can be considered a random number sampled from an increasingly broad distribution (see
Sec. 1.7 for details). Thus, we estimate the magnitude of the finite-sample fluctuations as a function
of time by calculating the variance σ2 in a large sample of averages of 4 · 103 random numbers per
sample from a Gaussian distribution of standard deviation ∆class

o,p,d(t). We observe, that 〈r1(t)〉o,p,d is
always within ±2σ (blue shaded area) from zero.

The obtained exponent for the spread γ = 0.49 is very close to the diffusive value. Contrary to the
previous cases, ξeff

o,p,d saturates after O(103) measurements to a value that does not further change with
time. This is because the introduction of an average over disorder realizations removes, right from the
outset, correlations between different runs of the simulation. The converged value of ξeff

o,p,d is slightly
larger in the measured case p = 1 than in the non-measured case p = 0. This is discussed in more
detail in Sec. 1.5.3.

Regarding the classical displacement, we note that ∆class
o,p,d ≈ 1 > 0 for p = 0 as well as p = 1 (with

N . 102). This is due to the spread of the initial wave function across O(1) sites around i0 = 801. In
different disorder realizations, the center position r1 slightly varies, reflecting in a finite value of ∆class

o,p,d.
At later times, the p = 0 curve remains at this initial value, while the p = 1 curve grows according to
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Figure 1.10: Figure adapted from Ref. [53]. Upper panel: Displacement (left) and effective lo-
calization length (right) for a system of L = 1600 sites, with ξ̄ ≈ 7 and ∆t = 100.
The data is averaged over 4 · 103 runs, with random measurement outcomes, paths,
and disorder realizations and initial site i0 = 801. The black dashed line in the
left panel corresponds to a power-law with ∆o,p,d(t) ∝ t0.49. Blue and grey lines
correspond to p = 1 and p = 0 respectively in all panels. The increased effective
localization length in the presence of measurements (blue line in the upper right
panel) is discussed in Sec. 1.5.3. Middle panel: Position expectation value in the
same system with two-sigma finite sample size error estimation from a bootstrap
procedure (shaded region) (left). Comparison between displacement and effective
localization length during the initial evolution (right). Lower panel: Classical dis-
placement (1.82).

the measurement induced spread of the particle trajectories. Fitting ∆class
o,p,d at N ≥ 5 · 105 to a power

law, we obtain again γ = 0.49. Importantly, the classical contribution to ∆o,p,d determines its behavior
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Figure 1.11: Figure adapted from Ref. [53]. Displacement (left) and effective localization length
(right) for a system of L = 1600 sites, at ξ̄ ≈ 7 and ∆t = 100 for different mea-
surement probabilities. Each curve is averaged over 4 · 103 runs, with random
measurement outcomes, paths, and disorder realizations. The data is plotted over
the expected number of measurements N · p.

in the long time limit, since the effective localization length converges to a system size independent
value, while the trajectories spread over the entire system.

The average number of measurements required to displace the wave function center from a specific
site is determined by the spreads of the eigenfunctions peaked close to this site, which are, in turn,
determined by the disorder realization. If disorder is not averaged over, a region of small spreads
(“traps”) slows down all trajectories passing through that region. Such traps can lead to drifting of
〈r1〉o,p(t) (partially blocking transport on one side of the system), as well as to fluctuations in ∆o,p(t)
(traps slow down the average spread) and ξeff

o,p(t) (the trap corresponds to small ξ and, thus, small ξeff).
On the other hand, regions of large ξ can speed up the spread and lead to upwards fluctuations in ξeff

o,p.
In the thermodynamic limit L,N → ∞, we expect these effects to vanish, even if the observables are
only averaged over outcomes, as the trajectories become increasingly spatially distributed and thus less
correlated. This suggests, that the diffusive power law exponent obtained by performing all averages
should also be seen at long times, if only an average over outcomes is performed. However, our numerics
do not probe the corresponding time scales. Upon disorder averaging, there is an immediate average
over different ξ at every point in time, since the observables are averaged with wave functions from
different disorder realizations, leading to γ ≈ 1/2 for a sufficiently large sample average. In contrast,
if no average over disorder realizations is performed, it takes much longer to reach the diffusive limit.
Due to traps, deviating exponents are observed for different disorder realizations on intermediate time
scales.

Based on the approximation that the trajectories spread diffusively due to click-events, we can
estimate the number of measurements required to achieve a sufficient effective average over different
effective localization lengths without performing the disorder average. From Fig. 1.10, we conclude
that ∼ 1000 independent sites are sufficient for the effect of traps to be averaged out. Therefore,
having ∆o,p ∼ 103ξ̄ without disorder averaging should facilitate a similar average. This corresponds
to t′ ∼ 106, where t′ = Np/L is the expected number of click events. We find N ∼ 106L/p, where we
have to set L & 103ξ̄ to avoid finite-size effects. We find N ∼ 109ξ̄/p with an additional numerical
ξ̄-dependent factor taking into account zero-distance jumps. From this estimate, it is clear that we
would have to go to much larger numbers of measurements to find diffusive behavior without averaging
over disorder realizations.
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Figure 1.12: Figure adapted from Ref. [53]. Displacement (left) and effective localization length
(right) in a system with ξ̄ ≈ 7 and L = 100. The data is averaged over 4 · 103 runs,
with random outcomes, disorder realizations and measurement paths (∆t = 1 here).
The vertical dotted lines mark one expected click event, N1c = L/p for p = 0.05.

In Fig. 1.11, we compare ∆o,p,d and ξeff
o,p,d at different measurement probabilities in order to demon-

strate that the measurement frequency only rescales the time axis and has no impact on the diffusive
exponent, as long as ∆t � ξ̄. For this purpose, we plot each quantity as a function of the expected
number of measurements N · p on top of each other. Indeed, after an initial phase corresponding to
few measurements, the curves lie on top of each other.

1.5.2 Length and time scales

In order to separate the influence of measurements on the average quantities from the non-measured
time evolution, we consider small measurement probabilities p ∈ {0.025, 0.05} in a system with L = 100
and ξ̄ ≈ 7 (p = 0 is shown for reference), averaging over O(103) runs, see Fig. 1.12. We choose ∆t = 1,
which does not come with the Zeno effect, since ∆t/p � ξ̄. In order to avoid the related intermediate-
scale effects, we average not only over outcomes and measurement paths, but also over disorder re-
alizations. Because of the small measurement probability, it takes many steps of the time evolution
protocol for the measurements to show a pronounced effect on the system, leading to a separation of
the initial time scale, where the observables basically behave as in the absence of measurements (gray,
dashed lines), from the time scale, where the effect of measurements sets in. Specifically, for these
parameters of the protocol, N = L/(ξ̄p) ∼ 300 steps are required until one measurement within the
localization radius has taken place on average, and about N = L/p ∼ 2000 steps (black dotted lines)
until one click is encountered. Consequently, a difference between the p = 0 and p = 1 curves becomes
apparent between these time steps.

As we observed before, ξeff
o,p,d(t) increases to its saturated value ξeff

µ (t → ∞) > ξ̄ which is much
smaller than the system size, ξeff

µ � L. At the same time ∆o,p,d(t) grows according to a power
law. The spread of the trajectories is limited by the system size, which shows as a second plateau
with ∆o,p,d ≈ L/

√
12 ≈ 30—corresponding to uniform spreading over the system. Assuming diffusive

spreading of trajectories, driven by click events, the corresponding scale can be estimated as t′1/2 ∼ L/ξ̄,
where the time is counted in expected clicks t′ = Np/L, giving N ∼ L3/(pξ̄)2 ∼ 6 · 105, in agreement
with the actual time of saturation to the second plateau. Since ξeff

µ (t → ∞) is related to no-click events,
the corresponding plateau sets in when there is averaging over contributions of all relevant numbers
of successive no-click events. As a rough estimate, the probability of a sequence of exclusively no-click
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Figure 1.13: Figure adapted from Ref. [53]. Upper panels: System size scaling of the time con-
verged values

√
12∆µ(t → ∞) (left) and

√
2ξeff
µ (t → ∞) (right) at ξ̄ ≈ 7, p = 1 and

∆t = 100. Lower panels: Required number of measurements to reach 90% of the
plateau value for ∆o,p,d (left) and ξeff

o,p,d (right) in the same system.

events decreases exponentially with the length of this sequence. We thus estimate N ∼ L/(pξ̄) ∼ 300
with the numerical factor depending on the details of effective localization length’s origin.

In the upper panel of Fig. 1.13, we demonstrate the scaling of ∆µ(t → ∞) (left) and ξeff
µ (t → ∞)

(right) with the size of the system for parameters p = 1, W = 2, ∆t = 100. In agreement with
uniform spread over the entire system, we find

√
12∆µ(t → ∞)(L) ≈ L (lower left, dashed line). On

the contrary, ξeff
µ (t → ∞, L) (lower right) saturates to

√
2ξeff
µ (t → ∞, L → ∞) ≈ 13 for L & 250. This

further validates that there are still localized wave functions in the presence of measurements, despite
the spread of trajectories. In the lower panels, we plot the number of measurements required to reach
the plateaus in ∆o,p,d (left) and ξeff

o,p,d (right); confirming the cubic (linear) dependence on the system
size.

1.5.3 Effective localization lengths

The average value of ξeff
µ (t → ∞) depends non-trivially on W , p, ∆t and L. In particular, W determines

ξ̄ and, thus, the average value of ξeff
µ (t → ∞)(p = 0). We already observed that finite p leads to an

increase in ξeff
µ (t → ∞) in the limit ∆t/p � ξ̄. We do not consider the Zeno limit ∆t/p → 0, where

ξeff
µ (t → ∞) → 0; however this limit implies that ξeff

µ (t → ∞)(∆t/p) has a maximum at finite ∆t/p. In
the upper right panel of Fig. 1.13, we see the effect of L acting as an upper cutoff on ξeff

µ (t → ∞).
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Figure 1.14: Figure adapted from Ref. [53]. Left panel: Probability distribution of effective
localization lengths in measured (p = 1) and non measured (p = 0) system for
ξ̄ ≈ 7, L = 300, and ∆t = 100. These effective localization lengths were obtained
in the time window [2900, 3000] (where the effective localization length is converged
for these parameters, see Fig. 1.13) and histrogrammized from 4 · 103 runs with
different disorder realizations and measurement paths and random measurement
outcomes. Right panel: Comparison of ξeff

o,p,d with forced no-click only outcomes
to usual time evolution according to our protocol, both at parameters L = 1600,
W = 2, ∆t = 100. The inset shows a close-up of the time interval [1, 2 · 103].

Concerning the effect of measurements on the effective localization length, we know that every
click outcome resets ξeff → ξeff(∆t)—recall that observables are calculated immediately before the
measurement, thus after the interval of unitary time evolution. Because ∆t/p � ξ̄, the wave function
is given enough time to spread into its exponential envelope. A no-click outcome outside of the effective
localization length has an exponentially small effect. A no-click event within the effective localization
length can lead to enhancement of the wave function tails and, thus, to a slight growth in ξeff , resulting
in ξeff

µ (t → ∞) > ξ̄. To further illustrate the effect of measurements on the localization length, we
compare in the left panel of Fig. 1.14 the distributions of effective localization lengths in the measured
and non-measured case for ξ̄ ≈ 7, ∆t = 100, L = 300. In this figure, we histogrammize effective
localization lengths obtained from 4 · 103 random disorder realizations time evolved with our protocol,
at p = 0 and p = 1 respectively, with random measurement paths and -outcomes. For every instance,
we calculate ξeff at 100 successive time steps, between 2.9 · 103 and 3 · 103.

The p = 0 distribution captures the stochasticity of effective localization lengths (the spread of the
wave functions with respect to their center sites) in the non-measured system between different disorder
realizations, which was investigated for bulk eigenfunctions in Ref. [100]. As expected, the measure-
ments enhance the distribution towards larger effective localization lengths. Importantly however, the
overall shape of the distribution is qualitatively preserved. While the distribution of inverse effective
localization lengths of eigenstates at fixed energy is known to be Gaussian [75, 100, 101] this only ap-
proximately describes the distributions shown in Fig. 1.14 since our wave functions are given by linear
combinations of a few eigenstates, and states of all energies are taken into account. Prominent features
are a maximum (typical ξeff) between quick decay towards small effective localization lengths and a
long tail towards large localization lengths. Since in the fully averaged case the effective localization
length is still larger than in the free system, we conclude that the increase of average ξeff

µ (t → ∞) in

31



1 Measurements on an Anderson chain

the presence of measurements has to be connected to no-click events, since clicks reset the contribution
of a wave function to the non-measured value.

To show this more explicitly, consider the right panel of Fig. 1.14: The grey dashed line shows the
already established result for ξeff

o,p,d at parameters L = 1600, ∆t = 100, W = 2, which converges to
ξeff
µ (t → ∞) ≈ 9. The blue solid line is obtained by forcing a no-click outcome at every measured site.

The inset shows a close-up of the time interval [1, 2 ·103] to demonstrate that the curves coincide in the
initial phase, where the expected number of click events is low. In the forced no-click case, in contrast
to the Born rule simulation, ξeff

o,p,d does not show a plateau, but continues to increase throughout the
observed time window. This demonstrates again the delocalizing effect of no-click events. Without
occasional click events, the wave functions would eventually completely delocalize and spread across
the entire system. Note that this delocalization process could take much longer if we simply post-
selected trajectories with no-clicks only. In such a trajectory the measurements would typically take
place in the tail of the wave function, where the impact on the wave function is smaller. Forcing no-
click outcomes, the measurement position is equally distributed along the chain. This procedure bears
a certain similarity to “forced measurements” discussed in Ref. [102], but in that paper all quantum
trajectories (also involving click outcomes) were forced to be equally likely. In our case, we have “forced
measurements with no-click postselection”. When the Born rule is employed, delocalization induced by
no-click outcomes is stopped by a single click event; as a result, the true effective localization length
saturates.

To summarize the above, we have found that randomly distributed measurements lead to delocaliza-
tion of particle trajectories. Each projective measurement transfers the particle to the measured site.
Following this process for a sufficient time span, the probability to find a particle at a particular site
is equal for all sites. At long times, the spread of particle trajectories due to this process is described
by a diffusive power law ∆µ(t) ∝ t1/2 independent of the performed averages. During this process, the
wave functions are still well described by an effective localization length, as opposed to spreading over
the size of the system, despite the delocalizing impact of no-click events.

1.6 Steering with measurements

In the preceding section, we concluded that random measurements all over the system lead to de-
localization of quantum trajectories, while almost all individual trajectories correspond to localized
particles. This raises the question, if the well-defined location of the particle can be efficiently manip-
ulated, inducing controlled transport in a “localized” system by performing measurements according
to an appropriate steering protocol.

The concept of having localized trajectories with the location governed by click events can be applied
to steer the particle from its initial site to a specified target, with the goal of having a click at the
target. The average number of measurements required to achieve this goal defines efficiency of the
measurement protocol, which dictates the measurement path. In a localized system, where only the
target site is measured, the expected number of measurements would increase exponentially with
the system size. Contrarily, if the wavefunction is completely delocalized, the expected number of
measurements would scale linearly with system size, when measuring again only the target site. In
our localized system, where all sites may be measured, we expect to find efficient (sub-exponential),
non-trivial measuring strategies, since, on the one hand, quantum trajectories seem to spread over
the system on a non-exponential time scale, while, on the other hand, still corresponding to localized
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1.6 Steering with measurements

wavefunctions.
In order to investigate spatial steering, we consider the following setup. In a system of L sites

we initialize the particle at site i0 = 1 and specify a target site itarget = L (using open boundary
conditions). Again, we consider large times between two measurements ∆t & ξ̄(W ), in order to avoid
confining or repelling the particle through the Zeno effect. The goal is to design a measurement protocol
that leads to a click outcome at the target site after as few measurements as possible. The time of
arrival in a quantum lattice was also studied in Refs. [49, 103]. Hereby, we differentiate between two
types of protocols: Adaptive protocols, which may use the readouts from every performed measurement
in determining the position of the successive measurements; and blind protocols, which may only use
the readout at the target site.

The simplest protocol one may think of is to just repeatedly measure the target site, until the
particle is detected. Since this protocol requires readout only at the target site, it is a blind protocol
with the termination policy employed. Based on the localized nature of the system, this protocol
typically terminates after an exponentially large number of measurements N ∈ O(exp

(
L/ξ̄

)
), upon

averaging over disorder realizations. As this protocol scales exponentially with the system size, it
becomes impractical (also for numerical simulations), if L is of the order of a couple of localization
lengths.

At the same time, there is a simple adaptive protocol, which is optimal in the sense that 〈N〉o,d ∝ L.
This protocol works as follows:

1. Place the detector at i1 = i0 + 1.

2. Measure this site, until the particle is detected.

3. Shift the detector by one site towards the target.

4. Repeat steps 2 - 4.

Given that the expected number of measurements until the next click is finite, the total number
of measurements scales linearly with the system size. For numerical simulations, we use a slightly
improved version of this protocol: Instead of always measuring at a distance 1 from the site where
the last click event took place, we randomly measure sites within one localization length of this site
in the direction of the target site. This has two benefits: Local dips of the wave function as well as
effects of preceding no-click events are avoided. Indeed, the left panel of Fig. 1.15 demonstrates that the
simulated expected number of measurements for this protocol (blue dots) scales approximately linearly
with the system size (black fit line). In this sense, ballistic transport is realized by this protocol.

Evidently, efficient steering is possible, if the readout is always accessible. In an experiment, how-
ever, this may not be the case. Therefore, we try to find a blind protocol with an expected number of
measurements that behaves polynomially with the system size. As an attempt to improve the runtime
of the blind protocol, we perform blind measurements along the chain at random locations until the
particle is detected at the target site. As we already observed, this leads to approximately diffusive
spread of the trajectories and is thus much more efficient than only measuring the target site. In
simulations, we are able to steer the particle to a target site at a distance of several hundred local-
ization lengths, see the right panel of Fig. 1.15. The simulation values for 〈N〉d,p,o (blue dots) scale
approximately with f(L) ∼ L3 (black dashed line), as expected in a diffusive system.

We thus demonstrated a possibility of efficiently manipulating (dragging) a particle subject to a
random potential in a one-dimensional chain by means of measurement-induced steering, using both
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Figure 1.15: Figure adapted from Ref. [53]. Scaling of adaptive readout protocol (left panel)
and random blind protocol (right panel) as a function of system size, for W = 2,
∆t = 100. The dashed lines show a linear fit (left panel) and the function f(L) ∼ L3

(right panel) as a guide for the eye.

passive (blind) and active (adaptive) protocols. This type of steering can be further generalized to
more sophisticated scenarios, as compared to simply moving the particle through the chain from one
end to the other. In particular, one may envision manipulating several particles in the disordered
background (not necessarily in a one-dimensional system) to exchange their positions and braid them
by measurements.

1.7 Relation to a classical random walk

In this section, we describe how the dynamics of the spread of particle trajectories in our measured
system is related to a classical random walk model. The random walk picture is useful for several
reasons. For a wide variety of random walks, asymptotic properties are known, allowing us to explain
the long-time behavior of our system. The random walk language offers a simplified description of the
dynamical features of the ensemble of particle trajectories, which are much more difficult to calculate
analytically when taking its full quantum nature into account. Our main question is about the asymp-
totic behavior of the spread ∆µ(t) (or, equivalently, the asymptotic behavior of ∆class

µ (t)). In Sec. 1.5
we argued, that the particle trajectories spread diffusively in the long time limit, and in the following
we use the random walk picture to back up this statement analytically.

On the level of particle trajectories, the measurement-induced dynamics bears immediate similarity
to a classical random walk. Consider a set of states {i} with i ∈ [1, L], representing the sites of the
system. Approximating the position of a trajectory by the nearest site and limiting our consideration to
the discrete set of time points immediately after a measurement, every particle trajectory is described
by transitions i → j with i, j ∈ [1, L]. A natural approach is to describe the ensemble of different
particle trajectories in terms of transition matrices M(n) with n ∈ [1, N ], acting on a state % with
%i(n) corresponding to the probability to find a particle on site i at time step n, and

%i(n+ 1) =
L∑
j=1

Mi,j(n)%j(n). (1.83)

We assume that the transitions are mediated by click events, with the transition probabilities deter-
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1.7 Relation to a classical random walk

mined by the wave functions immediately before the measurement. Indeed, we showed in Sec. 1.5 that
the effect of no-click events can essentially be viewed as a correction to the localization length. Since
on average every L-th measurement produces a click, one time step in Eq. (1.83) thus implies L steps
of the measurement protocol.

At this point, we need to specify properties of the Mi,j(n), incorporating localization into the clas-
sical picture through the statistics of these matrix elements. Localization implies that the transition
probability decreases exponentially with the distance. Therefore, we keep only transitions over dis-
tances one and zero (distance one representing unit distance O(ξ̄) jumps) and consider a symmetrical
nearest-neighbor transition matrix

Mi,j(n) = δi,jpi(n) + δ(i+1),j
p̄j(n)

2 + δ(i−1),j
p̄j(n)

2 ; (1.84)

p̄i = 1 − pi i, j ∈ [1, L], (1.85)

where respective boundary conditions should be taken into account.
In this model, at every time step n, the particle either remains on a given site i with waiting

probability pi(n), or jumps with equal probabilities p̄i(n)/2 to one of the two adjacent sites. The
waiting probabilities are assumed to be time independent, pi(n) =: pi ∀n (we comment later on this
assumption). They are drawn from a probability distribution Pp(p) which is related to localization
and determined in the following.

The key insight is, that the asymptotic behavior of the spread ∆µ(t) crucially depends on the
probability of zero distance jumps, corresponding to successive click events at the same site (waiting
on that site). If zero distance jumps never occurred (pi = 0 ∀i), the corresponding random walk
would necessarily give diffusion.

If there was however a long tail in the distribution Pp(p) towards large waiting probabilities p → 1,
rare regions with atypically large waiting probabilities could slow down the jump-facilitated transport
(inducing many distance zero jumps), resulting in subdiffusion. The distribution of waiting probabil-
ities Pp(p) is related to the distribution of inverse effective localization lengths y = 1/ξeff , since the
probability for the particle to “wait” on a site

∣∣j0〉 is determined by the peak weight of the wave function〈
i
∣∣∣j0(t)

〉
10. We thus make the connection to the localized wave functions, by choosing the distribution

of the waiting probabilities Pp(p) according to the distribution of inverse effective localization lengths
Py(y)—see Fig. 1.16 for an illustration.

The probability distribution of the inverse effective localization length y := 1/ξeff of eigenfunctions
at a given energy E and disorder strenth W is given by a Gaussian [75, 100, 101],

PE
y (y) = N1 exp

−1
2

(
y − µ(W,E)
σ(W,E)

)2
 y ∈ [0,∞), (1.86)

with normalization constant N1, variance σ2, and mean µ. For the toy model, we approximate the
probability to have a zero distance jump pi to be given by the center-site maximum of the localized

10The waiting probability is determined by the spread of the wave function (quantified by ξeff), not by the localization
length ξ. As the wave function decays exponentially, only a small region around the center site is accessible for
measurement-induced jumps. For this reason there is a distribution of waiting probabilities in the first place, instead
of a constant waiting probability given by the self-averaging localization length.
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)

Figure 1.16: Figure adapted from Ref. [53]. Illustration of the relation between localization
length ξ and waiting probability p: After a click event on site j0 and successive
time evolution over period t (without further click events), the density |

〈
i
∣∣∣j0(t)

〉
|2

with localization length ξ establishes. The waiting probability p to have another
click event at j0 (distance zero jump) is connected to the localization length via the
density on the center site p = |

〈
j0
∣∣∣j0(t)

〉
|2 = N (ξ).

probability density at time t after the click event

|
〈
i
∣∣∣j0(t)

〉
|2 = N (ξ) exp

(
−2|i− j0|/ξ

)
(1.87)

N (ξ) =
exp

(
2/ξ

)
− 1

exp
(
2/ξ

)
+ 1

L � 1, (1.88)

where ξ is obtained from the effective localization length ξeff . This approximation provides a mapping
between the random variables p (representing a waiting probability) and y (representing an inverse
effective localization length). After a click on an arbitrary site j0 the waiting probability is given by

p = |
〈
j0
∣∣∣j0(t)

〉
|2 (1.89)

And since the probability on the center site is given by p = N (ξeff(y)) ∼ N (1/y) (neglecting a constant
factor between localization length and effective localization length), we get

p(y) = exp
(
2y
)

− 1
exp

(
2y
)

+ 1 . (1.90)

We use this mapping for the change of variables y → p in Py(y). From y ∈ [0,∞), it follows that
waiting probabilities between 1 and 0 can be found: p ∈ [0, 1). The probability distribution for the pi
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1.7 Relation to a classical random walk

at a given energy takes the form

PE
p (p) = N1

1 − p2 exp


−

[
log
(

1+p
1−p

)
− 2µ

]2

8σ2


. (1.91)

where the energy dependence is encoded in µ, σ, and N1—see Eq. (1.86).
Since our time evolution protocol includes all eigenstates, we average over the band to obtain the

waiting probability distribution

Pp(p) =
∫
dEν(E)PE

p (p) (1.92)

with the density of states ν. The correspondence between Pp(p) and Py(y) is only approximate, since
the wave function in our time evolution protocol is actually a superposition of eigenfunctions. Due to
the exponential decay of the eigenfunctions we can however reasonably replace this superposition by
the dominantly contributing eigenfunction (this becomes exact in the strong disorder limit ξ → 0).

Using the random-walk picture, we can now address the question of diffusion in ∆µ(t) at asymptotic
times. As mentioned before the asymptotic behavior of the random walk is governed by the behavior
of Pp for p → 1, because sites with a waiting probability of almost one provide bottlenecks for the
dynamics in the system. Sites with large waiting probabilities correspond to wave functions with small
localization lengths. It is known that spatial randomness in a potential can lead to anomalous transport
via long tails towards waiting probability one [104]. It was shown in Ref. [105], that a random walk
as specified above behaves diffusively, if the distribution of τ(p) := 2/(1 − p) has a finite mean value.
For our distribution, this mean value exists as it can be easily calculated for distribution (1.91).

Thus, we find ∆µ(t) ∝ N1/2 ∝ t1/2 in the asymptotic limit.
As explained in Sec. 1.5, this expectation is independent of the performed averages (provided that

any average is performed) and holds thus true even if only the average over outcomes is taken. In this
case however, on intermediate time scales which are not described by the toy model (N � L, ∆o ∼ ξ̄),
few sites have a large impact on the dynamics. This can lead to apparent sub- or even superdiffusive
dynamics on these time scales. If a fraction of trajectories reaches a site with ξeff > ξ̄ (ξeff < ξ̄), there
is an increase (decrease) with time in the effective localization length (see Fig. 1.9 for an example).
In the random-walk picture, this may be understood as a time-dependent jump distance distribution,
which can raise or lower the local exponent of the power law in ∆o.

As a last remark on the model, we reconsider the assumption of time independent pi. In contrast, in
our system, the probabilities pi change due to no-click events altering the shape of the wave function,
and oscillating contributions of different eigenfunctions to the wave function. However, since we found
diffusion including “memory effects”, we would find the same result if the pi(n) were taken to be
completely uncorrelated in time while drawn from the same distribution.

Below, we give a brief summary of the other simplifications in the toy model

• We approximate all jumps distances greater than zero by a unit-distance. This is justified because
the probability to jump over a distance x decreases exponentially with x/ξ.

• The model is based on the statistics of the eigenstates of the Anderson Hamiltonian. However,
the actual wave functions result from time evolution of one-site states. The approximation is
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1 Measurements on an Anderson chain

justified by the exponential decay of the eigenstates, which implies that only O(ξ̄) sites overlap
significantly with the original site.

• The effect of no-click events on the shape of the wave function is not explicitly taken into account.
However, we showed that no-click events can be viewed as a correction to the effective localization
length. We can incorporate corrections to this simplification on a phenomenological level through
a modification of the localization length.

In summary, by introducing a classical random walk toy model of the particle trajectory ensemble, we
are able to confirm that the spread of the ensemble behaves diffusively in the long time limit, thus
supporting our findings from Sec. 1.5. In the random walk picture, click events facilitate jumps on the
lattice, with the average localization length setting the typical jump distance. Since the wave functions
fall off exponentially around a center site, jumps of distance zero are most likely. However, analyzing
the distribution of localization lengths, we showed that such waiting events do not lead to subdiffusion.

With the insights from the random walk, we take another look at our measurement steering protocols.
Turning first to the blind protocol with random measurements, we can identify the average runtime of
the protocol with the maximum expected hitting time of a random walk on a connected graph [106].
This is the number of steps which the random walker needs to take on average, to first arrive on the
most distant site, and it scales as L2 for a simple chain [106]. Since we need ∝ L measurements to
induce one step, we find 〈N〉 ∝ L3, as seen in the numerics. For the adaptive protocol, the asymptotic
behavior of the waiting probability distribution confirms a linear relation between the system size and
the expected number of measurements, since the moments of the waiting times on a site do not diverge.
This also implies that there is a Gaussian probability distribution of the steering times for sufficiently
large system sizes, in accordance with the central limit theorem.

1.8 Summary

In this chapter, we investigated the dynamics of a single particle in a one-dimensional Anderson
chain, subject to projective on-site measurements (the model was introduced in Sec. 1.3). Combin-
ing disorder-induced localization and measurements, the question arises whether measurements can
introduce transport and whether localization is affected by the measurements. Interestingly, we found
that while the measurements indeed lead to transport (and in this sense to delocalization), the wave
functions of different quantum trajectories are still typically localized. This motivated us to investi-
gate functions of moments of the wave functions, averaged over different quantum trajectories (cor-
responding to different sequences of outcomes), which where introduced in Sec. 1.4. The exponential
localization of the wave function gives a meaning to the time dependent first moment (the position
expectation value), which we refer to as a particle trajectory. Performing measurements at random
locations, we found that particle trajectories, driven by click events, spread asymptotically diffusively
over the system, independent of the considered ensemble (different outcomes, disorder realizations, or
sequences of measurement locations). At the same time, the wave functions remain localized along
individual quantum trajectories, but with a modified effective localization length (see Sec. 1.5) which
we calculated as the spread of the wave function with respect to its first moment. The spread of the
mean square displacement of the particle trajectories from these ensembles can be understood in terms
of a classical random walk with random waiting times (or probabilities), which are inherited from the
distribution of effective localization lengths via the probability on the center site of the localize wave
function (the probability to perform a distance zero jump). This distribution falls off rapidly towards
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1.8 Summary

long waiting probabilities, thus confirming the diffusive asymptotics of the spread. This argument was
formulated in Sec. 1.7.
Above findings suggest that efficient steering protocols can be formulated, performing deliberate mea-
surements to move the particle through the system to a predefined target site within a number of
measurements, which is polynomial in the system size. We demonstrated this in Sec. 1.6: Given access
to the readout of every measurement, ballistic steering is possible, reaching the target site with a
number of measurements linear in its distance to the initial site. The idea is to repeatedly measure a
location close to the last known position of the particle towards the target, thus “dragging” it towards
the target. Even without having access to the detector readouts besides at the target (blind steering),
a click-measurement at the target can be achieved within a cubic number of measurements, by just
measuring random locations—making use of the diffusion law.
Our model is an intuitive platform to understand the concepts of Anderson localization and projective
measurements, and to gain some intuition for aspects of the interplay between them. Introducing
measurements at random positions to a localized system immediately changed its dynamics, transi-
tioning from exponentially localized to diffusive transport. In this way, the measurements give rise to
a classical picture of a moving ensemble of particle trajectories, which is influenced by the quantum
localized nature of the wave functions.
Some questions remain open that could be investigated within our model. As an example, it may be
interesting to observe the onset of the quantum Zeno effect by going from the considered regime of large
time intervals of unitary evolution ∆t � ξ to smaller time intervals. If the time of unitary evolution is
made a random quantity, this could lead to anomalous transport. In this case, the localization length
would serve as a cut-off for the jump distribution. Due to its non-monotonic behavior, it would also
be worthwhile to take a closer look on the average effective localization length as a function of the
measurement probability.
Furthermore, there are many possible generalizations to this model, that could be interesting. Some
of them have already been investigated in the literature. Clearly, the introduction of more particles or
even interactions complicates the situation not only numerically but also conceptually. An Anderson
chain with multiple fermions under continuous monitoring was investigated in Ref. [46], with a focus on
a measurement-induced entanglement transition. Systems of measured interacting disordered fermions
were considered in Ref. [47]. If several particles are present, the meaning of localized wave functions
is less clear and it becomes more difficult to separate transport and localization in above sense [46].
Also, the interpretation of the wave function after a projective measurement is less obvious11.

At the same time, in the presence of several particles, more elaborate steering may be attempted
to introduce designed correlations into the system, possibly mimicking the behavior of an interacting
system. Interactions on the other hand can lead to dynamical transitions in a disordered system
themselves, adding to the interest of their interplay with measurements [47].

11For a single particle a click leads to a one-site localized state, a no-click to a hole. How does this generalize to
two-particles? Of course this can be calculated from the projection operators, but the result is less intuitive.
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2 Chapter 2

Memory effects in the imbalance in
delocalized disordered systems

In this chapter, we study on a general basis the decay of short-scale excitations in disordered systems
without strong localization. Non-interacting, one-dimensional systems are completely localized in the
presence of disorder, no matter how weak. As a consequence, spatial correlations decay exponentially
and transport is exponentially suppressed. However, in the presence of interactions or in higher di-
mensions, strong Anderson localization breaks down and is reduced to a transport correction. If this
happens, we would naturally expect diffusive transport over distances much larger than the mean free
path, due to many scattering events on the random disordered potential. The situation is less clear
considering the response of the system to a short-scale density modulation (corresponding to a large
wave vector): If the particles can remove the modulation by traveling only a short distance of the order
of the lattice constant, we may expect exponentially fast equilibration (or “memory loss”) of the initial
state. In the following, we demonstrate that this intuition is false, as is also known from numerical
studies. Instead, the relaxation of such large wave vector excitations is governed by power-law tails,
keeping memory of the initial state for a long time. As we find out, this is the generic behavior for dis-
ordered systems without strong Anderson-localization. In particular, this discussion is relevant on the
ergodic side of the many-body localization transition which is studied numerically and experimentally
by monitoring the long-time decay of the density imbalance between even and odd numbered lattice sites
after setting up a strongly imbalanced state initially. Our approach correctly reproduces the imbalance
exponent observed far from the transition. Using a phenomenological approach to subdiffusion, we are
able to relate the decay exponent to the exponent of the mean-square displacement. Our analytical
results are confirmed by numerical simulations in non-interaction two-dimensional systems, in an in-
termediate weak-localization regime where the localization length is much larger than the system size.
The contents of this chapter are based on Ref. [54]. Large passages of Secs. 2.1, 2.3, 2.4, 2.5, and
Sec. 2.6 are direct quotes and most Figures are adapted from this publication1. The results were
developed and discussed together with my coauthors. The initial ideas and steps of this project are
contained in my master thesis, but all main results 2 where established only afterwards.

1Reprinted excerpts / figures with permission from [Paul Pöpperl, Igor V. Gornyi, and Alexander D. Mirlin, Phys. Rev.
B 106, 094201 Published 6 September 2022]

2In particular, the calculation at finite temperature, the justification of the lowest-order (in crossing lines) calculation,
the phenomenological generalization to subdiffusion, the discussion of weak localization corrections, and all of the
numerical results and approaches.
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2 Memory effects in the imbalance in delocalized disordered systems

2.1 Introduction

Without interactions, random disorder leads to Anderson-localization. While all states are expo-
nentially localized at finite disorder and infinite system size in one- and two-dimensional systems,
localization in higher dimensions requires a minimum critical disorder strength [8–10].

Many-body localization (MBL) [11, 14–19] is the generalization of the concept of Anderson localiza-
tion to interacting disordered systems. Similar to Anderson-localization MBL is characterized by the
absence of transport in the thermodynamic limit. A consequence of the absence of transport is the
inability of a system to thermalize: Generic quantum mechanical systems thermalize in the sense that
matrix elements of local observables can be calculated from a thermal ensemble average after waiting
for a sufficient amount of time after imposing an initial state. Thermalization implies that these ob-
servables “loose their memory” of the initial state, as they can be calculated from ensembles that do
not contain any information about it. This may be surprising due to unitary time evolution keeping
a perfect memory of the initial state. As explained in Ref. [19], this can be understood intuitively
by picturing subparts of the system being immersed in a thermal bath provided by the much larger
surrounding environment. Stationary states are then described by quantum statistical mechanics [107,
108]—similarly to ergodicity 3 in classical systems. As in classical physics, thermalization is the generic
behavior of large quantum mechanical systems, and it is thus interesting to explore special situations
where this basic physical concept is not applicable. As disordered systems exhibit localization in the
absence of interactions, it is natural to expect, that disorder provides such special circumstances.

As of now, it is widely accepted, that in randomly disordered one-dimensional systems with short-
range potentials and interactions there exists even in the thermodynamic limit a finite critical disorder
strength above which the system fails to thermalize and thus becomes many-body localized [11, 14–19,
109], even though the critical disorder in the commonly investigated Heisenberg chain model has moved
from Wc ∼ 3 in earlier works [110] to larger values Wc ∼ 5 [57] due to advances in numerical methods.
Arguments in favor of an estimate as high as Wc ∼ 18 were put forward recently [109]—the critical
disorder is still debated from numerical and analytical perspectives.

The two phases separated by the critical disorder are called thermal (or ergodic) and many-body
localized phase. As the many-body localized phase is approached, the onset of the transition manifests
itself in slow, subdiffusive transport (sometimes distinguished as a third “prethermal” phase) [59–61,
111, 112]. The latter ergodic phase is of interest for us in this chapter, as we are investigating disorder
effects in the absence of localization. In this regime, spatial correlations decay as power-laws with
exponents slower than the diffusion law. If the disorder strength is sufficiently low, the system behaves
diffusively [60]. Intuitively, this can be understood in terms of a finite coherence length introduced
by the interactions: Interactions serve as a cut-off for the length of interfering forward- and backward
paths in the weak-localization picture.

As an indicator to distinguish beetween MBL- and thermal behavior, the density imbalance is com-
monly used in experimental, as well as numerical studies [55–58]. For this, an initial state with a
strong imbalance between densities of neighboring (even- and odd) sites is set up, and is monitored as
a function of time. In a localized system, the suppression of transport prohibits equilibration of the
state, and the imbalance remains finite even after arbitrary times. Without localization, the density
imbalance is expected to quickly decay to zero. In this chapter, we investigate this imbalance decay
for t → ∞.

Naively, one may expect the density imbalance between neighboring sites to decay almost instantly in

3Adopting the language of Ref. [19], we use the word ergodic synonymously to thermalizing
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the absence of localization: In a classical picture, each particle only has to travel to its neighboring site
to establish equilibrium from such a large wave-vector initial state. Indeed, the diffusion propagator
at large momenta decays exponentially with time [113, 114], and this result is also expected from the
Boltzmann equation [57]. This should be contrasted with the decay of an initial state corresponding
to a small wave vector—for example a step-distribution of the density in one dimension. In such a
situation, the particles have to travel over long distances, possibly scattering on many impurities to
smoothen out the initial state, and the diffusion propagator decays slowly according to the diffusion
law.

Interestingly, the expectation of an exponential imbalance decay on the ergodic side of the MBL
transition is disproven by numerical studies, which indicate a power-law decay of the imbalance in the
delocalized phase [57, 58, 115–118]—this means that the imbalance as a function of time features a “long
tail”, instead of decaying within few mean free times. As we show in the following, this property of the
imbalance is actually generic for disordered systems in the absence of localization. We demonstrate,
that such long-time tails arise from “memory effects” beyond the diffusion approximation. The physical
origin of this memory are scattering paths that correspond to large momentum exchange on a single
impurity followed by diffusive motion and finally return and again large momentum exchange on the
same impurity. In this way, the diffusion propagator aquires a small momentum and decays slowly.

From above reasoning it is clear that the resulting correction to the imbalance is related to the
return probability (the probability for a random walker to eventually return to the initial region after
some time t). The importance of similar return effects for transport in a disordered system has been
recognised already in Refs. [119, 120]. Their effects on magnetoresistance and the ac-conductivity
where investigated in Refs. [62] and [63].

In this chapter, we formalize above argument about the cooperation of the “fast mode”—taking
away the large momentum in a single scattering event—and the “slow mode”—governing diffusive
motion at low momentum, together leading to a slow decay of large-q initial states. The relevance of
this “mode coupling”4 mechanism for the imbalance decay was predicted in Ref. [57]. Calculating the
corresponding contribution to the imbalance using the diagrammatic disorder averaging technique, we
find the imbalance in a diffusive system to decay as I(t) ∝ t−d/2, where d is the number of spatial
dimensions. The dependence on the spatial dimension (in contrast to the diffusion exponent) can be
understood from the relation of the process to the return probability.

We generalize our argument to subdiffusion in interacting systems, by assuming an effective (mo-
mentum dependant) diffusion constant [122] D ∝ qβ, obtaining I(t) ∝ t−d/(2+β). Our theory, which
substantiates earlier proposals [57, 117, 123] for the role of long-time tails, thus provides a relation
between the exponents characterizing the mean square displacement and the imbalance decay that was
observed in numerical simulations [59, 117].

To support our analytical results and to demonstrate that in a disordered system mode coupling
generically leads to the power-law decay of the imbalance specified above, we performed numerical
simulations of a non-interacting two-dimensional (2D) system.

As in 1D systems, all eigenfunctions decay exponentially as a function of distance, according to their
localization lengths in 2D. However, there is an essential difference to the 1D case: While the average
localization length in 1D is proportional to the mean free path, the relation between localization length
and mean free path in 2D is given by ξ = leπkFl/2 at the Fermi level [51, 64]. As a consequence, there is
a parameter regime (in terms of disorder strength and system size) in 2D, where l � L � ξ. A particle
can travel over a distance of several mean free paths without experiencing localization. This diffusive

4The application of this term in the context of Anderson localization seems to date back quite a while [121].
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2 Memory effects in the imbalance in delocalized disordered systems

regime is important for our numerical approach: Instead of considering an interacting system, where
localization effects are suppressed due to interactions, we can test the validity of our results in a 2D
system in this transient regime. The numerical time evolution of non-interacting systems initialized
in a product state is of polynomial complexity O(L2) due to the time evolution taking place in the
subspace of single slater determinants. This should be compared to the exponential complexity of
performing time evolution in the N -particle Hilbertspace of an interacting system. In this way, we can
access the exact long-time dynamics in a big system (up to 200 × 200 sites). The numerical results
confirm the analytically predicted power-law decay of the imbalance, I(t) ∝ t−γI , governed by the
memory effects, with the exponent γI somewhat below unity due to weak multifractality 5.

The structure of the remaining chapter is as follows. In Sec. 2.2, we introduce some of the funda-
mentals specific to the following sections. In Sec. 2.3, we define the imbalance I(t) and derive a relation
between the long-time asymptotics of the imbalance and the density response function. In Sec. 2.4,
the diagrammatic calculation of the long-time tail in the imbalance resulting from memory effects is
performed. Supporting numerical results are presented in Sec. 2.5. Our findings are summarized in
Sec. 2.6.

2.2 Fundamentals

In this section we briefly introduce some theoretical concepts that are relevant for this chapter. This
overview is mainly based on Refs. [2, 64]. We also give some references to the primary and secondary
literature.
Sec. 2.2.1 provides an overview over the diagrammatic technique for disorder averaging. In Sec. 2.2.2,
diffusion and weak localization corrections to the density correlator are discussed in the diagrammatic
framework. Sec. 2.2.3 introduces the interference picture of weak localization.

2.2.1 Diagrammatic treatment of a disordered system

In the preceding chapter, we considered disordered systems from a numerical point of view, by explicitly
diagonalizing a Hamiltonian, given a disorder realization on the lattice. In order to obtain analytical
results for correlation functions, we use in this chapter the diagrammatic approach, utilizing the central
limit theorem to average Green’s function over disorder [64, 126].

Consider the exact retarded electronic Green’s function of a disordered, non-interacting lattice

GR
i,j(ε) =

(
εδi,j − [H0]i,j − Uiδi,j + i0

)−1
(2.1)

in site space i, j ∈ {1, . . . , L}. [H0]i,j is the hopping term, which we approximate by a parabolic
dispersion in the continuum limit. Disorder is introduced through the disorder potential Ui. Here,
we model disorder by assuming a spatial distribution of impurities at independent random positions

5Multifractality of the wave function (self-similarity in real space, that can not be described by a single fractal exponent)
generically occurs in a critical disordered system, close to an Anderson transition (for example delocalized to localized
in 3D) [10]. In 2D, there is no Anderson transition; all wave functions are localized in the thermodynamic limit.
However, since the localization length is exponentially large, there is a regime, where a finitely sized system “looks
critical” approaching the disorder strength driven crossover to localization lengths below the system size while the
change of localization length with disorder strength is very slow [9]. This is a known mechanism for the emergence of
intermediate-scale multifractality [101, 124, 125].
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{j1, . . . , jNimp}

Ui :=
Nimp∑
k=1

[V0]i−jk , (2.2)

where each impurity is described by the same potential [V0]i. In the following we assume ∑L
i=1[V0]i = 0

for convenience. This assumption can be lifted by adding a constant energy shift.
Due to the spatial randomness, we can think of the [V0]i−j as random vectors on the lattice, which

are independent and identically distributed. According to the (multidimensional) central limit theo-
rem, the probability distribution of their sum is thus described by a normal distribution in the limit
Nimp/V,Nimp → ∞. At fixed system volume, the variance of this distribution is proportional to√
Nimp/V =: √

nimp. Thus, we scale the amplitude of each impurity as V0 ∼ n
−1/2
imp to consider the

limit Nimp, nimp → ∞ at fixed disorder strength. We obtain the distribution

P({Ui}) ∝ exp

−1
2

L∑
i,j=1

UiKi,jUj

 (2.3)

→ P[U ] ∝ exp
(

−1
2

∫
ddr1 ddr2 U(r1)K(r1, r2)U(r2)

)
(2.4)

in the limit nimp := Nimp
V → ∞, where the Ki,j are the components of the covariance matrix which

can be calculated explicitly with the central limit theorem. In the second line we take the continuum
limit i → r for convenience. Applying continuum results to the lattice is fine, as long as the ultraviolet
cut-off due to the lattice constant does not affect the calculation.

Assuming a Gaussian distribution (2.4) of disorder configurations is called Gaussian approxima-
tion [64, 126]. It is convenient, because an average of a product of random potentials over disorder
configurations fulfills a Wick’s theorem in this approximation, decomposing into a sum of all pairwise
expectation values. (Terms with an odd number of potentials vanish, because we assumed zero mean
of the potential.) After performing a disorder average, the potential is thus fully characterized by the
pair correlator

〈U(r1)U(r2)〉 :=
∫

D{r}P[U ]U(r1)U(r2) =: W (r1 − r2). (2.5)

This is used to construct diagrammatic rules for dealing with Green’s functions of the disordered
system.

As an example, consider the disorder average of a single exact Green’s function (2.1). Expansion in
powers of the disorder potential yields

〈GR〉 = 〈GR
0 〉 + 〈GR

0 UG
R
0 〉 + 〈GR

0 UG
R
0 UG

R
0 〉 + 〈GR

0 UG
R
0 UG

R
0 UG

R
0 〉 + 〈GR

0 UG
R
0 UG

R
0 UG

R
0 UG

R
0 〉 + . . . ,

(2.6)

where we denoted the disorder average with angular brackets. In terms of diagrams, this reads
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2 Memory effects in the imbalance in delocalized disordered systems

〈 〉 = 〈 +

×

+

× ×

+

× × ×

+

× × × ×

+ . . .〉

= + + + + + . . .

In the first line, we denoted each disorder potential by a dashed line with a cross. In the second
line, we performed the disorder average using Wick’s theorem: Diagrams with odd numbers of disorder
lines drop out; in diagrams with even numbers of disorder lines we form all combinations of pairwise
connections of the disorder lines. Each disorder “arc” corresponds to a pair correlator (2.5).
The disorder averaged perturbative expansion is equivalent to forming a sum of free Green’s functions
dressed with all possible pairwise connections of disorder lines; or, analogously, all possible combina-
tions of arcs.
The lowest order correction to the self energy is given by a diagram with a single arc,

corresponding to the expression

ΣR(p, ε) =
∫

ddp1
W (p − p1)

ε− p2
1/(2m) + i0 . (2.7)

To evaluate this expression, we have to assume some form of the correlator W (r1, r2). We specify white
noise disorder

W (r1, r2) := Γδ(r1 − r2), (2.8)

where Γ = (2πντ)−1 controls the strength of the disorder potential. τ is the elastic scattering time, and
ν is the density of states at the Fermi level. White noise disorder corresponds to the limit of extremely
short-ranged impurities. It is convenient because of the particularly simple form the expressions take.
Our physical results do not depend on the exact form of the impurity potential.
With (2.8), we obtain for the imaginary part of the self-energy

Im ΣR(p, ε) = −πν(ε)Γ (2.9)

:= − 1
2τ (2.10)

where ν(ε) is the density of states, which we approximated by its value at the Fermi energy.
The Green’s function thus obtains a finite lifetime τ due to the disorder,

〈GR〉(p, ε) ' 1
ε− p2

2m + i
2τ

=: GR(p, ε). (2.11)

In the following, single solid lines with an arrow denote GR in the Feynman diagrams.
The length scale l = vFτ with Fermi velocity vF is called the mean free path. Approximating the
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Green’s function using the lowest order self-energy contribution is valid in the limit of weak disorder
kFl � 1.
The disorder average restores the translational invariance of the Green’s function—the non-averaged
Green’s function being not translational invariant due to the spatially random potential.

2.2.2 Diffusion and weak localization

With the help of diagrams, transport is usually analyzed by calculating the linear response of the
system to an external perturbation. The Kubo formula establishes a simple relation between the linear
response of an observable O to the perturbation H ′ [2]:

δ〈O〉(t) := 〈O〉(t) − 〈O〉0 =
∫ ∞

t0
dt′CR

OH′(t, t′) (2.12)

CR
OH′(t, t′) := −iθ(t− t′)

〈[
O(t),H ′(t′)

]〉
0
. (2.13)

Here, 〈·〉0 describes an equilibrium average over the ensemble of the unperturbed system. CR is called
a retarded response function.

In this chapter, we mainly consider the response of the density to a density perturbation, which is
characterized by the retarded density-density correlation function or density-density response function
(or just density response function)

χ(q, t) = − iθ(t)
V

∫
dd(r1 − r2) e−iq(r1−r2)

〈[
n(r1, t), n(r2, 0)

]〉
, (2.14)

with the Heaviside theta function θ(t) and the density operators n(r, t) = a†
r(t)ar(t) (a† and a are

fermionic creation and annihilation operators). The disorder average establishes translational symme-
try, such that the averaged correlator is diagonal in momentum space.
For example, in a system of charged particles, χ describes the induced charge distribution due to an
external charge distribution (dielectric function) [2].

In terms of exact retarded and advanced Green’s functions GR,A, the density-density response func-
tion of a fermionic system reads in a given realization of disorder and at finite temperature [2]

χ̃(q, ω) = −
∫ dε

2πi

∫
dd(r1 − r2) e−iq(r1−r2)nF(ε)

{[
GR(r1, r2; ε) − GA(r1, r2; ε)

]
GA(r2, r1; ε− ω)

+ GR(r1, r2; ε+ ω)
[
GR(r2, r1, ε) − GA(r2, r1; ε)

]}
.

(2.15)

where nF(ε) is the Fermi function. This general expression needs to be averaged over disorder realiza-
tions.

To perform the disorder average, we have to identify those terms in the sum of all possible con-
tractions, that dominantly contribute to the density-response function in the considered regime. In
the limit of long time, and for a low external momentum q, this family of diagrams is given by the
ladder series of disorder lines (the “diffuson” propagator). This series features a pole in the limit
q, ω → 0 which is responsible for the slow diffusive spreading of the mean-square displacement. The
diffuson propagator is associated with diffusive motion through the system along classical trajectories.
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2 Memory effects in the imbalance in delocalized disordered systems

Diagrammatically, it is expressed as

〈
GR

GA

〉 ≈ + + + . . .
(2.16)

=:
q, ω

q + p, ω + ε

p, ε

q + p, ω + ε

p, ε (2.17)

where the orange box denotes the ladder sum of disorder lines (diffuson)

q, ω = +

GR(q + p1, ω + ε)

GA(p1, ε)

q, ω
(2.18)

q,ω→0−→ 1
2πντ2

1
Dq2 − iω . (2.19)

D = v2τ/d is the diffusion constant with the particle velocity v, transport scattering time τ , and
spatial dimensionality d. The resulting markovian density-density correlator (at zero temperature) is
given by the well-known diffusive formula

χ̃(q, ω) = −ν Dq2

Dq2 − iω . (2.20)

The retarded-retarded and advanced-advanced contribution from Eq. (2.15) to this result in the given
limit is the density of states ν [127].
In addition to the particle-hole ladder series shown in above figure, there is a second series of diagrams
that can produce a pole: It corresponds to the sum of maximally crossed diagrams (the particle-particle
series)

+ + + . . . =:

The associated ladder series
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q, ω = +
GR

GA

q, ω (2.21)

q,ω→0−→ 1
2πντ2

1
Dq2 − iω . (2.22)

is commonly called a “cooperon”.
As explained in the next section, these diagrams are associated with interference effects between

time-reversed scattering paths.
It can be seen that this series of diagrams leads to a correction

δχ̃(q, ω) ∝
∫

ddq 1
Dq2 − iω (2.23)

to the density response function6. In d ≥ 2 dimensions, this contribution diverges at its upper integra-
tion bound. The ultraviolet divergence at q → ∞ is regularized by the mean free path q ∼ 1/l (as we
are considering a small q expansion). The infrared divergence in d ≤ 2 dimensions is controlled by the
frequency ω. It results in a diverging contribution to the response function in the limit ω → 0, thus
signalling the breakdown of the perturbation theory and the arrival of strong Anderson localization [2,
64, 127].

Physically, this contribution corresponds to interference between scattering events on different im-
purities [2]. Their contribution is therefore limited by the coherence length in the system (the length
scale, on which a single particle description remains valid [2]) and the system size. It can thus be cut
off by interaction effects and the system size, reducing it to a weak localization correction [2, 64].

2.2.3 Interference picture and relation to a random walk

The authors of Ref. [128] introduced an intuitive picture of classical and quantum mechanical contribu-
tions to the propagation probability of a particle in a disordered system between two given points [51,
128, 129]. The propagation amplitude corresponds to the retarded Green’s function. In the language
of path integrals, it is assembled by adding contributions from all possible paths between those points.
The probability w is calculated from the modulus square of this sum of individual amplitudes Ai [128],

w ∼ |
∑
i

Ai|2 (2.24)

=
∑
i

|Ai|2 +
∑
i 6=j

AiA
∗
j . (2.25)

Evidently, this relates it to the retarded-advanced term in the density-response function.
The “classical” markovian description in terms of a Boltzmann equation is identified as the diagonal

contribution ∑i |Ai|2. Each term in this sum is associated with a single classical trajectory [64]. In
6Similar contributions can be obtained by crossing the particle-hole ladder with a disorder line. However, it can be

shown that such diagrams do not yield a divergence in the limit q, ω → 0 [127]. Interestingly, as shown in this
chapter, it is exactly this type of diagram that leads to memory effects in the density imbalance.

49



2 Memory effects in the imbalance in delocalized disordered systems

the classical picture, different trajectories do not interfere with each other.
Indeed, most non-classical, off-diagonal contributions can safely be neglected, because each such

contribution has a different phase, leading to a vanishing average over terms with essentially random
phases. This is not true however for pairs of amplitudes corresponding to the same path featuring a
closed loop, which is traversed in opposite directions. The phases of such pairs of amplitudes cancel each
other exactly, leading to an interference correction to, for example, the conductivity. This quantum
correction is associated with weak Anderson localization and the crossing diagram series shown in the
previous section [128, 129].

Interestingly, the spatial dimension naturally enters this consideration via the number of such loops
that has to be considered in a given dimension [51]. Concretely, the contribution from closed loops
is related to the return probability—the probability for a path to return to its origin, thus forming a
closed loop, in the ensemble of all possible paths. Intuitively, the higher the spatial dimension, the
more ways for the path to wander off in a different direction, away from the origin—thus the lower the
return probability.

The cancellation between phases of different paths requires coherent propagation—if each path
separately aquires a random phase, the phases do not cancel each other and the contribution vanishes
again upon averaging. The phase coherence can be disturbed by interactions, which thus introduce an
upper cut-off on the length of interfering paths [2]. In this way it can be understood, that interactions
lift strong localization effects.

In a system of finite size, the system size provides a cut-off for the path length, which also serves as a
cut-off for localization effects. This is important in 2D, where the localization length is exponential in
the mean-free path, such that a parametric weak-localization regime l � L � ξ exists in a finite-size
system [51]. In one dimension, the mean-free path is proportional to the localization length, such
that transport is either ballistic or strongly localized, but never quasi-diffusive (with weak localization
corrections) [129].

Importantly, the diagonal contribution in (2.24) is unaffected by interaction induced dephasing, as
it corresponds to the “self-interference” of a path.

2.3 Imbalance and its relation to the density response function

In this section, we define the imbalance and derive a relation between its tail at long times and the
density response function. We consider first a 1D lattice; a generalization to 2D geometry (or a higher
dimensionality) is straightforward and discussed in the end of the section.

We consider the time-dependent imbalance between the particle numbers Neven(t), Nodd(t) at even
and odd lattice sites j normalized to the total number of sites N ,

I(t) = 〈Neven(t) −Nodd(t)〉
N

(2.26)

= 1
N

∑
sites j

〈nj(t)〉(−1)j . (2.27)

Here, the angular brackets denote the average over the quantum many-body state. Since we deal with
disordered systems, the average 〈. . .〉 below also includes the disorder average. We define the density
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nj(t) and its continuum version n(x, t), as well as the corresponding Fourier transform

ñ(q, t) =
∑
j

e−iqajnj(t) =
∫

dx e−iqxn(x, t) , (2.28)

where a is the lattice spacing. The imbalance then reads:

I(t) = 1
n0V

〈
ñ

(
q = π

a
, t

)〉
, (2.29)

where n0 = V −1〈ñ(q = 0)〉 is the conserved density and V = Na is the system volume.
Experimentally and numerically, one explores the relaxation (or its absence) in the system by setting

up a maximally imbalanced initial state at t = 0 that is then time-evolved with the Hamiltonian H
of the system until long times t. In this chapter, we are interested in the long-time behavior of the
imbalance in the delocalized phase where the system evolves towards an equilibrium state with a
uniform density distribution, I(t) → 0 at t → ∞. To understand the form of this asymptotic tail, we
can thus equivalently start from a state with only a small imbalance (i.e., that is close to equilibrium).

In this way, we can reformulate the problem under consideration in terms of a linear response near the
equilibrium. Specifically, let us consider the system at t ≤ 0 as an equilibrium state of the Hamiltonian
H0 −H ′, where

H ′ = I0
ν
ñ(q, t) . (2.30)

Here, q is the wave vector of the charge-density wave, I0 = (n0V )−1〈ñ(q, t = 0)〉 is the initial value of
the imbalance, and ν is the density of states. H0 is the sum of kinetic term and impurity potential.
The term −H ′ in the Hamiltonian describes a periodic potential that yields the initial imbalance I0.
Now, at time t we perform a quench by removing the term −H ′, which is equivalent to adding a
perturbation H ′ to the initial Hamiltonian. The system then starts relaxing towards the equilibrium
state of the Hamiltonian H0 with a uniform density; i.e., zero imbalance.

Applying the Kubo formula (2.13) to obtain the density response to the perturbation (2.30), we
obtain

〈ñ(q, t)〉 = 〈ñ(q, 0)〉
[
1 + 1

ν

∫ t

0
dt′ χ(q, t− t′)

]
, (2.31)

where χ(q, t) is the retarded density-density correlation function (2.14). Note that, in the Kubo
formula, we are supposed to average over the equilibrium state of the initial Hamiltonian, which is
given by H0 + H ′. However, since the analysis is performed to linear order in the small perturbation
H ′, we can discard H ′ here and average over the equilibrium state of H0 towards which the system
evolves.

Equations (2.29) and (2.31) establish the relation of the long-time tail of the imbalance with the den-
sity response function. An extension of this relation to higher-dimensional systems is straightforward.
In particular, for a 2D square lattice one can consider the checkerboard imbalance corresponding to
a charge density wave with the wave vector q = (π/a, π/a) or the columnar imbalance with the wave
vector q = (π/a, 0). The formulas (2.29) and (2.31) remain valid with the replacement of q by the
corresponding 2D wave vector q. This relation is used below for the analytical study of the imbalance
decay.
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2 Memory effects in the imbalance in delocalized disordered systems

Considering the Markovian contribution (2.20) for sufficiently small values of the wave vector, q �
l−1, we obtain upon Fourier transformation to time-space

χ(q, t) = −νDq2 exp
(
−Dq2t

)
. (2.32)

Substituting this into Eq. (2.31), we get

〈ñ(q, t)〉 = 〈ñ(q, t)〉 exp
(
−Dq2t

)
, (2.33)

and thus, according to Eq. (2.29), the exponential decay of the imbalance,

I(t) = I0 exp
(
−t/tq

)
, (2.34)

with tq = 1/Dq2.
With increasing q, the decay time tq becomes shorter, reaching a very short value t ∼ τ at the

ultraviolet border of the diffusive range of wave vectors, q ∼ l−1. For further increasing wave vectors,
q > l−1, the exponential decay exp

(
−t/tq

)
with a short time tq ∼ τ remains valid in the quasiclassical

contribution to the imbalance in the Markovian approximation. This is obvious physically (waves with
a shorter wave lengths are expected to decay faster) and is easy to check by using an explicit form of
the modified diffusion propagator in such ballistic range of wave vectors (see, e.g., Ref. [113] for 1D
systems and Ref. [114] for 2D systems).

At large q > l−1, this decay factor actually describes the envelope of the oscillatory quasiclassical
Markovian imbalance. In particular, in the 1D case one gets: I(t) ∝ exp

(
−t/2τ

)
sin
(
qvt
)
. It should be

noted that, on top of this quasiclassical contribution to I(t), there is a purely quantum one (described
by only retarded or only advanced Green’s functions in the diagrammatic language, see Eq. (2.15)),
which also decays exponentially in time. However, in contrast to the quasiclassical term, at the
momentum q = π/a at half filling (i.e., q = 2kF, where kF is the Fermi momentum), this term yields a
non-oscillatory contribution to I(t). Its decay rate is given by the maximum of 1/τ and temperature T
(in our case Tτ � 1). This is similar to the decay of Friedel oscillations or magnetooscillations, which
are also suppressed by both disorder and thermal averaging.

Thus, at the level of the Boltzmann equation (i.e., in the Markovian approximation), the imbalance
decays exponentially, with a very short decay time. However, as we show in Sec. 2.4 by a diagrammatic
analysis, there exists a contribution of memory effects, which is discarded by this approximation.
Calculating this contribution, we demonstrate that the actual decay of the imbalance is of power-law
form and determine the corresponding exponent.

2.4 Diagrammatic analysis

To calculate the long-time tail in the density response function (and thus in the imbalance in view of the
relations (2.29) and (2.31)), we use the conventional diagrammatic technique for disordered systems,
which is briefly introduced in 2.2.1. The calculation bears analogy with that of the zero-frequency
anomaly of the conductivity in Ref. [63]. The starting point for the calculation is the formula (2.15)
for the density response function.

Again, we have to select diagrams from the disorder average that govern the behavior of the density-
response function in the long-time limit. In the conventional case of a low external momentum q, the
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Figure 2.1: Figure adapted from Ref. [54]. Left: Example of a diagram contributing to the
long-time tail of the density response function (and, thus, of the imbalance). The
shaded box is the diffuson. It is crossed by one or several (two in the shown example)
lines representing return events of a particle to the same scatterer(s) after moving
diffusively for a long time t. Right: Another representation of the same diagram.
The diffuson is shown here by a wavy line.

ladder sum of disorder lines features a pole and thus yields a diffuson, governing the long-time tail.
The diffuson propagator describes the slow spread of the mean square displacement and is associated
with the particle returns in arbitrary long times. At large external momentum, however, the situation
is different: as pointed out in the previous section, the ladder sum in this case decays exponentially
with time and thus does not describe a long-term memory.

The memory effects—that control the long-time tails that we are investigating—originate from the
following type of processes. A particle is scattered by an impurity, then performs a diffusive motion
during a long time t, which results in its return to the original position, where it is scattered again
by the same impurity. By transferring the large external momentum via one or several impurity lines
across the impurity ladder, the latter can again carry a small momentum, which results in a long-time
tail.

Clearly, the contribution of such processes is related to the return probability as a function of time.
Similar to the weak localization correction, the memory effect term depends on the number of return
trajectories contributing to the correction of the density response function. In contrast to the weak
localization correction however, the memory effect return processes correspond to diagonal terms in
the path expansion of the propagation probability 2.24 and is thus insensitive to dephasing.

In a more general form, the scattering on a single impurity is replaced by scattering events on a few
(two, three, . . . ) nearby impurities. An example of a corresponding diagram is shown in the left panel
of Fig. 2.1. The orange box in this diagram is the diffuson (the ladder built out of impurity lines). Two
dashed lines crossing the diffuson correspond to a repeated scattering of the particle on two nearby
impurities after completing a closed diffusive path. The same diagram is shown, in a different way, in
the right panel of the same figure, with the diffuson represented by a wavy line.

Every additional crossing line adds an additional smallness of the order O(1/(kFl)). Disorder ladders
can only be added in combination with more crossing lines, since inserting one as a vertex correction
would lead to exponential suppression of the diagram at high external momentum in the long-time
limit. For this reason it suffices in the long-time and large mean-free path limits to calculate the sum
of diagrams with the least number of disorder- and diffuson lines, which does not vanish.

Let us start by considering the lowest-order processes describing repeated scattering on a single
impurity. They are represented by diagrams with a diffuson crossed by a single impurity line. For
weak disorder, these diagrams yield the dominant contribution to the memory effects. For not so weak
disorder, diagrams with two or three crossing impurity lines may give a comparable contribution but
this will only correct the overall numerical prefactor, without affecting the result in any essential way.

We analyze the density response function χ̃
(
q, ω

)
at low frequencies (which correspond to long

times t). The sum of the diagrams with a diffuson and an impurity line inserted in all possible ways
(corresponding to a rescattering on this impurity after executing the diffusive motion) can be written

53



2 Memory effects in the imbalance in delocalized disordered systems
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Figure 2.2: Figure adapted from Ref. [54]. Triangle vertices V1(q,Q, ε, ω) and V2(q,Q, ε, ω)
entering Eq. (2.38). Here, q is the external momentum and −Q is the diffuson mo-
mentum. Disorder lines are dashed, diffuson lines are wavy. Retarded and advanced
Green’s functions are marked with R and A, respectively. The external vertices of
the density response function are marked by thick dots.

as

χ̃
(
q, ω

)
= −iωB(q)

∫ ddQ
(2π)dΛdiff(Q, ω) , (2.35)

where ΛDiff(Q, ω) is the diffuson,

ΛDiff(Q, ω) = 1
2πντ2

1
DQ2 − iω , (2.36)

and the prefactor B(q) is given by

B(q) = Γ
∫ ∞

−∞

dε
2π

[
−∂nF(ε)

∂ε

]
b(q, ε) (2.37)

with

b(q, ε) = lim
Q→0

lim
ω→0

[
V1(q,Q, ε, ω) + V2(q,Q, ε, ω)

]2
. (2.38)

Here, V1 and V2 are the vertex functions represented by the triangular diagrams shown in Fig. 2.2. In
this Figure, q is the external momentum and −Q is the diffuson momentum, with the difference q +Q
carried by the impurity line crossing the diffuson (as discussed in the introduction). Since −Q and ω
are the small momentum and frequency carried by the diffuson, we can discard them when calculating
the vertices V1 and V2, as indicated in Eq. (2.38). The formulas (2.37) and (2.38) are obtained under
the assumption that the vertex function V1 + V2 has a finite limit at Q → 0 and ω → 0. We show
below by an explicit calculation that this is indeed generically the case.
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2.4 Diagrammatic analysis

The vertex functions V1(q,Q, ε, ω) and V2(q,Q, ε, ω) entering Eq. (2.38) are given by (see Fig. 2.2)

V1(q,Q, ε, ω) =
∫ ddp

(2π)dG
R(p + q, ω + ε)

×GA(p + q + Q, ε)GA(p, ε) , (2.39)

V2(q,Q, ε, ω) =
∫ ddp

(2π)dG
R(p + q, ω + ε)

×GR(p − Q, ω + ε)GA(p, ε) , (2.40)

where GR and GA are, respectively, the disorder averaged retarded and advanced Green’s functions
from Eq. (2.11),

GR(p, ε) = 1
ε− ξ(p) + i

2τ
= GA∗(p, ε) , (2.41)

and ξ(p) is the dispersion relation of the clean system.
Substituting Eq. (2.37) into Eq. (2.35) and performing the Fourier transformation from the frequency

to the time domain, we get
χ(q, t) = B(q)

2πντ2
∂

∂t
P (t) , (2.42)

where P (t) is the diffusive return probability,

P (t) =
∫ ddQ

(2π)d
∫ dω

2π e−iωt 1
DQ2 − iω

=
∫ ddQ

(2π)d e−DQ2t , (2.43)

equal to

P (t) = (4πDt)−d/2 . (2.44)

By definition, P (t) is the probability density for a diffusing particle that starts at a point x0 at time
t = 0 to be found at the same point after time t. Substituting Eq. (2.42) into Eqs. (2.29) and (2.31),
we get

I(t)
I0

= cP (t) , (2.45)

where

c = B(q)
2πν2τ2 . (2.46)

According to Eq. (2.45), the long-time tail of the imbalance is given (up to a coefficient) by the return
probability P (t).

Let us recall at this point that our main motivation is the physics on the ergodic side of the MBL
transition. There, the interaction generates dephasing, thus destroying the localization. For this
reason, we discard localization effects in the above diagrammatic analysis. This is especially important
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2 Memory effects in the imbalance in delocalized disordered systems

in 1D geometry, where the diffusive regime does not exist in the absence of interaction since the
localization length of a non-interacting system is of the order of the mean free path [64]. In the case
of higher-dimensional systems, d ≥ 2, our analysis applies also to non-interacting systems at not too
strong disorder, such that the system is delocalized, i.e., the localization length is much larger than
the system size.

We have obtained the formulas (2.42) and (2.45) that relate the long-time tails in the density
response function to the return probability: χ(q, t) ∝ ∂P (t)/∂t and I(t) ∝ P (t). While we have
assumed conventional diffusive motion during the time t described by a simple diffuson (2.36), the
effect is expected to remain valid in a more complex situation, when the particle executes a subdiffusion
between the original scattering and the return to the same impurity. We will thus use these relations
below in such, more general sense.

2.4.1 1D systems

We evaluate now the general formulas for the density response function and the imbalance for the
case of a 1D system. To simplify the calculation, it is convenient to linearize the parabolic dispersion
relation

ξ(p) '

ξ+(p) = (p− kF) v, p > 0 ,
ξ−(p) = −(p+ kF) v, p < 0 ,

(2.47)

where the branches ξ+ and ξ− correspond to right-moving and left-moving particles. The linearization
does not affect the result in any essential way (up to an overall numerical prefactor of order unity).
Upon linearization, we can easily carry out the integrations in Eqs. (2.39) and (2.40). We recall that
we are interested in the limit ω → 0, Q → 0. Further, we set the external momentum to be q = π/a.
For this value of q, the particle always switches the branch at the external vertex. We denote the
triangle vertices with − → + change of the branch at the external vertex (going along the arrow in
Fig. 2.2, i.e., from GA to GR) by V ∓

1 , V ∓
2 and those with the change + → − by V ±

1 and V ±
2 . The

calculation of the vertices yields (see Ref. [54])

V ∓
1 (ε) + V ∓

2 (ε) = 2τ
v

2kFv + 2ε− πv/a

(2kFv + 2ε− πv/a)2 + 1/τ2 , (2.48)

and, similarly,

V ±
1 (ε) + V ±

2 (ε) = −2τ
v

2kFv − 2ε− πv/a

(2kFv − 2ε− πv/a)2 + 1/τ2 . (2.49)

For definiteness, we assume half filling, kF = π/2a, in the following. (For a different density, the
result remains the same, up to a prefactor.) We note in passing that, for half filling, the vertices (2.48)
and (2.49) vanish exactly at ε = 0 (which is a manifestation of an extra symmetry related to Umklapp
scattering), but are finite for any finite energy. Therefore, at nonzero temperatures, the vertex factor
given by Eq. (2.38) is nonzero. Combining the contributions of the − → + and + → − processes to
the triangle vertices, we get for the prefactor B(q = π/a) in Eq. (2.35)

B = Γ
(

8τ
v

)2 ∫ ∞

−∞

dε
2π

[
−∂nF(ε)

∂ε

] (
ε

1/τ2 + 4ε2

)2

. (2.50)
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2.4 Diagrammatic analysis

Since the initial density-wave state is highly excited, it corresponds to a high temperature T , com-
parable to the band width J . We thus make an assumption Tτ � 1 to calculate the prefactor. The
integral in Eq. (2.50) is then easily calculated, yielding B = τ2/2πvT . This gives for the prefactor in
Eq. (2.42)

B

2πντ2 = 1
4πT , (2.51)

and thus c = v/4T for the prefactor c in Eq. (2.46). This calculation of the prefactor (involving
linearization of the spectrum) is controllable for T � J . For an estimate, we can, however, put here
T ∼ J , which yields c ∼ a.

The above analysis, leading to the power-law decay of the imbalance,

I(t) ∝ P (t) ∝ t−1/2, (2.52)

applies to the diffusive regime of transport that takes place at a sufficiently weak disorder (well below
the MBL transition) in interacting disordered systems [60]. At the same time, numerical studies show
that a major part of the ergodic phase of such systems is characterized by subdiffusive transport [59–
61, 111, 112]. In this chapter, we do not analyze a microscopic mechanism leading to subdiffusion
in a particular model. Instead, we assume that the subdiffusive behavior holds and model it on a
phenomenological level by introducing a modified diffusion propagator [122]:

Λdiff(Q,ω) → Λsubdiff
β (Q,ω) ∼ 1

ντ2
1

D(Q)Q2 − iω , (2.53)

D(Q) = D̃|Q|β . (2.54)

Here β > 0 is the exponent controlling the subdiffusive character of the transport: β = 0 corresponds
to normal diffusion, while β � 1 corresponds to the very slow transport as found near the MBL
transition. The propagator (2.53) corresponds to the fractional diffusion equation [98]; the associated
mean square displacement

r2(t) =
〈∫

dxx2n̄(x, t)
〉

(2.55)

reads (see, e.g., Ref. [98]):

r2(t) ∼ (D̃t)
2

2+β . (2.56)

Now, we analyze the long-time tail in the imbalance. As found above, it is proportional to the return
probability P (t) in the case of conventional diffusion. We argue that this result still holds true for
subdiffusion. Indeed, this is expected because diffusive and subdiffusive processes are established at
long times (long spatial scales), while the vertex functions at high external momentum q ∼ kF are
determined by large momenta, i.e., by short time (or spatial) scales. Therefore, microscopic details of
the diffusive or subdiffusive process can plausibly be assumed to be irrelevant for the vertices. Using
the anomalous-diffusion propagator (2.53), we get for the return probability

P (t) ∼ (D̃t)− 1
2+β . (2.57)
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2 Memory effects in the imbalance in delocalized disordered systems

Substituting this into Eqs. (2.42) and (2.45), we obtain the asymptotics of the density response function,

χ(q, t) = B(q)
2πντ2

∂

∂t
P (t) ∝ t

−1− 1
2+β , (2.58)

and of the imbalance,

I(t)
I0

= cP (t) ∝ t
− 1

2+β . (2.59)

The slow power-law decay of the imbalance (2.59) is in agreement with numerical findings on the
ergodic side of the MBL transition [57, 58, 115–118]. Comparing Eq. (2.56) and Eq. (2.59), we see
a relation between the exponent γx characterizing the mean square displacement, r2(t) ∝ tγx , and
the exponent γI describing the imbalance decay, I(t) ∝ t−γI . Specifically, we obtain γx = 2/(2 + β)
and γI = 1/(2 + β), with the ratio γI/γx = 1/2, independent of the subdiffusive exponent β. This
exponent relation was proposed in Ref. [59] and is in reasonable agreement with numerical results on
long-time dynamics in large systems obtained within the time-dependent Hartree-Fock approximation
in Ref. [117].

In Fig. 2.3 we show an adaptation of a figure from Ref [117]. This figure was obtained on the ergodic
side of the MBL transition W < Wc in an interacting one-dimensional disordered system, using the
time-dependent Hartree-Fock approximation [117]. The upper (lower) panel shows the imbalance (first
moment with a domain wall initial state) and the respective time-dependent power law exponent.
The exponent of the first moment of the domain wall is equivalent to the exponent of the mean-
square displacement γx [117]. As both exponents are smaller than their diffusive values, the system is
subdiffusive due to the proximity to the MBL transition. After an initial phase of time evolution, the
respective exponents converge to constant values with slight finite-sample fluctuations. It can be seen,
that the predicted relation between the exponents γI/γx is approximately fulfilled.

It should be emphasized, however, that the above derivation of the relation between the exponents
is based on the assumption that the anomalous diffusion coefficient D(q) in Eq. (2.53) depends on
the momentum q and not on frequency ω. This leads to Eq. (2.57) for the return probability and,
thus, to the scaling (2.59) of the imbalance. A more complex situation, with the anomalous diffusion
constant D(q, ω) showing (at small ω and relatively large q) a scaling with both q and ω, corresponds
to multifractality. In such a situation (that it is characteristic, in particular, to Anderson-transition
critical points) the scaling of the return probability P (t) is characterized by an exponent that is not
directly determined by the exponent of the mean square displacement. We will return to this issue
below.

2.4.2 2D systems

We extend now the analysis to 2D systems, d = 2. One natural extension of the imbalance to 2D
systems on a square lattice is the checkerboard-imbalance

Icheck(t) =
∑
i,j

(−1)i+j
〈n(i,j)(t)〉

N
. (2.60)
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Figure 2.3: Figure adapted from Ref. [117]. The figure was obtained in a one-dimensional disor-
dered interacting system with the time-dependent Hartree-Fock method and demon-
strates subdiffusion which is expected on the ergodic side close to the MBL transition.
Upper panel: Imbalance (left) and power-law exponent β as a function of the central
region of the fit window (right). Lower panel: First moment of a domain wall (left)
corresponding power-law exponent as a function of the central region of the fit win-
dow (right). It can be seen that the relation between the exponents γI/γx = 1/2 is
fulfilled.

Here i and j enumerate the rows and columns of the system, respectively. Taking the continuum limit
in analogy to the 1D case, we find, in analogy with Eq. (2.29),

Icheck(t) = 1
n0V

〈
ñ

(
qx = π

a
, qy = π

a
, t

)〉
. (2.61)

Alternatively, one can consider the columnar imbalance [58] Icol(t) corresponding to the density wave
with wave vector qx = π/a and qy = 0. Our analytical treatment applies equally to both Icheck(t)
and Icol(t), so we use below the notation I(t) to refer to any of them. For numerical calculations, we
indicate which of the imbalances is shown.

Equations (2.42) and (2.45) give the tails of the density-response function and of the imbalance in
terms of the return probability P (t). In the case of normal diffusion, the return probability is given
by Eq. (2.44). This yields the scaling

χ(q, t) ∝ t−2
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2 Memory effects in the imbalance in delocalized disordered systems

for the density-response function and
I(t) ∝ t−1 (2.62)

for the imbalance. Estimating the coefficients, we get B/2πντ2 ∼ 1/J for the coefficient in Eq. (2.42)
and c ∼ a2 for the coefficient in Eq. (2.45).

For subdiffusive transport modelled by the anomalous diffusion propagator, Eqs. (2.53) and (2.54),
we obtain the results analogous to Eqs. (2.57), (2.58), and (2.59), with a replacement of the exponent
1/(2 + β) by 2/(2 + β). For the ratio of the exponents, this yields γI/γx = 1. Clearly, a similar
consideration in arbitrary spatial dimensionality would give

γI/γx = d/2.

As was already pointed out in Sec. 2.1, the 2D geometry allows us to consider a regime of (nearly)
diffusive transport also in the absence of interaction. Indeed, even though the non-interacting system
gets localized in the thermodynamic limit, the localization length ξ is much larger than the mean free
path l when the disorder is sufficiently weak. The transport in the regime l � L � ξ has then diffusive
character (with weak-localization corrections for which the system size L serves as an infrared cut-off
[83]), and the decay of imbalance can be investigated within the non-interacting picture. This problem
is studied numerically below in Sec. 2.5. The non-interacting character of the model allows us to
consider rather large system sizes (200 × 200) within exact diagonalization. We focus on times t much
smaller than the time of diffusive spreading through the system. Before turning our attention to the
numerical simulations, let us discuss the implications of the weak localization for the above analytical
results.

Weak localization leads to a frequency-dependent logarithmic correction to the diffusion constant [64]:

D(ω) ' D0

(
1 − 1

πkF l
ln 1
ωτ

)
. (2.63)

Note that the asymptotics of the mean square deviation r2(t) is controlled by the diffusion constant
D(q, ω) at small ω and small q, with Dq2 ∼ ω, so that we can put q = 0 in Eq. (2.63). In the regime
of frequencies where the correction is relatively small, we can rewrite Eq. (2.63) as

D(ω) ' D0(ωτ)
1

2πg , (2.64)

where we introduced the dimensionless conductance g = kF l/2. This implies for the mean square
deviation

r2(t) ∼ t
1− 1

2πg , (2.65)

i.e., a weak-localization correction to the exponent: γx = 1 − 1/2πg.
The tail of the return probability P (t) is controlled by weak multifractality of 2D systems [101, 124,

125] (which is responsible for the behavior of the diffusion constant D(q, ω) at small ω and relatively
large q). The corresponding multifractal exponent is [101, 130, 131] d2 = 2 − 2/πg, yielding

P (t) ∼ t−d2/d = t
−1+ 1

πg , (2.66)

and thus γI = 1 − 1/πg. We see that the corrections to γx and γI are different (by factor of 2), and
thus the exponents γx and γI deviate not only from unity but also from each other.
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2.5 Numerical results

2.5 Numerical results

As discussed above, the numerics in this chapter is restricted to non-interacting 2D systems. We
calculate the long-time asymptotics of both the checkerboard imbalance and the columnar imbalance
starting from the corresponding maximum-imbalance states. In addition, we calculate the linear-
response density response function χ(qx, qy, t), verifying thereby the relation (2.45) between the long-
time tail of the imbalance and density response function. This also allows us to check that the power-law
tail of the density response function has the same form for all momenta q.

We consider a square lattice of N = L× L sites described by the Hamiltonian

H = J
∑
r,r′

δ〈r,r′〉c
†
rcr′ +

∑
r
εrc

†
rcr , (2.67)

where r and r′ label sites of the square lattice and

δ〈r,r′〉 =

1 , r, r′ nearest neighbors,
0 , else.

(2.68)

We set J = a = 1. The onsite potential values εr are uncorrelated random numbers drawn from a
random uniform distribution in the interval [−W,W ].

We analyze the numerical results based on the predictions for the density response function and the
imbalance at long times,

χ(q, t) = χ0 exp
(
−t/tq

)
+ χ1
t1+γI

, (2.69)

I(t) = I0 exp
(
−t/tq

)
+ I1
tγI

. (2.70)

The first terms in these formulas correspond to the exponentially decaying contribution from the
Markovian approximation. Here, we keep these terms in addition to long-time tails, in order to be
able to describe the case of sufficiently small values of q, such that the exponential decay is not yet
strong at times addressed by numerical simulations. The second terms in Eqs. (2.69) and (2.70) are
the long-time asymptotics governed by return processes. The exponent γI is slightly below unity,
γI = 1 − 1/πg, as discussed in Sec. 2.4.2.

Since we are interested in the diffusive regime, we first need to identify an appropriate disorder
strength. If the disorder is too weak, a density perturbation would spread ballistically; on the other
hand, too strong disorder would lead to strong localization for considered system sizes. To identify the
diffusive regime, we calculate the mean square displacement

r2(t) =
〈

L∑
j=1

L∑
i=1

Ri,j
[
n(i,j)(t) − n(i,j)(t = 0)

]〉
, (2.71)

Ri,j = [(i− i0)2 + (j − j0)2]. (2.72)

Here, n(i,j)(t) is the particle density at site (i, j) at time t, with i and j labeling rows and columns,
respectively, and angular braces denote an average over disorder configurations. The site (i0, j0) is the
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2 Memory effects in the imbalance in delocalized disordered systems

original position of the density packet. Specifically, we initialize the system with

n(i,j)(t = 0) = δi,i0δj,j0 . (2.73)

In order to minimize finite-size effects, we choose the site (i0, j0) to be located in the center of the
system.

The results for r2(t) for disorder strengths W = 1.5 and W = 2 are presented in the upper panel of
Fig. 2.4: We find the asymptotic power-laws r2(t) ∼ t0.88 for W = 2 and r2(t) ∼ t0.98 for W = 1.5.
The exponents are slightly below unity, in agreement with the expectation γx = 1 − 1/2πg. Therefore,
these values of disorder correspond to the diffusive regime with weak-localization corrections. For
stronger disorder (W = 2), the correction is more significant as expected. Using r2(t) = 4D0t and
D0 = v2τ/2 at time t ≈ 10 at which the diffusion is fully established, we get an estimate for the mean
free time: τ ≈ 2 for W = 1.5 and τ ≈ 1 for W = 2. The mean free time decreases with increasing
W approximately as 1/W 2, as expected for relatively weak disorder. We have also verified that if the
initial state is chosen as a 1D domain wall and the corresponding 1D mean square displacement is
calculated, the same results are obtained as for the disk mean square displacement (2.71).

The following comment is in order here. Since our initial condition contains single-particle states
with different energies, our numerical procedure effectively involves the corresponding averaging. The
dominant contribution comes from the broad central part of the band, where the dimensionless con-
ductance g weakly depends on energy and where the majority of states is located. At the same time,
one expects also a contribution of band tails, where g is smaller, so that the states have a localization
length shorter than our system size. For the mean square displacement r2(t) this would only induce
a small correction to the effective diffusion constant. At the same time, the contribution of localized
states should lead to a saturation of the imbalance at long times, t → ∞. Thus, by inspecting the
behavior of the imbalance, one can numerically find out whether the localized states from the band
tails are essential for the dynamics on a given time scale. We will see below that, within the time range
of our numerics, t = 102, the role of band tails is negligible, even for our stronger disorder, W = 2.
Therefore, within this time range, we essentially probe the physics associated with the majority of
states in the central part of the band. This justifies our description, Eqs. (2.69) and (2.70). Indeed,
we will see below that the predicted power laws for the imbalance and density response function are
nicely observed in numerical simulations.

2.5.1 Imbalance

After having identified the diffusive regime by inspecting the mean square displacement, we turn to
the numerical analysis of the imbalance. The checkerboard imbalance for W = 1.5 and W = 2 is
shown in the lower panel of Fig. 2.4. A power-law decay of the imbalance is clearly observed. Fitting
the imbalance tail to a power-law ∝ t−γI , we find γI ≈ 0.69 for W = 1.5 and γI ≈ 0.61 for W = 2.
The values of the exponent γI are somewhat below unity, in agreement with the analytical prediction
γI = 1 − 1/πg. The deviation of γI from unity is larger for larger disorder, as expected. Further, the
deviations of γI from unity are larger than the respective deviations of γx, again in agreement with
the analytical expectations.

As pointed out above, the imbalance does not exhibit any saturation within the considered time
window (even though it drops down to a relatively small value ∼ 10−3). This shows that strongly
localized states in the band tails do not play any essential role in this time range. In Appendix A.1,
we explicitly check this statement by evaluating the fraction of strongly-localized states contributing
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Figure 2.4: Figure adapted from Ref. [54]. Mean square displacement r2(t) (left panel) and
checkerboard imbalance Icheck(t) (right panel) as functions of time for 2D systems
with disorder strengths W = 1.5 and W = 2. Calculations were performed on a
square lattice of 201 × 201 sites with open boundary conditions; averaging over 5
disorder configurations was done. The dashed lines in the upper panel are power-law
fits, r2(t) ∼ tγx , yielding γx = 0.88 for W = 2 and γx = 0.98 for W = 1.5. The
dashed lines in the right panel are power-law fits Icheck(t) ∼ t−γI , yielding γI = 0.61
for W = 2 and γI = 0.69 for W = 1.5. The black dotted line shows an exponential
decay exp

(
−t/τ

)
with τ = 1 in units of the hopping time for comparison.
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Figure 2.5: Figure adapted from Ref. [54]. Checkerboard and columnar imbalance as functions of
time at disorder W = 1.5. Simulations were performed on square lattices of 101×101
and 100 × 100 sites, respectively, with open boundary conditions and with averaging
over 60 disorder configurations. The dashed lines are power-law fits I(t) ∼ t−γI ,
yielding γI = 0.61 for the checkerboard imbalance and γI = 0.51 for the columnar
imbalance.

to the imbalance dynamics in the transient time window t ≤ 100. We also demonstrate there that the
conductance in the band of extended states only slightly deviates from the value in the band center.
As a result, the contributions of different energies to the imbalance produce, in our transient time
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2 Memory effects in the imbalance in delocalized disordered systems

window, a function that is indistinguishable from a simple power law.
In order to emphasize the significance of the slow, power-law decay, we also show the Markovian

result exp
(
−t/τ

)
with τ = 1 in the plot (black dotted line). On the scale of t ≈ 10, this exponential

contribution becomes negligible (∼ 10−4). For our largest times, t ≈ 100, it drops down to a value
as small as ∼ 10−40. Our numerical results therefore clearly confirm an important role of classical
memory effects in the imbalance of a disordered system. Furthermore, the predicted difference between
the imbalance- and mean-square displacement exponents, γI and γx, is observed numerically.

As shown in Fig. 2.5, the behavior of the columnar imbalance is very similar to that of the checker-
board imbalance. Indeed, they are very close numerically and show almost the same power-law decay,
with γI ≈ 0.51 for the checkerboard imbalance and γI ≈ 0.61 for the columnar imbalance. The system
size in this figure is N = 101 × 101, i.e., smaller than in Fig. 2.4 (where N = 201 × 201). A slightly
smaller value of γI for the checkerboard imbalance in comparison with Fig. 2.4 is thus attributed to
finite-size effects.

2.5.2 Density response function

We have also performed numerical simulations of the density response function χ(qx, qy, t), which is
predicted to decay at long times as t−1−γI , see Eq. (2.69). Note that this prediction applies for any
value of the momentum (qx, qy). To make a direct connection with the numerical analysis of the
imbalance in Sec. 2.5.1, we carry out a linear-response calculation with respect to a thermal state with
the chemical potential chosen in the center of the band, µ = 0, and with a temperature of the order of
the band width; see Appendix A.2 for details.

Instead of directly investigating the long-time tail of the correlator χ(qx, qy, t), we perform its nu-
merical integration to obtain the long-time behaviour of the imbalance at the considered wave vector
(see Eqs. (2.29), (2.31)):

Iqx,qy (t) ∝
∫ t

0
dt′ χ(qx, qy, t′) − χ̃0 . (2.74)

Here the constant χ̃0 is equal to the zero-frequency limit of the density response function, χ̃0 ≡ χ̃(ω =
0, qx, qy), which ensures Iqx,qy (t) → 0 at t → ∞. In order to characterize the long-time tails, we fit the
integrated density response

∫ t
0 dt′ χ(qx, qy, t′) in a late-time window t ∈ [20, 100] to the function

f(t) = f0 + f1t
−γI (2.75)

with fitting parameters f0, f1, and γI . The constant f0 corresponds to χ̃0 of Eq. (2.74) and is subtracted
to get the imbalance. In this way, we obtain the imbalance Iqx,qy (t) and the imbalance exponent γI for
the whole range of momenta (qx, qy).

In Fig. 2.6, we show Iq(t) ≡ Iqx=q,qy=q(t) at temperature T = 3 for a square system with L = 80
and disorder W = 1.5, for momenta q = qn = 2πn/L with n = 2, 3, . . . , 39. For this plot the
integrated density was rescaled by a factor determined from comparison of the large-q tails to the
directly calculated imbalance. (Since the actual factor between imbalance and integrated response
depends on the momentum, this can lead to the small-q curves exceeding unity at short times.) The
values of momenta increase from top to bottom. For the lowest momenta, the power-law decay can
barely be observed within the time window of the simulation, since the exponential contribution decays
slowly. For larger momenta, the exponential contribution decays very quickly, so that Iq(t) is governed
by the power-law tail starting already from rather short times. We observe that, for sufficiently large
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Figure 2.6: Figure adapted from Ref. [54]. Left panel: Numerical results for the imbalance
Iq(t) ≡ Iqx=q,qy=q(t) obtained according to Eq. (2.74) from the density response
function for W = 1.5, L = 80, and temperature T = 3, with periodic boundary
conditions. The data was averaged over about 500 disorder realizations. Imbalance
Iq(t) is calculated for momenta q = qn = 2πn/L with n ∈ [2, 39]. The numerical
factor between imbalance and integrated density response function is obtained from
a comparison of the long-time tail of the largest-q curve to the directly calculated
imbalance result (cf. Fig. 2.5). Right panel: Comparison between the checkerboard
imbalance directly calculated from the time evolution of a checkerboard state (with
L = 101) and the checkerboard imbalance from the density response function. For
this comparison, the shift constant and factor were determined by fitting the inte-
grated density response function to a power-law with the same exponent as found for
the checkerboard imbalance from the direct calculation.

q, all imbalance curves become parallel straight lines in the long-time limit, confirming the momentum
independence of the exponent.

In Fig. 2.7, we show the values of the exponent γI(nx, ny) corresponding to Iqnx ,qny
(t). The left

panel shows a color map of the exponent as a function of nx and ny for nx, ny = 2, 3, . . . , 39. The right
panel displays the diagonal exponents, nx = ny = n. As expected from the imbalance plots, the time
window of our simulation does not suffice to find reliably the power-law exponents in the low momentum
sector n . 8, as the exponential component decays too slowly. This region is therefore excluded in
both panels. The error bars in the right panel show the range of exponents, for which the mean square
error of the obtained fit deviates by up to five percent from the optimum fit. The numerical results are
consistent with the analytical predictions that γI is independent of q and is somewhat below 1 (because
of weak multifractality). Further, the numerical value γI(q39) ≈ 0.8, corresponding to the checkerboard
imbalance, is in a good agreement with γI ≈ 0.7 extracted from the direct checkerboard imbalance
calculation in Sec. 2.5.1. This agreement is also demonstrated in the lower panel of Fig. 2.6 where
the checkerboard imbalance obtained by direct simulations and from the density response function are
compared. For this plot, the shift constant χ̃0 was obtained by fitting the integrated density response
to a power-law with the exponent found for the directly calculated imbalance (slightly differing from
the optimal-fit exponent for the integrated density); the overall scaling factor was fixed by comparing
the tails.
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Figure 2.7: Figure adapted from Ref. [54]. Left panel: Tomography of power-law exponents
γI(qx, qy) for imbalance obtained according to Eq. (2.74) from the density response
function. Exponents are obtained from fitting the long-time tail to a power-law in
the time interval t ∈ [20, 100]. The range (nx < 8, ny < 8) is excluded since the
time window of the simulation does not allow us to extract reliably the power-law
exponents at these momenta. Right panel: Exponents γI(qx = qy = q) describing
the power-law tails of the imbalance curves shown in Fig.2.6. The error bars are the
intervals for which the mean square error of the corresponding fit is up to five percent
larger than the mean square error of the optimal fit.

2.6 Summary

In this chapter we demonstrated that memory effects lead to a power-law asymptotic tail of the
imbalance in disordered systems, I(t) ∝ t−γI . We derived a relation between the imbalance and the
density response function and showed that I(t) ∝ P (t), where P (t) is the probability for a particle to
be found at the original point after a long time t (“return probability”). In the case of normal diffusive
transport, the analysis based on classical memory effects related to diffusive returns yields γI = d/2,
where d is the spatial dimensionality. Having in mind the ergodic side of the MBL transition, we
have also considered the regime of subdiffusive transport. Specifically, we used its phenomenological
modelling in terms of a momentum-dependent diffusion constant, D(q) ∝ qβ, which yields the mean
square deviation r2(t) ∝ tγx with γx = 2/(2 + β). For the imbalance in this situation, we obtained a
power-law decay with the exponent γI = d/(2 + β), implying the ratio γI/γx = d/2, independent of
the subdiffusive exponent β.

To complement the analytical results, we have performed numerical simulations for non-interacting
disordered 2D systems. In these simulations, we have chosen a disorder range that ensures the diffusive
character of transport for considered system sizes. More accurately, in view of weak-localization effects,
the transport is “weakly subdiffusive”, i.e., the exponent γx is slightly below unity. For such systems,
we have demonstrated a crucial role of memory effects in the long-time behavior of the imbalance
and found a power-law decay of the imbalance. The corresponding exponent γI shows a downward
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2.6 Summary

deviation from unity, which is related to weak multifractality of eigenstates of 2D non-interacting
disordered systems. This deviation leads to a weak violation of the relation γI = γx.

Our results explain the slow, power-law decay of the imbalance on the ergodic side of the MBL
transition, as observed in numerical simulations of 1D disordered interacting systems [57, 58, 115–118].
The relation γI = γx that we find by modelling the subdiffusive transport by a diffusion constant
D(q) ∝ qβ is consistent with numerical observations [59, 117]. The subdiffusive transport in this class
of systems is usually attributed to Griffiths effects related to rare strongly localized spots. Our analysis
is, however, rather general and shows that, whatever the mechanism of the subdiffusion is, it will lead
to the corresponding slow decay of the imbalance due to mode coupling induced by the memory effects.

A slow decay of the imbalance was also numerically observed on the ergodic side of the MBL
transition in 2D systems [58, 117]. In this case, it was found that the corresponding effective exponent
γI increases with time, saturating at the value γI = 1 at long times. This is consistent with the relation
γI = γx, since in 2D geometry the Griffiths effects cannot suppress the conventional diffusion (γx = 1).
An increase of γI towards unity at intermediate times is a transient effect attributed to trapping of
particles at rare localized spots [117, 123].

A slow, power-law decay of the imbalance was numerically found also for 1D quasiperiodic systems.
Specifically, it was observed [117] that the exponent γI increases with time, saturating at the value
γI = 1. This is in consistency with the relation γI = (d/2)γx, in view of the ballistic character of
transport (γx = 2) in quasiperiodic systems. It is worth pointing out, however, that our analysis in
this chapter was performed for truly random systems, so that its application to quasiperiodic systems
should be viewed as a conjecture. Further work in this direction is needed, especially in view of the
importance of quasiperiodic systems for experimental investigations.

A weak violation of the relation γI = (d/2)γx in 2D non-interacting disordered systems in the weak-
localization regime poses the question as to whether the relation is exact on the ergodic side of the MBL
transition. The mechanism related to quantum coherence of single-particle states, which is responsible
for multifractality in 2D non-interacting systems, should not be relevant for the ergodic interacting
systems at high temperature, in view of decoherence. This provides an expectation that the relation
γI = (d/2)γx strictly holds (for the exponents characterizing the limiting long-time behavior) in the
ergodic phase of an interacting disordered system. In fact, Ref. [123] identified other power-law con-
tributions related to trapping of particles by localized spots in 1D geometry. These contributions are,
however, subleading (i.e., decaying faster) in comparison with that studied in the present chapter, and
thus do not affect our derivation of the relation γI = (d/2)γx. Further computational and experimental
work towards a systematic verification of the relation between the exponents γI and γx on the ergodic
side of the MBL transition would be of much interest.
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3 Chapter 3

Ancilla measurements on a two-level
system

In this chapter, we introduce and investigate a model of a two-level system (“chain”) interacting with
a two-level detector during fixed intervals of unitary time evolution. At the beginning of each time
interval, the detector is initialized in the same eigenstate. At the end of each time interval, its state is
projectively measured. This model presents a simple realization of system-detector evolution. In certain
limiting cases, the protocol partly mimics strong measurements on the chain. However generally, despite
the simplicity of the model, the dynamics is very complex. Main object of our investigation is the
distribution of chain states immediately after the measurement, averaged over time and measurement
outcomes. This distribution can be understood from a functional master equation in the state space. As
a function of the interaction strength and the duration of the unitary time evolution interval, we identify
different dynamical phases based on the properties of the distribution. The distribution functions can
be attributed properties which are reminiscent of localization and delocalization in a disordered system.
A connection to Anderson transitions is established via known indicators of Anderson localization,
for which counterparts are defined based on the distribution of states. Furthermore, the distribution
curves generically feature non-trivial fractal box-counting dimensions. Many qualitative features of the
distributions and the phase diagram can be understood based on special cases, in which the shape of
the distribution can be understood from analytical considerations. The results in the generic case are
established using Monte-Carlo simulations and numerical solution of the discretized master equation
Master-equation.

The results presented in this chapter were developed and discussed together with my collaborators
Oleg M. Yevtushenko, Igor V. Gornyi, and David B. Saakian. The one-step solution of the model, as
well as the special cases of freezing, shifting, and γ = 0 (presented in 3.2) where largely established
by my collaborators before I joined the project. The presentation in the mentioned section is based
on their notes. Ref. [65] was written in parallel to this chapter. This chapter contains literal excerpts
from Ref [65].

3.1 Introduction

In the first chapter we encountered localization and measurements in their arguably most basic forms,
with exponential localization of every wave function in a one dimensional system, and projective
measurements. After turning to more nuanced disorder effects in weakly localized or delocalized
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3 Ancilla measurements on a two-level system

systems in the second chapter, we now focus on a more general notion of measurements, considering
the dynamics of a two-level system under indirect measurements via an ancilla system serving as a
detector.

The concept of measurements can be generalized from axiomatic quantum mechanical (projective)
measurements, by introducing a “detector” or “ancilla”, which interacts with the system to be mea-
sured during intervals of unitary time evolution. [66, 132, 133]. Here, the projective measurement is
performed on the detector instead of the system itself so that there is only an indirect backaction of
the measurement on the system [133]. This process of joined system-detector unitary evolution and
projection of the detector can also be summarized in terms of generalized measurement operators [66].
Such indirect measurements are sometimes called “weak” because they do not necessarily allow to
determine the state of the measured system with certainty without prior knowledge [132]. At the
same time, the measurement does not necessarily perturb the system state as strongly as a projective
measurement would.

Explicitly taking the detector into account in the time evolution is a natural idea from the point of
view of reductionism. Like the system itself, the detector in an experiment should obey the laws of
quantum mechanics, time evolve according to the Schrödinger equation, and couple to the system via
some system-detector Hamiltonian. The properties of the detector can be important for the physical
process of the measurement. Thus, we should investigate how its microscopic properties can influence
this process. The concept is immediately relevant to laboratory experiments, as they may be not well
described by “direct” projective measurements of the monitored observable [132].

Additional motivation to consider generalized measurements comes from the field of measurement
induced transitions, where measurements drive a dynamical transition in the measured system [20–
39]. Indeed, specifics of the detector model can introduce additional parameters [26], besides the
measurement frequency which controls the transition in the presence of projective measurements. An
example is the strength of each measurement, which is a function of the parameters determining the
system-detector interaction and allows to control the backaction on the system and the amount of
information provided by a measurement outcome [134].

In any case, one can ask a question about how much the induced dynamics actually depends on the
employed measurement model.

In the literature, the time evolution of large systems with generalized and continuous1 measurements
has been investigated in the context of measurement-induced phase transitions [26, 30, 135]. The
dynamics of a spinless fermion chain with ancilla measurements is investigated in Ref. [39]. In the
appendix of Ref. [30], a single site with variable occupation is combined with a detector, to investigate
the emergent stochastic dynamics in such a system.

Our setup is most similar to the model investigated in the continuous-measurement limit in Ref. [67]:
We consider a “chain” of two sites with a single particle on it as the measured system. The “detector”
is another two-level system (say, a spin) which interacts with the density on one of the sites during a
time interval T . The strength of the interaction is called M . After each projective measurement, the
detector is reset to the same eigenstate. In contrast to the model investigated in Ref. [67], there are no
periods of free time evolution of the chain. Detector and chain are always coupled during unitary time
evolution. Furthermore, we do not restrict ourselves to the continuous limit, but consider the entire
M − T plane.

1Continuous measurements are obtained by taking the measurement frequency to infinity while taking the strength of
each measurement to zero. The fixed product of frequency and measurement strength gives a new effective measure-
ment strength over a finite time interval [67, 134]. In our system the continuous limit is realized by taking the coupling
M/γ → ∞ and the unitary time evolution interval Tγ → 0, keeping M2T/γ fixed [67].
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Although this setup seems rather simplistic, the dynamics of the coupled system turns out to be
complex, exhibiting dynamical transitions in the M − T parameter plane. This is in agreement with
the findings by the authors of Ref. [67] who demonstrate in a similar model dynamical transitions that
generalize the quantum Zeno effect to several stages in the continuous limit.

As the accessible2 Hilbert space of our system has just four states, the joined system-detector time
evolution can easily be solved for single time steps. The solution consists of two possible mappings
between the immediate post-measurement states of the chain, corresponding to two possible outcomes
of the projective measurement on the detector. As the detector is reinitialized to the same state after
every projection (removing its “memory” of the measurement outcome), the post-measurement states
can be described as points on a Bloch-sphere: While the state of the detector is fixed, the chain
state is generally not projected by the detector measurement, and can lie anywhere in the two-level
Hilbert space. The number of different quantum trajectories grows exponentially with the number of
measurements, thus complicating the situation.

It turns out that typical quantum trajectories—represented by the post-measurement states—converge
to a one dimensional submanifold of the Bloch sphere which forms a circle through its poles. The poles
of the Bloch sphere represent the density eigenstates of the chain site coupled to the detector3.

We characterize a parameter point (M,T ) by the distribution of states on this circle, averaged
over time and measurement outcomes. These distributions are investigated via single time-averaged
quantum trajectories (from Monte-Carlo simulation of the Born rule) and a Master-equation approach,
that converts the post-measurement mappings into a Markov process on the circle (governed by an
implicit equation similar to what was investigated in [136–138]). The Master equation is analyzed
analytically along different special kinds of parameter lines, and numerically by discretization. The
discretized dynamical process on the circle exhibits a transition between ergodic- and non-ergodic phase
as a function of the parameters. This transition is argued to survive, if the limit to the continuous
process is taken.

We also analyze the distributions with observables familiar from Anderson localization, using the
participation ratio and support measures to describe “localization” and “delocalization” on the Bloch-
sphere (similarly observed in distributions from random matrices in Ref. [139]). Localized and delo-
calized regions in (M,T ) parameter space can approximately be described in terms of cases where the
outcome average can be understood analytically. An important difference to the physics of Anderson
localization is the absence of a controllable system size in our problem. Interestingly, our distribu-
tions also exhibit fractal properties (reminiscent of an Anderson transition), which we describe with
a box-counting dimension. A connection to the Anderson transition is established by calculating a
quantity closely related to the local density of states in a disordered system, which can serve as an
indicator of the Anderson transition [10, 68]. This quantity recognizes the non-ergodic phase in our
system (in analogy to a localized phase in an Anderson insulator) as well as the phase where we observe
complete delocalization in terms of participation ratio and support (in analogy to a disordered metal).
In between, it exhibits a transient behavior that does not have an analogue in the Anderson transition.

The occurrence of similarities to the Anderson transition in our measured system is interesting in light
of recent field theoretical descriptions of measurement-induced transitions that suggest a relation to
Anderson localization [38, 41, 69–71]. In particular, in Refs. [38, 41] measurement-induced transitions
in free, D > 1-dimensional fermionic systems were related to Anderson transitions in D+1 dimensions.

The chapter is structured as follows: The model is introduced and solved for a single time step

2restricted to half-filling
3The exact plane of the circle can be gauged arbitrarily and hence does not have physical relevance.
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in Sec. 3.2. We also demonstrate attraction of generic quantum trajectories to the one-dimensional
manifold and discuss some basic physical intuition for the ancilla measurements. In Sec. 3.3 we define
the state distribution on the one dimensional manifold, and explore the possibility of different averages
in this definition, together with corresponding numerical approaches. In Sec. 3.4, we analytically derive
some properties of the distribution for certain special cases. Our numerical approaches are tested and
analyzed in Sec. 3.5. In Sec. 3.6, we show examples of distributions for generic parameters, which are
analyzed systematically in a plane of parameters (M,T ) in Sec. 3.7, in terms of ergodicity, localization,
and fractality. We conclude in Sec. 3.8.

3.2 The model

In this section, we introduce the model, solve it for a single time step, and show, that typical post-
measurement quantum trajectories are attracted to a one-dimensional sub-manifold of the Bloch-
sphere. We discuss connections to the familiar case of projective measurements and the quantum Zeno
effect.

3.2.1 Description

We consider a single particle which can tunnel between two sites s1 and s2 (the “chain”) with amplitude
γ ∈ R. The particle density on site s1 interacts with a two-level system D (the “detector”), with states
|+〉, |−〉 through interaction strength M > 0. The detector enters the Hamiltonian only through its
coupling to the site s1, instead of being described by a separate kinetic term. A basis of the the joined
chain-detector Hilbert space is given by the states∣∣b1

〉
=
∣∣1, 0〉⊗ |+〉∣∣b2

〉
=
∣∣1, 0〉⊗ |−〉∣∣b3

〉
=
∣∣0, 1〉⊗ |+〉∣∣b4

〉
=
∣∣0, 1〉⊗ |−〉.

(3.1)

The Hamiltonian governing the unitary time evolution of the system reads

H = γ(a†
1a2 + a†

2a1) +Mn1σx n1 := a†
1a1 (3.2)

= γ(
∣∣b1
〉 〈
b3
∣∣+ ∣∣b2

〉 〈
b4
∣∣) +M

∣∣b1
〉 〈
b2
∣∣+ hc., (3.3)

[H] =


0 M γ 0
M 0 0 γ
γ 0 0 0
0 γ 0 0

 , (3.4)

where a†
i and ai are creation and annihilation operators on site i ∈ {1, 2}, and σx is the Pauli-x-

matrix, acting on the Hilbert space of the detector. The first term (proportional to γ) describes the
free evolution of the chain. In absence of detector coupling M = 0 the chain performs free oscillations
between the two levels. Here and in the following, we denote the matrix representation of an operator
with square brackets.
The time evolution of chain and detector is described by the following protocol:
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↑ ↓
D

s1 s2
γ

M

Figure 3.1: Sketch of the model. A single particle tunnels between sites s1 and s2 with tunnel
amplitude γ. Site s1 interacts with a two-level system D, which is measured projec-
tively. D acts as a detector for the density on s1. In the text we refer to the sites s1,2
as “the chain” (orange dashed box), the two-level system D is called “the detector”
(blue dotted box) and the entirety of chain and detector is refered to as “the system”
(green solid box).

1. Prepare the system in state
∣∣Ψ0

〉
= α0

∣∣b2
〉

+ β0
∣∣b4
〉
.

2. Perform unitary time evolution according to H for a time T .

3. Projectively measure the state of D (in the basis |+〉, |−〉).

4. Reset the state of D to |−〉.

5. Iterate steps 2 - 4 Nt times.

Determining the state of D can give information about the state of the chain, even without prior
knowledge of this state. In this sense, D acts as a detector for the chain state (this is elaborated
further in Sec. 3.2.5). Fig. 3.1 shows a picture of the model.

Without loss of generality, we can fix one of the three model parameters M,T, γ—this is merely a
choice of units. In this sense, our model “lives” in a two-dimensional parameter plane. For all of our
numerical results, we fix γ = 1.

3.2.2 Solving the model

Initially, our system is prepared in state
∣∣Ψ0

〉
= α0

∣∣b2
〉

+ β0
∣∣b4
〉
. After every measurement, the

detector D is reinitialized in state |−〉. Thus, the state at post-measurement time t+i := i · T + 0 (the
post-measurement state) is again of the form∣∣Ψi

〉
:=
∣∣∣Ψ(t = t+i )

〉
:= αi

∣∣b2
〉

+ βi
∣∣b4
〉
. (3.5)

We solve a single time step of the model, by expressing αi and βi in terms of the previous coefficients
αi−1 and βi−1. To obtain this mapping, the first step is to perform unitary time evolution on

∣∣∣Ψi−1
〉
.
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The matrix exponential of H can be calculated explicitly, and we obtain

e−iTH
∣∣∣Ψi−1

〉
= α

(+)
i

∣∣b1
〉

+ β
(+)
i

∣∣b2
〉

+ α
(−)
i

∣∣b3
〉

+ β
(−)
i

∣∣b4
〉

(3.6)

α
(+)
i := αi−1a

(+)
10 + βi−1b

(+)
10 , β

(+)
i := αi−1a

(+)
01 + βi−1b

(+)
01 (3.7)

α
(−)
i := αi−1a

(−)
10 + βi−1b

(−)
10 β

(−)
i := αi−1a

(−)
01 + βi−1b

(−)
01 (3.8)

a
(+)
10 = −i

(
sin[MT/2] cos[Y T/2] + M

Y
cos[MT/2] sin[Y T/2]

)
, (3.9)

a
(−)
10 = cos[MT/2] cos[Y T/2] − M

Y
sin[MT/2] sin[Y T/2], (3.10)

a
(+)
01 = −2γ

Y
sin[MT/2] sin[Y T/2], (3.11)

a
(−)
01 = −i2γ

Y
cos[MT/2] sin[Y T/2], (3.12)

b
(±)
10 = a

(±)
01 , b

(±)
01 = a

(±)
10 − M

γ
a

(∓)
01 ; (3.13)

where we introduced Y :=
√

4γ2 +M2. The next step is to calculate the backaction on the chain of
the projective measurement on D. Depending on the outcome of this measurement, the system ends
up in a different state. We refer to the measurement outcome as a click event (+), if the detector is
found in the |+〉 state, and as a no-click event (−) otherwise. These two outcomes correspond to the
projectors

P(±) := |±〉 〈±|1s1,s2 . (3.14)

The measurement outcome is random, with the probabilities P± of each outcome determined by the
coefficients of the respective states:

P± = ‖P(±)e−iTH
∣∣∣Ψi−1

〉
‖ (3.15)

Taking into account reinitialization of the detector (step (4) of the protocol) we can express the post-
measurement states using the projectors:

∣∣∣∣Ψ(±)
i

〉
=

〈±| P(±)e−iTH
∣∣∣Ψi−1

〉
√
P±

|−〉 . (3.16)

With the factor
√
P±−1 normalizing the state. Without this factor, the state is generally not normal-

ized, since the measurement on the detector projects out a component of the state.
Considering only post-measurement states, we can conveniently summarize the time evolution as a
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mapping between post-measurement states after (i− 1)-th and i-th measurement:α(±)
i

β
(±)
i

 = 1√
P±
i−1

[M±]
(
αi−1
βi−1

)
, (3.17)

[M±] =

a(±)
(10) b

(±)
(10)

a
(±)
(01) b

(±)
(01)

 , (3.18)

where the probabilities are given by

P± =
(
α∗ β∗

)
[M±]†[M±]

(
α
β

)
(3.19)

Because we use them later, we also give the explicit forms of the matrices [M±]:

[M−] =

cos
(
MT

2

)
cos
(
Y T
2

)
− M

Y sin
(
MT

2

)
sin
(
Y T
2

)
−i2γ

Y cos
(
MT

2

)
sin
(
Y T
2

)
−i2γ

Y cos
(
MT

2

)
sin
(
Y T
2

)
cos
(
MT

2

)
cos
(
Y T
2

)
+ M

Y sin
(
MT

2

)
sin
(
Y T
2

)
 ,
(3.20)

[M+] = −i

sin
(
MT

2

)
cos
(
Y T
2

)
+ M

Y cos
(
MT

2

)
sin
(
Y T
2

)
−i2γ

Y sin
(
MT

2

)
sin
(
Y T
2

)
−i2γ

Y sin
(
MT

2

)
sin
(
Y T
2

)
sin
(
MT

2

)
cos
(
Y T
2

)
− M

Y cos
(
MT

2

)
sin
(
Y T
2

)
 .

(3.21)

Post-measurement states along an arbitrary quantum trajectory can be calculated using Eq. (3.17)
by applying the matrices and probabilities according to the sequence of outcomes specifying this
trajectory. The matrices encompass joined chain-detector unitary time evolution and the projection of
the detector. Note, that the mapping (3.17) is non-linear, due to the state dependent normalization
factor (P±)−1/2.

In the language of generalized measurements, our post-measurement matrices [M±] represent the
measurement operators of our system [132], constructed out of unitary time evolution and projection.
Accordingly, they fulfill a completeness relation

[M+]†[M+] + [M−]†[M−] = 1 (3.22)

which guarantees, that the probabilities of all possible measurement outcomes (+), (−) sum to one.
All post-measurement states (and the initial state) are given by a normalized superposition of two
orthogonal states

∣∣b2
〉

and
∣∣b4
〉
. This suggests introducing a Bloch-sphere by parametrizing a generic

post-measurement state as∣∣Ψ〉 =: cos
(
θ/2

) ∣∣b2
〉

+ eiϕ sin
(
θ/2

) ∣∣b4
〉

θ ∈ [0, π], ϕ ∈ [−π, π), (3.23)

where the two angles θ and ϕ are interpreted as angular coordinates of a spherical coordinate system.
In this way, the time evolution in terms of post-measurement states can be visualized on the surface
of a three-dimensional sphere. The mappings [M±] can also be expressed on the surface Bloch sphere,
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Figure 3.2: Exponential branching of states generated from the initial state (orange) by different
combinations of post-measurement matrices M̂± (the j = 2 trajectories are shown).
After the j-th measurement, there are 2j different endpoints (in principle, some end-
points can describe the same state). Each generated state (including all end-points)
is labeled by the corresponding sequence of measurement outcomes.

as functions (θ, ϕ) 7→ (θ, ϕ).
A set of measurement outcomes µ1, µ2, . . . , µNt with µi ∈ {+,−} completely specifies a quantum
trajectory in our system. If we perform time evolution according to our protocol for Nt steps, the
system realizes one out of 2Nt different quantum trajectories at random (according to the Born rule),
see Fig. 3.2. Using the post-measurement mapping (3.17) all post-measurement states of a given
quantum trajectory (we refer to this ordered set of states as the post-measurement trajectory), as well
as the probability of that trajectory can be calculated. In this sense, the model is solved. However,
we have not learned anything about the system yet. Our goal in the following is to make general
statements about the evolution of a typical quantum trajectory represented by the corresponding
post-measurement states.

3.2.3 The Grand Circle

In Fig. 3.3 we show an example of a trajectory of post-measurement states on the Bloch-sphere. We
choose an initial state with (θ, ϕ) = (1.3, 2.5) and perform 3·102 steps of time evolution with parameters
γ = 1, M = 2.92, T = 1 (choosing randomly between outcomes (+) and (−), according to the Born
rule). States at early (late) instances of the time evolution are indicated by light (dark) markers on
the sphere—see colorbar. We observe an interesting feature: All late states are located on a circle
corresponding to the intersection of the Bloch-sphere with the Y − Z-plane, θ ∈ [0, π], ϕ ∈ ±π/2. In
the following we refer to this circle as the Grand Circle (GC). In fact, the attraction of our trajectory
to the GC is not a coincidence but a general feature of quantum trajectories for almost all sets of
parameters. To see this, we first notice, that the GC forms an invariant set for our [M±] maps. This
can be checked by explicitly applying the maps to a GC state:

[M+]

 cos
(
θ/2

)
±i sin

(
θ/2

)
 ∝

 cos
(
θ′/2

)
s±i sin

(
θ′/2

)
 s± ∈ {+,−}, θ′ ∈ R. (3.24)

Analogously for [M−].
Secondly, it can be shown that for almost all sets of parameters (and initial states) there is a sequence
of plus and minus matrices that attracts to the GC. For this we establish some properties of these
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Figure 3.3: Example of a trajectory of post-measurement states (colorful markers) on the Bloch-
sphere. The parameters are γ = 1, M = 2.92, and T = 1 and the trajectory is
initialized at (θ, ϕ) = (1.3, 2.5). The time instance is color coded, with light (dark)
markers corresponding to early (late) times, see colorbar.

matrices. Their eigenvectors and eigenvalues are

[V −
(η)] =

M/Y sin
(
MT/2

)
+η
√

(M/Y )2−cos2(MT/2)
2γ/Y cos

(
MT/2

)
i

 (3.25)

[V +
(η)] =

M/Y cos
(
MT/2

)
+η
√

(M/Y )2−sin2(MT/2)
2γ/Y sin

(
MT/2

)
−i

 (3.26)

λ−
(η) = cos

(
MT/2

)
cos
(
Y T/2

)
− η sin

(
Y T/2

)√
(M/Y )2 − cos2(MT/2) (3.27)

λ+
(η) = −i

[
sin
(
MT/2

)
cos
(
Y T/2

)
+ η sin

(
Y T/2

)√
(M/Y )2 − sin2(MT/2)

]
(3.28)

where [V ±
(η)] and λ±

(η) are eigenvectors and eigenvalues of the [Mη] matrix. We note, that the arguments
of the square roots expressions in eigenvalues and eigenvectors can be either negative or positive
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Figure 3.4: Ratio of eigenvalue moduli (smaller to larger) of [M−] (left panel, see Eq. (3.27))
and [M+] (right panel, see Eq. (3.27)) matrices. Solid lines correspond to period-
2-cases Y T = (2k + 1)π with k ∈ N0. Dashed lines correspond to the frozen cases
TY = 2kπ. Dotted lines correspond to the shift cases MT = kπ. Purple (orange)
lines correspond to the projective limits λ−

min = 0 (λ+
min = 0). (See Secs. 3.2 and 3.4

for descriptions of these special cases.)

depending on the parameters. This gives conditions

c+ :
∣∣∣M/Y

∣∣∣ > ∣∣∣∣cos
(
MT/2

)∣∣∣∣ (3.29)

c− :
∣∣∣M/Y

∣∣∣ > ∣∣∣∣sin(MT/2
)∣∣∣∣ (3.30)

for the (+) and (−) matrices. If the respective condition is fulfilled, the corresponding matrix has
two eigenvalues of different moduli, and both (normalized) eigenvectors point to the GC (the first
component of Eq. (3.25) or (3.26) is real). If the condition is not fulfilled, it can be seen that the
first components of the respective eigenvectors have modulus one, and the eigenvectors are thus of the
form (1, eiϕ)T with some angle ϕ ∈ [−π, π). In this case, the eigenvectors thus point to the equator
of the Bloch-sphere, θ = π/2. The eigenvalues in this case are complex conjugate to each other and
have the same modulus. See Fig. 3.4 for plots of the eigenvalue ratios |λ±

min|/|λ±
max| in the M − T

parameter plane (with γ = 1). Yellow regions correspond to ratio one (for example, if the respective
condition (3.30) or (3.29) is not fulfilled). Purple (orange) lines correspond to the projective limit of
[M−] ([M+]), λ−

min = 0 (λ+
min = 0).

To find general attraction to the GC, we need to consider three different cases:

1. The eigenvectors of both matrices point to the GC.

2. The eigenvectors of one of the matrices points to the GC, the other pair of eigenvectors points
to the equator.
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Figure 3.5: Convergence of generic post-measurement trajectories to the grand circle. Left panel:
Minimal values of the power k, at which both eigenvectors of [M+]k[M−] point to the
GC (up to errors of the order of the numerical precision). For this plot we consider
k ∈ [0, 103]. White regions correspond to k = 0 (the eigenvectors of at least one
of the matrices [M±] point to the GC). The general existence of such projective
combinations facilitates attraction to the GC in the general case. Right panel: Phase
difference |∆ϕ| := min(|ϕ − π/2|, |ϕ + π/2|) from the GC after 105 steps of time
evolution with the MC method, starting from a random state on the Bloch sphere.
Dashed lines correspond to the frozen commensurability Y T = 2lπ with l ∈ N,
dotted lines correspond to the shift commensurability MT = lπ with l ∈ N. For both
commensurabilities, no convergence to the GC is expected as explained in Ref. 3.2.

3. The eigenvectors of both matrices point to the equator.

In the first two cases, we can just pick a matrix with eigenvectors on the GC, say [M+]. Applying
this matrix repeatedly to an arbitrary initial state leads to exponential convergence to its dominant
eigenvector (the one corresponding to the eigenvalue with larger modulus), with the rate determined
by the ratio of eigenvalues (power-iteration [140, 141]).
In the third case, there always exists a product of the form [M+]k[M−]l with k, l ∈ N, such that
all eigenvectors of this product point to the GC, as we demonstrate numerically in the left panel of
Fig. 3.5. In the limit Nt → ∞ any typical trajectory thus realizes sequences of click- and no-click
events, that attract to the GC, from which they can not escape 4. In praxis, convergence to the GC
happens quickly, as we show numerically below.

4Technically, the two statements “GC is an invariant manifold”, and “attractive sequences of matrices always exist” make
generic attraction to the GC plausible, but do not suffice to prove it. The matrices [M±] are generically invertible,
and the GC is an invariant manifold for the inverse matrices as well. Consequentially, no trajectory that was not
initialized on the GC can ever end up exactly on the GC. However, as long as the GC maps are smooth, a point from
the vicinity of the GC is again mapped into the vicinity of the GC.
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3 Ancilla measurements on a two-level system

3.2.4 Freezing and Shifting

In the following we apply our single-step solution of the model discussed in the preceding section
to discuss the dynamics on the Bloch sphere in two special parameter regimes in which the post-
measurement mappings are particularly simple. These also form the only parameter sets for which the
initial state is generally not attracted to the GC.

For our investigation we consider the post-measurement mapping matrices (3.20) and (3.21) along
the following parameter lines (motivated by commensurabilites of the arguments of the trigonometric
functions in the post-measurement mappings (3.17)):

YT = 2πl with l ∈ N (“Freezing”). In this case, the matrices simplify to

[M−] =

− cos
(
MT

2

)
0

0 − cos
(
MT

2

)
 ∝ 1, (3.31)

[M+] = −i

− sin
(
MT

2

)
0

0 − sin
(
MT

2

)
 ∝ 1. (3.32)

Therefore, both matrices act trivially on any state, which means that the post-measurement state
does not change during time evolution, but remains “frozen”. As a consequence, the state can not be
attracted to the GC and remains at its initial position on the Bloch-sphere indefinitely.

MT = πl with l ∈ N (“shifting”). (In the following we consider MT = 2πl, the case MT = (2l+ 1)π
can be treated analogously.)
For this choice of parameters, the matrices simplify to

[M−] =

(−1)l cos
(
Y T
2

)
i2γ
Y sin

(
Y T
2

)
i2γ
Y sin

(
Y T
2

)
(−1)l cos

(
Y T
2

)
 = (−1)l

cos
(
Y T

2

)
1− i2γ

Y
sin
(
Y T

2

)
σ1

 , (3.33)

[M+] = (−1)l+1i

M
Y sin

(
Y T
2

)
0

0 −M
Y sin

(
Y T
2

)
 = i(−1)l+1σ3

M

Y
sin
(
Y T

2

)
(3.34)

where σi, i ∈ {1, 3} are the Pauli-matrices.
The matrix [M+] introduces a relative phase shift of π in the state vector, ϕ → ϕ + π. The matrix
[M−] is of the form5

Rx(θx) =

 cos
(
θx/2

)
−i sin

(
θx/2

)
−i sin

(
θx/2

)
cos
(
θx/2

)
 (3.35)

θx = 2atan2
[
2 γ
Y

sin
(
Y T/2

)
, cos

(
Y T/2

)]
. (3.36)

5The function atan2 returns by definition the polar angle, given the cartesian coordinates in a plane, for example
atan2(sin

(
θ
)
, cos

(
θ
)
) = θ. It can be written explicitly in terms of other trigonometric functions, but it is cumbersome,

as one has to discriminate between different cases of the signs of Y - and Z-components.
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Rx(θx) generates a rotation by θx on the Bloch-sphere around its X-axis. The outcome probabilities
are state independent,

P+ = 1 − P− =
(
M

Y

)2

sin2(Y T/2). (3.37)

Using this, it is not difficult to characterize all possible post-measurement trajectories on the Bloch
sphere. In the special shift-case, all post-measurement states are located on two circles parallel to the
GC plane, and symmetric to each other with respect to the GC plane. The first circle is defined by
the intersection of the Bloch sphere with the Y −Z plane containing the initial condition. The matrix
[M+] mediates jumps between these circles, while the matrix [M−] rotates the state along the circles.
This can be described as a random walk between the circles. If the initial state is located on the GC,
we obtain a GC distribution, which depends on the phase shift θx. In particular, if this phase shift is
commensurate with π, the distribution has support only on a finite set of points, while it has support
on an infinite number of points otherwise.
Attraction to the GC is broken in this case, because the eigenvectors of [M−] point to the equator,
while the eigenvectors of [M+] do point to the GC, but the corresponding eigenvalues have the same
modulus. This is why this special case is not visible in Fig. 3.5.
At this point we remark, that the action of the [M±] matrices can not generally be expressed as
rotations on the Bloch-sphere. The problem is the necessary renormalization of the post-measurement
state. Generally, the normalization constant (or outcome probability) depends on the previous post-
measurement state, such that the action of the [M±] matrices cannot be represented by a rotation
in three-dimensional space. In the shift case this is possible, because the probabilities P± are state
independent.

In the right panel of Fig. 3.5, we demonstrate attraction to the GC in the generic parameter plane
M,T ∈ (0, 5] (with γ = 1) using a Monte-Carlo method to simulate random post-measurement tra-
jectories (explained in more detail in Sec. 3.3). For every data point, we choose random initial state
anywhere on the Bloch sphere. This state is time evolved for 105 steps of the protocol, with random
measurement outcomes, following the Born rule. The resulting states form a random post-measurement
trajectory. The phase difference to the GC |∆ϕ| := min(|ϕ − π/2|, |ϕ + π/2|) after 105 steps of time
evolution is color coded. For most parameter sets, the trajectories have converged to the GC and we
obtain |∆ϕ| = 0 (to numerical accuracy). All exceptions are correlated either with frozen- or with
shift-cases, associated with TY = 2kπ (dashed lines) or TM = kπ (dotted lines). Small M values
correspond to a shift case, where the probability to apply the matrix [M+] vanishes (no detector-chain
coupling means, that the detector can not time evolve and remains in the (−) state), and the matrix
[M−] induces a rotation as described above by an angle 2Tγ (free Rabi-oscillations of the chain state).
The limit T → 0 corresponds to freezing of the initial state: The (+)-matrix is not applied for the
same reason as in the limit M → 0, and the (−) matrix acts trivially on the state (as for the frozen
commensurabilities).
Not all |∆ϕ| are large around these special parameter lines because of the finite parameter grid reso-
lution (80 × 80 M − T -values), due to which the special conditions are only met at some points with
sufficient accuracy. Importantly, even small deviations from the non-GC conditions (at the order of
the grid resolution) restore convergence to the GC.
With this, we numerically confirmed that GC convergence quickly happens in all but the described
exceptional cases.
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3 Ancilla measurements on a two-level system

3.2.5 Information from measurement outcomes

To establish a connection to “conventional”, projective measurements, one could ask, whether our
model has a parameter regime, where a click (no-click) in the detector leads to a post-measurement
state

∣∣1, 0〉 |−〉/
∣∣0, 1〉 |−〉—the north / south pole of the Bloch sphere. This would be the effect of

projective density measurement on s1—the site the detector is coupled to: A single measurement gives
complete information about the post-measurement state of the chain (without having prior knowledge)
and leads to a collapse of the chain wave function to a density eigenstate. In particular, one may naively
expect this in the limit M → ∞ (large coupling strength). However, this intuition is false: In the limit
M → ∞, if for example the freezing condition is fulfilled, the detector measurement outcome still has
no effect on the system state, such that it is completely independent of the occupation on s1.

In the limit γ = 0, our model reduces to the model discussed in the appendix of Ref. [30], with
post-measurement matrices

[M−] =
(

cos
(
MT

)
0

0 1

)
[M+] =

(
−i sin

(
MT

)
0

0 0

)
(3.38)

In this case, as noted in Ref. [30], there is a strong measurement limit in the aforementioned sense for
MT = (2n+ 1)π/2 with n ∈ N0, as can be seen from above matrices, which become projectors on the
second / first component of the state for this parameter relation. However, setting γ = 0 and fixing
the chain to half-filling as in our setup trivializes the situation, since the particle then either is on site
s1—only the (+) outcome is possible, the state does not change—or it is not—only the (−) outcome is
possible, the state does not change. If the filling is initially not fixed such that s1 is in a superposition of
occupied and not occupied, the first measurement fixes the occupation and all following measurements
return the same result. Deviating from MT = π/2, the [M+] matrix can be seen to remain projective,
while the [M−] matrix gradually changes the state. Physically, this can be understood as follows: The
value MT = π/2 is fine-tuned to perfectly correlate the chain occupation with the measured detector
state at γ = 0. Since transitions in the detector between its (−) and (+) states are only possible if
s1 is occupied, a (+) outcome means, that the site must be occupied—thus [M+] always projects to
the post-measurement state

∣∣b2
〉

at γ = 0 (regardless MT ). A (−) outcome can however generally
also occur if the detector is in a superposition of occupied and unoccupied (facilitated by occupation
of s1) and we just happen to not measure the (−) state. Choosing MT = π/2, the (−) component
is completely eliminated from the final state provided s1 is occupied, since occupation of s1 induces
exactly half an oscillation period of the (+) component in the final state, which starts off at 0. Due to
this engineered correlation, a measurement of the detector gives complete information about the chain
occupation, thus projecting the chain state to one of the occupation basis states.
Fixing MT = π/2 and expanding in γ → 0, we obtain

[M−] =

 0 −2iTγ
π

−2iTγ
π 1

 [M+] =

 −i −2Tγ
π

−2iTγ
π 0

 . (3.39)

This allows us to approach the strong measurement limit by considering γT → 0, keeping MT = π/2
fixed. Physically, this limit corresponds to slowing the chain dynamics during a period of joint evolution
(controlled by the tunneling γT ), while keeping the detector dynamics (controlled by the coupling MT )
fixed. For these parameters, we have an “imperfect quantum Zeno effect” in the chain: For T → 0,
the chain state is frozen by the ancilla measurements. However, the limit T → 0 does not only control
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the probability p → 1 to find the same outcome in two successive (detector) measurements, but also
the probability to actually (not) find the particle on s1 immediately after a (no) click measurement on
the detector.
For γ 6= 0, the situation becomes more complicated, since the chain changes its state during the
joint time evolution not just due to detector coupling, but also due to its own tunneling dynamics.
Regarding the ratios of eigenvalues |λ±

min|/|λ±
max| (see Fig. 3.4), we see that there are some points in

the parameter plane, where both matrices [M±] become projective (crossing of orange and purple
lines). In such cases, both measurement outcomes in the detector lead to the projection of the chain
state—however not generally to one of the occupation eigenstates. So what is special about projective
matrices? In any case, using the [M±] matrices, we can determine the state of the chain after the
measurement; not only if these matrices are projective. However, the case of two projecting matrices
could be considered a “good detector” limit, where a single projective measurement on the detector
determines the chain state even without prior knowledge. Generally, the post-measurement state of
the chain is obtained by applying the matrices to the prior post-measurement state. If both matrices
are projective, the result of this application is independent of the prior state. Such a double projective
case however does not allow for measurement freezing like in the quantum Zeno effect, since there is
no way to fix the next measurement outcome (like decreasing the time intervals in the Zeno effect).
Instead, this case resembles a “quantum coin”, where either one of two chain states is realized after a
measurement, with fixed probabilites and no way to predict the outcome.

Moving away from the projective case, if one of the matrices has eigenvalues of different moduli, long
sequences of the corresponding outcome drive the chain state to its dominant eigenstate, such that
again information can be extracted from the readout sequence about the chain state. In this case, a
single outcome is non-conclusive, but the sequence makes it more and more likely for the chain to be
in the corresponding eigenstate—consequentially driving it there gradually via backaction. If none of
the matrices has an eigenvalue hierarchy, we saw in Fig. 3.3 that chains of matrices have eigenvectors
with projective eigenvalues, such that repeated sequences of the corresponding outcomes can be used
for the determination of the chain state.

A short summary to conclude Sec. 3.2: We introduced our chain-detector model and the time evo-
lution protocol, and solved the dynamics of the system between two successive measurements to show,
how the states of the system immediately after a measurement (post-measurement states) are related to
each other via the measurement operators (or post-measurement maps) [M±]. We argued that typical
post-measurement trajectories are typically attracted to a single circle ϕ ∈ {−π/2, π/2}, θ ∈ [0, π] (the
“Grand Circle”), and presented the only two exceptions (frozen- and shift cases) that correspond to
particularly simple behavior across different post-measurement trajectories. Having solved the model
for a single time step, we need a way to characterize the exponentially (with Nt) growing ensemble of
possible post-measurement trajectories, which we establish in the next section.

3.3 Distributions on the GC

As almost all post-measurement trajectories eventually converge to the GC, it is natural to wait for
this convergence to happen and then describe time evolution on the GC. In order to describe time
evolution on the GC, we introduce a polar angle in the Y − Z–plane as

Φ = atan2[sin
(
θ
)

sin
(
ϕ
)
, cos

(
θ
)
] Φ ∈ [−π, π). (3.40)
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In terms of this angle, we define a probability distribution on the GC, given an initial GC angle Φ0,
as the limit

W (Φ|Φ0) := lim
∆Φ→0

W∆Φ(Φ|Φ0), Φ ∈ [−π, π). (3.41)

of the course-grained distribution

W∆Φ(Φ|Φ0) := 1
∆Φ

∫ Φ+∆Φ/2

Φ−∆Φ/2
dΦ′ lim

m→∞

∑m
j=0

〈
δ(angle[Ψ{o}j

(t+j )] − Φ′)
〉

{o}j

m
(3.42)

where {o}j := {o1, o2, . . . , oj} is the sequence of outcomes, and angle(·) extracts the angle of a GC
state. The outcome average

〈·〉{o}j
:=

∑
o1,...,oj∈{−,+}

(·)P({o}j) (3.43)

is defined in terms of the conditional Born-rule probabilities P({o}j) := P(o1)P(o2|o1) . . .P(oj |{o}j−1).
The δ-function in Eq. (3.42) counts all post-measurement trajectories in the GC interval [Φ−∆Φ,Φ+

∆Φ]. The initial state is encoded as angle[Ψ(t+0 )] on the right hand side of Eq. (3.42). The notation
Ψ{o}j

(t+j ) provides a complete description of the post-measurement state at time t+j , by containing
the sequence of outcomes {o}j , that lead up to this state. After the j-th measurement, the outcome
sequence has j elements, each oj ∈ {−,+}. The outcome average of the state at time j is given by a
sum over 2j different outcome sequences (corresponding to potentially different quantum trajectories);
each weighed by its respective Born rule probability.

Including a time average ∑m
j=0 /m in the definition of the distribution (3.42) allows to attribute

a unique distribution to a set of parameters and an initial angle, even if the process does not have
a stationary state—think of a situation, where the measurements induce periodic switching between
states on the GC.

Intuitively, W (Φ|Φ0) describes fractions of time spent in given subsets of the GC, averaged over the
ensemble of post-measurement states. As a probability distribution, W is normalized∫ π

−π
dΦW (Φ|Φ0) = 1. (3.44)

The definition of the distribution in terms of a limit of a coarse-grained distribution is important for
the following reason: Even averaging over all possible post-measurement trajectories in the limit of
infinitely many steps of the protocol (m → ∞), the collection of all post-measurement states still
comprises a at most countably infinite set, not allowing for a notion of a continuous distribution
function. Without the limit definition, the distribution could only be defined in terms of a possibly
infinite sum of weighted δ-peaks. With the limit definition (3.41), a dense set of points over the GC is
converted into a continuous distribution by Eq. (3.41). Such a set emerges, if every point on the GC
can be approached arbitrarily closely (with non-vanishing probabilities in the averages). On the other
hand, if there is only a finite set of angles that are accessible to the post-measurement trajectory, the
limit definition reproduces a sum of δ peaks as one would expect6.

6The coarse-graining limit procedure is equivalent to introducing finite peak broadening for each delta-function and
considering the distribution obtained by taking the peak widths to zero. This is done for the definition of the local
density of states in disordered systems [68]. The coarse graining formulation is more convenient for our numerical
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3.3 Distributions on the GC

At this point we emphasize that at the level of the model there is no physical process that would
introduce peak broadening. Every post-measurement trajectory occupies a single point on the GC at
a given time instance. If we tried to determine the post-measurement state experimentally however,
broadening could be introduced for instance by a finite detector resolution. If there is a cut-off to
this resolution it becomes impossible to distinguish between a truly continuous distribution, and a
distribution with points within each discretization cell. This problem exists also for our numerics.

In the following, we explore the definition (3.41) separately in terms of outcome average (station-
ary states that fulfill a Master-equation) and time average (individual trajectories from Monte-Carlo
simulation).

3.3.1 Master equation

We start by considering the outcome average at fixed (possibly asymptotic) time.
For this purpose, we formulate a Master equation (ME), which governs a Markov process on the GC.
This process is constructed from the two GC mappings f−1

s : Φ 7→ Φ (with s ∈ {+,−}), defined by
the actions of the click- and no-click maps [M±] on the corresponding state7

f−1
s (Φ) := angle([M s]state(Φ)). (3.45)

Here, state(·) maps an angle on the GC to the corresponding state, and angle(·) maps a state on the
GC to the corresponding angle.
Defining the probabilities of the two different measurement outcomes P (±) on the GC analogously, we
obtain the following ME:

W1(Φ) =
∑

s∈{−,+}

∫
dΦ′W0(Φ′)P (s)(Φ′)δ(Φ − f−1

s (Φ′)) (3.46)

=: M[W0](Φ) Φ ∈ [−π, π). (3.47)

The ME kernel M takes an initial distribution W0 on the GC, and maps it to the new distribution W1,
assuming the Born rule weighted action of (+) and (−) maps. Physically, this should be understood
in terms of an outcome average.

As an example, consider starting from an initial state on the GC—corresponding to the distribution
W0(Φ) = δ(Φ − Φ0)—and applying the ME once:

W1(Φ) =
∑

s∈{−,+}
P (s)(Φ0)δ(Φ − f−1

s (Φ0)). (3.48)

W1 has δ-peaks at the two different angles that can result from the actions of [M±]-matrices. Physically,
these are the two post-measurement states that can result after the first step of time evolution according
to our protocol. Each peak has a weight corresponding to the probability that the corresponding
outcome is realized. This is the outcome averaged distribution after one step. Since the ME is linear
in the distribution, this argument can be iterated and after m applications of the ME, the outcome
averaged distribution after m time steps is obtained, starting from state(Φ0).

approaches.
7We define these maps suggestively of inverse functions fs, which are introduced later. In the projective case, the

functions fs do not exist, but generically the matrices [M±] are invertible as can be seen from Fig. 3.4.
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3 Ancilla measurements on a two-level system

The ME preserves normalization of the distribution:∫
dΦW1(Φ) =

∑
s∈{−,+}

∫
dΦ′W0(Φ′)P (s)(Φ′)

∫
dΦ δ(Φ − f−1

s (Φ′)) (3.49)

=
∫

dΦ′W0(Φ′)
∑
s

P (s)(Φ′) (3.50)

=
∫

dΦ′W0(Φ′), (3.51)

where we used that the probability to obtain any of the two possible results is one.
In addition to the integral formulation (3.47) of the ME, we can also obtain an implicit functional
equation by solving the integrals:

M[W0](Φ) =
∑

s∈{+,−}
|f ′
s(Φ)|P (s)(fs(Φ))W0(fs(Φ)) (3.52)

For both equations (3.47) and (3.52) it is important to keep in mind that they describe probability
distributions, and probabilities are obtained by integrating over a finite interval. This implies in
particular, that the application of the ME to a finite set of points {Φ} is not useful and can lead to
contradictions as two probability distributions differing only on a set of measure zero are equivalent.
In other words, a solution to the ME can not be found by solving a system of equations resulting from
inserting a discrete set of angles into Eq. (3.47).

We define a stationary distribution W (Φ) in terms of the ME kernel as

M[W ] = W. (3.53)

The solution to Eq. (3.53) is not necessarily unique: For example, if the GC is partitioned into two
subsets I1, I2 such that I1 ∪ I2 = [−π, π), I1 ∩ I2 = ∅ and without transitions between them

f−1
s (I1) ∩ I2 = ∅ (3.54)
f−1
s (I2) ∩ I1 = ∅, (3.55)

where f(I) is the image of I under f , each of these subsets may feature a stationary distribution, such
that the GC stationary distribution is not unique.

Assuming an initial distribution W0 on finite support, we can try to obtain a stationary state by
repeatedly applying the ME to this distribution8:

W = M[M[. . . [W0]]]. (3.56)

According to above reasoning, different initial distributions may result in different stationary states.

8This can be done explicitly to obtain a formal solution. However, this solution contains an infinite number of terms
due to the infinite number of iterative applications of the ME which can be necessary for convergence. It is therefore
not helpful to plot distributions for different parameter sets.
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3.3 Distributions on the GC

Discretized Master equation

Analytically solving the ME is generally difficult. Therefore, we discretize the ME, with the goal to
solve it numerically. In Refs. [136, 139] the numerical solution of implicit equations on a circle where
also discussed. If we consider only one of the maps M±, our ME reduces to the type of equation that
was considered in Ref. [136]. The circle equations from Ref. [139] can be brought to the same form as
or ME but with constant instead of angle dependent probabilities.

To discretize the ME, we partition the GC into N equally sized subintervals ci:

ci :=
[
Φi − ∆Φ/2,Φi + ∆Φ/2

]
i ∈ [0, N − 1] (3.57)

Φi := −π + (2i+ 1)∆Φ/2 ∆Φ := 2π
N

(3.58)

The stationary ME reduces to a set of N linear equations for the set of probabilities {P̃ri}:

P̃ri :=
∫
ci

dΦW (Φ) ≈
N∑
j=1

[MN ]i,jP̃rj , (3.59)

[MN ]i,j := 1
∆Φ

∑
s∈{+,−}

P (s)(Φj)|fs(ci) ∩ cj | (3.60)

Here fs(ci) is the image of ci under fs. f−1
s is continuous on the periodic interval [−π, π), and

invertible for all sets of parameters besides the projective limit, in which one of the eigenvalues of the
corresponding matrix vanishes. To obtain result (3.59), we used Eq. (3.52) and assumed, that P (s)

barely changes on the scale of ∆Φ.
Eq. (3.59) is an approximate equation for the “true” probabilities {P̃ri}, resulting from an expansion

in ∆Φ. With the discretized ME kernel [MN ] we define another set of probabilities {Pri} that exactly
fulfills the discretized master equation

Pri =
N∑
j=1

[MN ]i,jPrj i ∈ {1, 2, . . . , N}. (3.61)

Its solution gives us an approximation of the coarse-grained stationary distribution

W∆Φ(Φ) Φ∈ci≈ Pri
∆Φ , (3.62)

which we use to show numerical results for distributions with the ME (see for example Fig. 3.7).
We can estimate the number of cells that share overlap with fs(ci) (equivalently, the number of

non-zero matrix elements in row i) as |fs(ci)|/∆Φ = |fs(Φi + ∆Φ/2) − fs(Φi − ∆Φ/2)|/∆Φ ≈ |f ′
s(Φi)|.

As the fs are invertible, this derivative is typically of the order of smaller than one9. This means in
turn, that the matrix [MN ]i,j is sparse.

See Fig. 3.6 for some examples of such matrices, for N = 103 and four different parameter sets.
Finite matrix elements [MN ]i,j are shown in orange and blue. Each matrix features two continuous
“bands” of non-zero entries, corresponding to fs, s ∈ {+,−} (orange corresponds to the (+)-map,

9It can take arbitrarily large values on a small interval, but if it was for example 10 over an interval of π/2, the GC
would be covered 2.5 times in contradiction to invertibility.
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Figure 3.6: Structure of four different matrices [M103 ], obtained from discretizing the master
equation according to Eq. (3.59) for parameters (M = 2.92, T = 3.0554), (M =
2.766, T = 2.840), (M = 1.979, T = 2.2663), (M = 2.258, T = 1.4369) (γ is set
to one). Non-zero matrix elements are indicated in orange (contributions from the
[M+] matrix) and blue (contributions from the [M−] matrix). The upper left panel
corresponds to generic parameters. In the upper right panel, both matrices [M±] have
strong hierarchies between their eigenvalues (“almost projective”), such that a large
interval of the GC is mapped to a close vicinity of the dominant eigenvalue—note
the steep slopes of the “bands” near j ≈ 250, 750. The parameters in the lower left
panel are close to the frozen case, Y T ≈ 2.03. In the frozen case, we have [M±] ∝ 1,
such that also [MN ] ∝ 1, since no transition away from a given bin exists. The lower
right panel is close to the shift case, MT ≈ 1.03. In the shift case, one of the matrices
shifts Φ → −Φ on the GC (the anti-diagonal in the matrix plot). The other matrix
causes a constant shift of Φ, that depends on the parameters. See Sec. 3.2 and 3.4
for more details on these special cases.

blue corresponds to the (−)-map). As the fs are invertible, both bands are monotonous and cover all
rows and columns. The bands have small widths, rendering [MN ] sparse. In the upper right panel,
both matrices [M±] have strong hierarchies between their eigenvalues (“almost projective”), such that
a large interval of the GC is mapped to a close vicinity of the dominant eigenvalue—note the steep
slopes of the “bands” near j ≈ 250, 750. The parameters in the lower left panel are close to the frozen
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3.3 Distributions on the GC

case, Y T ≈ 2.03. In the frozen case, we have [M±] ∝ 1, such that also [MN ] ∝ 1, since no transition
away from a given bin exists. The lower right panel is close to the shift case, MT ≈ 1.03. In the
shift case, one of the matrices shifts Φ → −Φ on the GC. The other matrix causes a constant shift of
Φ, that depends on the parameters. The upper left panel corresponds to generic parameters, but the
matrix looks similar to the shift-case. In fact, all regions of the parameter plane are related more or
less closely to the special cases, such that this is not an exception.

A stationary solution of the (discretized) ME corresponds to an eigenvector of [MN ] with eigen-
value 1. As can be seen from Eq. (3.59), all entries of [MN ] are positive. Furthermore, probability
conservation is manifestly built into the ME,

N∑
i=1

[MN ]i,j = 1. (3.63)

For this reason, [MN ] is a positive Markov matrix and, as such, necessarily has an eigenvector cor-
responding to the eigenvalue 1 [97]: At least one stationary state of the ME always exists, regardless
parameters and discretization. Such a state can be efficiently found for sparse [MN ] by repeat-
edly applying the matrix to an arbitrary initial state Pr0 until convergence is reached (“power itera-
tion”)—provided that the eigenvalue λ = 1 is not degenerate, and that there is no other eigenvalue of
modulus one [140, 141].
Assuming a hierarchy between the eigenvalues of [MN ], convergence to the stationary state happens at
an exponential rate, which is proportional to the difference ∆λ between the dominant and the second
dominant eigenvalue (largest and second largest eigenvalues by modulus),

||Pr0 − [MN ]nitPr|| ∝ e− ∆λ
a0
nit . (3.64)

a0 is a positive number [140].
There are two cases where the ME method can run into problems: If the eigenvalue λ = 1 is degenerate,
the converged state depends on the initial state. In this case we cannot make an immediate connection
to the asymptotic behavior of quantum trajectories. If there is only one eigenvector corresponding
to λ = 1, but other eigenvectors with |λ′| = 1 power iteration can converge to a state that does not
correspond to a stationary solution of the ME.

As pointed out above, the stationary solution is not necessarily unique. In praxis however, we are able
to find non-degenerate stationary states efficiently for most parameter sets, using power iteration10.
There are two exceptions, corresponding to lines of special parameters:

• Frozen trajectories are maximally degenerate, as every basis state
[
P̂ri

]
j

:= δi,j solves the ME.

• For certain “periodic” trajectories (see also Sec. 3.4) an iterative solution does not necessarily
converge at all, as it can get stuck switching periodically between different angle bins. Say, if there
is a periodic trajectory between two bins, occupation of one of these bins gives [MN ]2[Pr] = [Pr],
corresponding to λ = −1. The non-degenerate solution to the ME in this case corresponds to
balanced occupation of the two peaks.

From the point of view of our definition of the GC distribution (3.41), a non-degenerate stationary
state is equivalent to the fully averaged GC distribution at the same parameters for any initial angle
10A unique stationary state of the discrete ME can be an artifact of the discretization. To make exclude this possibility

we checked the stability of our results with respect to the number of discretization cells.
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3 Ancilla measurements on a two-level system

Φ0, assuming the discretization is valid (this can be proven by contradiction). This is, because the
stationary solution to the ME is equivalent to an outcome average at asymptotic times and a stationary
state dominates the behavior of the time average in Eq. (3.41) in the limit of long times:

lim
l→∞

1
l

l∑
i=0

[MN ]iPr0 ≈ lim
l→∞

1
l

 l1∑
i=0

[MN ]iPr0 +
l∑

i=l1
Prstat

 (3.65)

→ Prstat (3.66)

where we assumed, that the probability vector converges to the stationary distribution within l1 ap-
plications of the Markov matrix. In terms of the discretized ME, we then expect

lim
∆Φ→0

Prstat
∆Φ

∆Φ → W∆Φ(Φ|Φ0). (3.67)

However, the distribution W may always have features on a scale smaller than the histogram resolution,
which are thus not captured by the coarse-grained W∆Φ. In the following numerical results, we ignore
this fact in the notation, dropping the index ∆Φ for convenience, assuming that the given discretization
is sufficient to cover at least those features of the limit distribution which are visible in the plots.

Most of our numerical results are generated with the ME method, see Fig. 3.10 for a few examples
of distributions obtained with the ME. Extensive numerical results are presented in Sec. 3.7.

3.3.2 Quantum trajectory approach and Monte-Carlo simulation

For any given quantum trajectory on the GC, the probability of a single-step transition Φj → Φj+1
is determined by Born’s rule and is equal to the corresponding probability P (±)(Φj) in the ME. If
the quantum trajectory visits the vicinity of every point Φ with W∆Φ(Φ|Φ0) > 0 many times, all
possible transitions between the coarse-grained angle intervals ci are probed. The probability of any
transition is then repeatedly sampled according to the Born rule, which means that the time-averaged
distribution should converge to the fully averaged distribution. If this is the case, the GC distribution
defined in (3.41) has a simple interpretation in terms of quantum trajectories: If a single trajectory
is observed for a sufficiently long time, the fraction of time it spends in a certain interval of the GC
is determined by the integral of W (θ|θ0) over that interval. The long-time behavior of almost any
quantum trajectory is in this case completely described by the model parameters, being independent
of outcome sequences.

If this is the case, it is natural to employ a Monte-Carlo (MC) approach similar to what was done in
chapter 1: We simulate (at most) a few post-measurement trajectories for a given initial state Φ0, by
randomly drawing measurement outcomes according to the Born rule, and performing time evolution
according to the maps [M±] corresponding to the chosen outcomes. The resulting post-measurement
trajectories are then time averaged; a histogram of visited angles is obtained. This procedure provides
information about the coarse-grained distribution W∆Φ(Φ|Φ0), if the outcome average is well described
in terms of typical post-measurement trajectories. Consequentially, we may investigate a distribution

W
{o}m

∆Φ (Φ|Φ0) := 1
∆Φ

∫ Φ+∆Φ/2

Φ−∆Φ/2
dΦ′

∑m
j=0 δ(angle[Ψ{o}j

(t+j )] − Φ′)
m

(3.68)

without performing any explicit average over outcomes (or trajectories) that, in principle, depends on
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the sequence of measurement outcomes {o}m. This allows to approximate the distribution (3.41), if
any typical path for sufficient m reproduces the distribution (3.41), as described above.

The simulation can be stopped, when the histogram of states has converged, i.e. when it does not
change significantly anymore with additional time steps.

We use the MC method to
1. check, that post-measurement trajectories actually generically converge to the GC (see Fig. 3.5),

and

2. compare the time average over a single trajectory to the ME result (see Fig. 3.9), relating to
above discussion of time versus outcome average.

As discussed in the previous section probability conservation implies that a unique stationary state is
accessible from any initial condition. This means that every typical post-measurement trajectory on
the GC samples the stationary state corresponding to the given model parameters.

While the MC method is useful for above checks due to its simplicity, it converges slowly compared
to the Markov method discussed above (in particular with decreasing ∆Φ).

To summarize this section, we started by defining a probability distribution on the GC, describ-
ing the ensemble of all possible time averaged post-measurement trajectories for a given set of pa-
rameters (3.41). We described the outcome average of a given initial distribution at a given post-
measurement time in terms of a Master equation (3.47). This Master equation always features at least
one stationary state, which is defined by Eq. (3.53). Discretizing the Master equation, we can efficiently
look for such stationary states using numerical power iteration. Furthermore, the non-degeneracy of
a stationary solution implies, that the stationary distribution is equivalent to the fully averaged dis-
tribution and independent on the initial state. If this is the case, we expect the stationary state to
be universal across all sufficiently long (typical) post-measurement trajectories, and thus described in
terms of a time-averaged distribution (3.68). Such time-averaged distributions can be found using a
MC simulation scheme.

In Fig. 3.7 we show comparisons between GC distributions obtained from the ME stationary state (3.61)
(solid blue lines) and MC time average (dotted orange lines) (3.68). The insets show smaller subinter-
vals of the GC to facilitate a better comparison. As can be seen, the distributions agree with each other
very accurately. This demonstrates, that both methods are suitable to obtain GC distributions 11.

In the following, we discuss two more cases of special parameters, where we can make strong state-
ments about the GC distribution without relying entirely on numerics.

3.4 Solutions for two more special cases

Having introduced different kinds of distributions on the GC, we now discuss two special cases in which
the GC distribution and the effect of different averages can be easily understood analytically.

3.4.1 Period-2-trajectories, Y T = (2l + 1)π
An interesting situation occurs along the lines Y T = (2l + 1)π with l ∈ N. These cases do not
represent an exception to GC convergence, allowing us to investigate initial states on the GC exclusively.
11To get such an accurate agreement, we considered 108 time points of a random post-measurement trajectory in the MC

method. We solved the ME on N = 106 grid cells. The distributions are shown on a grid with ∆φ = 2π/(10 ∗ ∗3).
For other numerical distributions we often use a smaller resolution for the ME calculation, but the point is that very
accurate agreement can be obtained which demonstrates the principal adequacy of the methods.
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Figure 3.7: Examples for approximate GC distributions (3.41) obtained as the stationary state of
the discrete master equation (3.61) (solid blue line) and the time average of a single
Monte-Carlo post-measurement trajectory (3.68) (dotted orange line).

Furthermore, in these cases the square of the post-measurement matrices [M±] reduces to

[M±]2 ∝ 1. (3.69)

As a consequence, any sequence of post-measurement matrices can be collapsed to one of the forms

([M+][M−])k (3.70)
([M−][M+])k (3.71)
[M−]([M+][M−])k (3.72)
[M+]([M−][M+])k (3.73)

(3.74)

with k ∈ N. The eigenvectors of the products [M±][M∓] point to Φ± := ±π/2 on the GC, and their
eigenvalues are purely imaginary and have different moduli

λ±
(η) = λ∓

(η) = i
2(η2Mγ/Y + sin

(
MT

)
/2) η ∈ {1,−1}. (3.75)

The angles Φ± form an invariant set for the post-measurement maps,

f−1
± (Φ±) = Φ∓. (3.76)

Due to the hierarchy of eigenvalues, long chains ([M±][M∓])k with k � 1 project to either point Φ±,
depending on which one corresponds to the dominant eigenvalue. Once a state has been attracted
to the vicinity of the invariant set, further applications of (+) and (−) maps lead to approximate
switching between the two invariant points.

In the following, we reason that (the vicinity of) this invariant set also attracts typical post-
measurement trajectories. For this, it is instructive think of all possible measurement paths as arranged
in a tree structure. (See below for an example for Nt = 4 time steps.)
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The set of all reachable states is given by applying the corresponding sequences of post-measurement
maps to the initial state and renormalizing. The reduction [M±]2 ∝ 1 means that this set grows linearly
with Nt, instead of exponentially (compare to the generic state tree in Fig. 3.2). Still, at any level of
the tree, there are “short chains” corresponding to small values of k. Since only long chains project
to the vicinity of the invariant set, it is not immediately clear whether or not the invariant set is
attractive.

Generally, the weight of each state in the distribution W has to be determined by summing up the
probabilities corresponding to each path leading to this state. Since there are exponentially many
different such paths, this seems like a difficult problem on first sight.

To tackle it, let us rearrange all states in the tree on a one-dimensional chain and think of the time
evolution as a random walk between nearest neighbors on this chain, with the transition probabilities
given by the respective probabilities of possible outcomes. See below for a schematic of the central
region of the resulting chain.

1 +−−+ + +− + − +

i− 1 i i+ 1

P+

P+

P−

P−

P+

P+P+

P+

P−

P−

Considering a simplified situation P±(Φ) = 1
2 , every possible path at time step Nt has probability

2−Nt . The problem of determining the probability corresponding to a certain state simplifies to counting
the paths that lead to this state (instead of finding and summing all possibly different weights). This
number of paths is given by a binomial coefficient, as can be seen by drawing Pascal’s triangle on top
of our tree-picture of states. The outcome-averaged distribution at even Nt is given by

WNt(Φ|Φ0) = 1
2Nt

B[Nt, Nt/2]δ(Φ − Φ0) +
Nt/2∑
n=1

B[Nt, (Nt + 2n)/2] (3.77)

[
δ
(
Φ − angle[(M+M−)nstate(Φ0)]

)
+ (+ ↔ −)

] , (3.78)

(without coarse-graining), where B[n,m] denotes the binomial distribution. The distribution for odd
Nt can be obtained analogously. Due to the attractive nature of long [M±][M∓]-chains, we can find

93



3 Ancilla measurements on a two-level system

for any ε � 1 a number n1 , such that

∀l ≥ n1 : angle
[
(MηM−η)lstate(Φ0)

]
∈ [π/2 − ε, π/2 + ε] ∪ [−π/2 − ε,−π/2 + ε] =: Iε (3.79)

We compare the probability within these ε-regions to the probability anywhere else on the GC:∫
[−π,π)\Iε

dΦWNt(Φ|Φ0)∫
Iε

dΦWNt(Φ|Φ0) = B[Nt, Nt/2] + 2∑n1
n=1B[Nt, (Nt + 2n)/2]

2∑Nt
n=n1 B[Nt, (Nt + 2n)/2]

(3.80)

≤ (1 + 2n1)B[Nt, Nt/2]
2Nt − (1 + 2n1)B[Nt, Nt/2]

(3.81)

=
Γ(Nt/2+1/2)√
πΓ(Nt/2+1)(1 + 2n1)(

1 − Γ(Nt/2+1/2)√
πΓ(Nt/2+1)(2n1 + 1)

) (3.82)

Nt→∞→ 0. (3.83)

This proves, that the distribution converges to arbitrarily narrow peaks around the angles Φ± = ±π/2
for Nt → ∞.

This consideration can be generalized to obtain the exact distribution for imbalanced P+(Φ) =
P = 1 − P−(Φ) by constructing a random walk across two-site unit-cells as indicated in above figure.
Obtaining the exact distribution at given Nt is difficult for the general “realistic” case with angle-
dependent probabilities. However, we can still make a prediction by realizing that above result for
the balanced random walk is essentially a consequence of the diffusion law: The ensemble of all possi-
ble post-measurement trajectories spreads diffusively on the one-dimensional chain of states depicted
above. According to the diffusion law in one dimension, the probability to find the particle in a central
region of arbitrary size tends to zero as a function of time. As we saw in the first chapter, the diffusion
law holds under quite general circumstances, and it is thus natural to expect that the probability in a
central (short-chain) region becomes negligible in the limit of long trajectories as long as P±(Φ) 6= 0.
Far away from the origin of the chain (the node labelled 1 in the picture) any state is projected to the
vicinity of the central peaks. In this vicinity, all possible transitions correspond to switching between
the peaks.

Based on this argument our prediction for the GC probability distribution in the period-2 case is

W (Φ) = 1
2[δ(Φ − π/2) + δ(Φ + π/2)]. (3.84)

It can be shown, that this distribution fulfills the stationary ME in the period-2 case. Because any
typical quantum trajectory is eventually attracted to the peak regions, this behavior is expected to be
observed in the time average as well.

While Eq. (3.84) is the only stationary state of the period-2 ME, it can be seen that it is not the
only “eigenvector” of the discretized ME with modulus one: The distributions W±(Φ) := δ(Φ ± π/2)
both correspond to eigenvectors with eigenvalue λ = −1, as described in Sec. 3.5. Therefore, power
iteration of the matrix [MN ] can not be expected to produce this stationary state.

We confirm our result (3.84) numerically in the upper left panel of Fig. 3.8. This plot was obtained
by finding the eigenstate with λ = 1 of the Markov matrix [M103 ] via exact diagonalization. Slight
peak broadening, as well as a slight imbalance between the peaks can be understood from the finite
discretization, which introduces transitions out of the bins that contain the invariant points Φ±.
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3.4 Solutions for two more special cases

3.4.2 Projective case

If one of the matrices [M±] has a single non-zero eigenvalue it projects to its main eigenvector if
applied. This means that any point on the GC is mapped to the angle corresponding to its dominant
eigenvector (the eigenangle) The eigenangle is element of the GC because only on the GC there is a
hierarchy between the moduli of eigenvalues.

By equating the eigenvalues (3.27) or (3.28) of the post-measurement matrices (3.27) or (3.28) to
zero, we find the conditions

λ−
min = 0 ⇒

∣∣∣∣cos
(
MT/2

)∣∣∣∣ = M

Y

∣∣∣∣sin(Y T/2)∣∣∣∣ , (3.85)

λ+
min = 0 ⇒

∣∣∣∣sin(MT/2
)∣∣∣∣ = M

Y

∣∣∣∣sin(Y T/2)∣∣∣∣ . (3.86)

The conditions are visualized in Fig. 3.4 as purple / orange lines for λ−
min / λ+

min.
For example, if the second condition is fulfilled, the (+) map is

f−1
+ (Φ) = Φeig (3.87)

where Φeig is the angle of the main eigenvector of the + matrix on the Bloch-sphere. In this limit, the
map is not invertible. The stationary ME is solved by the distribution

W (Φ) = N

δ(Φ − Φeig) +
∞∑
i=1

δ
(
Φ − F̄ i{i=−}(Φeig)

) i∏
j=1

P (−)
(
F̄ j−1

{i=−}(Φeig)
) , (3.88)

N −1 = 1 +
∞∑
i=1

i∏
j=1

P (−)
(
F̄ j−1

{i=−}(Φeig)
)
, (3.89)

F̄ j{i}(Φ) :=


Φ j = 0

f−1
ij

(
F̄ j−1

{i} (Φ)
)

j > 0
. (3.90)

While the (+)-map projects all points to its eigenangle, the (−) map generates translations of this
main peak to generate “satellites”.

This mechanism is similar to the mechanism explained in Ref. [67], where the continuous measure-
ment limit of a similar model was considered. In this limit, one of the matrices is always almost
projecting, leading to a main peak, which is translated in infinitesimally small steps by the second
matrix [67].

A good approximation for Eq. (3.88) can be obtained by truncating the sum after just a few terms,
since higher-order terms are exponentially suppressed. The stationary state is non-degenerate and
corresponds to the GC distribution and to the time-averaged distribution of a typical post-measurement
trajectory.

See the upper right panel of Fig. 3.8 for an example of a GC distribution in the projective case. The
leftmost peak corresponds to the eigenangle of the projecting matrix. The other peaks are quickly
shrinking satellites produced by the other matrix. The blue curve was obtained by discretizing the
time average over a single random Monte Carlo trajectory into 103 bins. The dotted curve are the first
20 terms of Eq. (3.88). The results agree perfectly.
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3 Ancilla measurements on a two-level system

The projective limit is approached, if there is a strong hierarchy of eigenvalues for one of the post-
measurement matrices, for example

|λ−
+|

|λ+
+|

� 1. (3.91)

If the smaller eigenvalue does not exactly vanish, the matrix is invertible and the inverse of the post-
measurement map can be defined. It can be proven, that∣∣∣∣∣∂f+

∂Φ (Φ = Φeig)
∣∣∣∣∣ = |λ+

max|
|λ+

min|
. (3.92)

Intuitively, a strong hierarchy between the eigenvalues means, that the main eigenvector strongly
attracts, meaning that for small δΦ

f+([Φeig − δΦ,Φeig + δΦ]) proj. limit→ [−π, π). (3.93)

In the Markov matrix [MN ], this can be seen as steep slope in the “band” of matrix elements, which
signifies, that probabilities from many different cells are mapped to a small region. In the upper
right panel of Fig. 3.6, both matrices are close to projective—note the steep slopes around the two
eigenangles (an eigenangle of one of the post-measurement maps on the GC corresponds to a finite
diagonal element of the Markov matrix, [MN ]i,i > 0).

In the lower panel of Fig. 3.8, an almost projective case is shown with M/γ → ∞ and Tγ → 0.
These limits correspond to the continuous measurement limit, which was analyzed in Ref. [67]. In
this work, the authors explain how one of the measurement outcomes ([M+] in our case, see Fig. 3.4)
becomes almost projective, while the second matrix generates infinitesimal translations, leading to a
smooth curve that decays from the main peak. They describe, that the onset of the quantum Zeno
effect manifests for example in the opening of a “forbidden region” of states as measurements become
strong. This region can be seen to the right of Φ = 0 in the distribution plot. Instead of infinitesimal
translations, the second matrix generates finite translations in our case, since we only approach the
continuous limit. As a result, instead of a smooth curve, we obtain a series of shrinking peaks.

3.5 Comparison of stationary solution and time average

Having analyzed different kinds of probability distributions and their relation to the GC probability
distribution (3.41) as well as special cases where we can understand these distributions without relying
on numerics, we move on to a systematic numerical approach in the (M,T ) parameter plane for fixed
γ = 1. We consider the plane M,T ∈ (0, 5] which turns out to include a broad range of different
distributions. Our understanding of generic distributions is based on their respective vicinity to the
four cases frozen, shift, period-2, and projective where the average is particularly simple.

As a first step, we need to investigate the validity of the MC and ME approaches for calculating the
GC distribution (3.41). In the left panel of Fig. 3.9 we show the difference |∆λ| = ||λ1| − |λ2|| between
the two dominant eigenvalues of the Markov matrix [M103 ]. λ1 and λ2 are eigenvalues of the Markov
matrix with largest- and second largest modulus. While the largest eigenvalue always fulfills λ = 1,
the difference between this eigenvalue and the second largest in modulus determines the validity of
the power iteration procedure as described in Sec. 3.3.1. Regarding the figure, we note that generally
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Figure 3.8: Examples for GC distributions in the special period-2 and projective cases (see
Sec. 3.4). All panels were obtained for γ = 1 and with the M and T -values in
plot titles. Upper left panel: Numerical result for the period-2-case, with TY = π. In
agreement with our prediction (3.84), the distribution consists of two peaks of (ap-
proximately) equal height, at angles Φ = ±π/2. The distribution was generated by
exact diagonalization of the GC Markov matrix M103 (defined in Eq. (3.59)) to find
the eigenvector with eigenvalue λ = 1 (the stationary state). Slight peak broadening
as well as a slight imbalance between the peaks are artifacts of the discretization
(introducing transitions away from the bins that contain the invariant points). Up-
per right panel: Example for a projective case, where one of the matrices M± has a
vanishing eigenvalue. In this case, the GC distribution is generated by projections to
the main eigenangle (the leftmost peak) and translated by the non-singular matrix
to produce the smaller peak-“satellites”. The blue curve was obtained numerically
by performing a time average over a single random Monte-Carlo post-measurement
trajectory (discretizing into 103 grid cells). The dotted curve is the analytical pre-
diction (3.88), truncated at just 20 terms. Lower panel: Almost projective case in
the limit M/γ → ∞ and Tγ → 0, where the matrix [M+] almost projects to Φ = 0,
while the [M−] matrix generates small translations of the main peak.

|∆λ| approaches zero towards the frozen- and shift cases as well as the period-2-trajectory lines.
This confirms the exceptions to the applicability of power-iteration discussed in Sec. 3.3.1—maximal
degeneracy for the frozen- and shift cases, and the existence of a 2-periodic solution (λ = −1) in
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Figure 3.9: Characterization and comparison of discretized Master equation and Monte Carlo
methods for obtaining Grand Circle distributions. Left panel: Difference of moduli
between the first and second dominant eigenvalues of the ME matrix [M103 ]. The
dominant eigenvalue is always equal to one. Right panel: χ2-distance (3.94) between
GC distributions with N = 103 grid cells, obtained from MC and ME method. For
the MC simulation we start for each parameter tuple from a random state on the
Bloch sphere and perform time evolution for 107 steps. We obtain the distribution
from the last 6.9 · 106 states. The ME is solved starting from a uniform distribution
on the GC on N = 105, iterating for up to 104 steps. The converged distribution is
then coarse grained on N = 103 grid cells. Solid lines correspond to period-2-cases
Y T = (2k+1)π with k ∈ N0. Dashed lines correspond to the frozen cases TY = 2kπ.
Dotted lines correspond to the shift cases MT = kπ. Orange lines correspond to the
projective limit, where an eigenvalue of one of the post-measurement matrices [M±]
becomes zero.

the period-2-case. Deviating from these lines of special parameters, |∆λ| increases rapidly (note the
logarithmic scale). Away from these lines the finite gap between the dominant eigenvalues suggests that
the discrete ME has a unique stationary solution which can be found efficiently using power iteration.

Next, we calculate distributions from both ME (power iteration) and MC simulation (time average
over a single post-measurement trajectory) on N = 103 grid cells. For the MC simulation, starting from
a random state on the Bloch sphere for every parameter set, we perform time evolution for 107 steps,
using the last 9.9 · 106 steps to obtain the GC distribution; having checked that generic trajectories
are converged to the GC after 105 steps, see Fig. 3.5.

Assuming, that a single MC trajectory captures the probability distribution W∆Φ(Φ), we can
estimate the number of simulated time steps necessary for convergence. An approximate require-
ment for “qualitative” convergence of the MC distribution is to have a large number of sampling
points per bin, nGC/N � 1 where nGC is the number of time steps on the GC from which the
distribution is obtained. To get relative accuracy for every component of Pr, we need to require
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3.5 Comparison of stationary solution and time average

nGC mini∈{1,...,N}(Pri) = nGC∆Φ minΦ(W∆Φ(Φ)) � 1. We thus estimate, that we get accurate compo-
nents if ∆ΦW∆Φ & 102/nGC ≈ 10−5, which should give a good qualitative picture of the distributions.
We compare the distributions obtained from MC simulation to results from the ME in the right panel
of Fig. 3.9, thus comparing stationary states of the discretized ME to the time average of random
quantum trajectories. We obtain the ME results from a uniform initial distribution on the GC, using
105 grid cells and up to 104 iteration steps. Using a uniform distribution as an initial state for power
iteration, the iterated solution is guaranteed to contain components of all stationary states, in case
the stationary state is degenerate. If this is the case, the iterated state can not be the same as the
time-averaged state from a single post-measurement trajectory.

The iterated distribution is coarse grained to N = 103 cells. The distributions are compared by
calculating the χ2-distance between the probability vectors from ME and MC calculations,

dχ2 [PrMC,PrME] := 1
2

N∑
i=1

(
PrMC

i − PrME
i

)2

PrMC
i + PrME

i

∈ [0, 1] (3.94)

. In most cases we observe good agreement, dχ2 < 10−2 � 1. Some exceptions are related to the frozen-
and shift cases (note bright markers exactly on dashed and dotted lines). If the freezing condition is
perfectly fulfilled, both ME and MC methods preserve the initial state, which is localized at one point
of the GC for MC evolution, and a uniform distribution on the GC for the ME calculation. In the
numerical comparison we ignore the fact that the MC initial condition does not necessarily lie on the
GC and just compare the distributions in Φ, keeping in mind that the frozen cases should be excluded
from further analysis. This gives a large deviation dχ2

N→∞→ 1 between the distributions. In the shift
cases, there is again no convergence of the MC trajectory to the GC, while the ME calculation takes
place entirely on the GC. Therefore, these cases must also be excluded from the comparison between
MC and ME distributions.

Other points with large differences between MC and ME distributions are related to a strong eigen-
value hierarchy for [M+] or [M−]. Vanishing λsmin for s ∈ {+,−} corresponds to the orange lines in
the plot, and for small M the eigenvalue ratio λ+

min/λ
+
max becomes small (see the dark blue region in

Fig. 3.4, right panel). In the projective limit, the GC distribution can be calculated to high accuracy
from a small number of terms in Eq. (3.88) and is independent of the initial angle. This distribution
is also the unique stationary state of the ME (3.47). However, writing the ME as (3.52) or discretizing
according to Eq. (3.59) are no longer valid, as the projective GC map is not invertible. This can also
lead to inaccuracies on the projective lines.

Other inaccuracies with dχ2 ∼ 10−2 do not correspond to systematic problems with the methods but
only to insufficient convergence (number of time points for the MC method, number of grid cells for
the ME method). To demonstrate this, we show in the left panel of Fig. 3.7 a comparison between MC
and ME distributions at one of the yellow parameter points with dχ2 ∼ 10−2, but increase the number
of time steps in the MC simulation to 108, and the grid size for the ME to 106, coarse graining both
results to ∆Φ = 2π/103 to approximate the corresponding W∆Φ. As the inset shows, the distributions
agree perfectly. Note that dχ2 ∼ 10−2 is still good agreement between the distributions, sufficient
for the following numerical investigations. In the discussed example distribution it corresponds to a
slightly different weight distribution in the heavy right peak between the two methods.

In summary, we numerically confirmed convergence of generic post-measurement trajectories to the
GC and found good agreement between the time-averaged distribution (3.68) and the power iterated
solution of the ME (3.53). The stationary state of the discretized ME is non-degenerate and its eigen-
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3 Ancilla measurements on a two-level system

value λ = 1 always well separated by modulus from the other eigenstates of the Markov matrix (3.59),
besides in the vicinity of frozen- and shift cases. This means, that the GC distribution (3.41) is inde-
pendent on the initial state and can be obtained from the time average or stationary state equivalently.

The general independence of the GC distribution on the initial state allows us to drop the initial
state argument Φ0 from W (Φ|Φ0) and investigate the distributions W (Φ) within the chosen parameter
range in the following. All following distributions are obtained with the established ME approach,
allowing us to go to higher N - and parameter grid resolutions.

3.6 Characterization of distributions in the generic case

To first give an impression of different distributions for generic parameters, we fix (arbitrarily)M = 2.92
and present six different distributions from this cross-section, corresponding to different values of T in
Fig. 3.10.

(De)Localization Comparing several distributions, there is an immediate difference: For T ∈ {2.5, 2.7},
the distribution W (Φ) has heavy peaks around few points and is therefore close to zero at most an-
gles. At T = 3.0 there are some peaks, but the distribution has small finite values at any angle. For
T ∈ {3.0554, 3.1, 3.722}, the weight of the distributions is spread across the entire GC (note the scale
of the y-axis). The distributions feature an intricate structure on smaller scale.

Based on the immediate visual difference between the distributions, it is tempting to refer to them
as localized and delocalized. A distribution can be localized in the sense that there is a large chance to
find the particle within a small subset of the GC within a short time interval on average (heavy peaks
in W (Φ)). If no such subset exists, the distribution is delocalized. To quantify this, we calculate a
participation ratio (PR)

RN [W ] :=

 N∑
i=1

Pr2
i

−1

= N2

(2π)2

 N∑
i=1

W 2
∆Φ(Φi)

−1

(3.95)

where the Pri are probabilities obtained from integrating W over N equally sized discretization cells.
A perfectly localized distribution Wl(Φ) = δ(Φ−Φ0) gives RN [Wl] = 1, while a uniform distribution

Wu(Φ) = (2π)−1 gives RN [Wu] = N/(2π). Accordingly, large (small) values correspond to delocalized
(localized) distributions. The scaling of the PR value with N can be attributed an exponent ζ as

RN [W ] ∝ N ζ ζ ∈ [0, 1]. (3.96)

In the preceding chapters, we refer to (de)localization as a property of wave functions in site-space.
In a one-dimensional Anderson localized system, the probability amplitude |ψi|2 corresponding to an
arbitrary eigenstate of the Hamiltonian falls off exponentially with the distance to the center site. In
this case, a participation ratio is calculated as

R̃L[ψ] :=
L∑
i=1

|ψi|4 (3.97)

where L is the system size. In a localized system, R̃L becomes independent of the system size if L
exceeds the localization length; while delocalization is defined by R̃L

L→∞→ ∞. Our model has a fixed
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Figure 3.10: Different GC distributions obtained for M = 2.92 by solving the discretized Master
equation (N = 105 grid cells) numerically for different values of T , starting from a
homogeneous initial condition.

size, and localization does not refer to any spatial property, but to the spread over the GC. The role
of the system size is played by the number of GC discretization grid cells N and the amplitude square
of the wave function is replaced by the stationary probabilities on the GC. The scaling of the PR with
N does not generally have an equivalent meaning as the scaling of the PR with L. For example, for a
narrow box distribution which is non-zero on an interval I1 with |I1| � 1, we get RN [W ] ∝ N , as the
fraction of the GC covered by the distribution is independent on N .

The situation is different, if the distribution is given by a sum of δ-peaks: In this case, the discretized
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3 Ancilla measurements on a two-level system

distribution W∆Φ(Φ) becomes narrower as ∆Φ → 0, and the PR is constant as a function of N , similar
to the PR scaling of a spatially localized distribution with system size. In this sense, a distribution
would only be localized, if its support on the GC decreased with increasing resolution; and there can
be situations where distributions are localized in the sense of a small PR value (narrow peaks), but
delocalized in the sense that the support is independent of the discretization (if ∆Φ is sufficiently small
to resolve the distribution). Indeed, we know of two cases (period-2-trajectories, and the projective
case), where the distribution W (Φ) is localized in the strict sense. Without analytical arguments, we
are however always limited by the minimum resolution ∆Φ.
To further resolve the “localized-looking” characteristic in the distributions, we introduce another
observable ScN which captures the minimum support Nc/N needed to cover a fraction c ≤ 1 of the
total probability:

ScN [W ] := Nc

N
(3.98)

Nc∑
i=0

[sorted({Pr})]i ≥ c (3.99)

where sorted({Pr}) are descendingly sorted probabilities and Nc is the smallest integer, such that the
inequality is fulfilled.

In the theory of Anderson transitions [10], the transition between insulating- and metallic phase
manifests itself in the local density of states [10, 68, 142, 143]

ρi(ε) =
∑
n

δ(ε− εn)|
〈
i
∣∣εn〉 |2. (3.100)

On the localized side, at any given location, there is just a small number of wave functions contributing
to the sum (3.100) at any given site i because most wave functions are localized away from i, and their
contribution is exponentially suppressed. As a result, the typical value of the local density of states
(essentially the value at the maximum of the distribution) vanishes [10, 68, 143]. On the metallic side
close to the transition, many states contribute at any site, because the eigenfunctions

〈
i
∣∣εn〉 are spread

out. The typical value assumes a finite value, and the distribution of values of ρi is spread around this
value [142, 143].

Inspired by this “order parameter” of the Anderson transition, we introduce a third observable to
capture localization, by counting the number of bins, where the GC probability distribution at given
discretization lies within a given window of values (a “histogram of heights”). For this we introduce
the height distribution

H(hj) :=
∑
i∈{1,...,N}|W∆Φ(Φi)∈[hj−∆h,hj+∆h]

N
(3.101)

hi := min(W∆Φ) + (2i+ 1)∆h i ∈ [0, Nh − 1] (3.102)

∆h := max(W∆Φ) − min(W∆Φ)
2Nh

(3.103)

where Nh � N . Our GC distribution W (Φ) is an analogue of the local “density of states” (the local
density of post-measurement trajectories on the GC). The height distribution H(hi) serves to analyze
the distribution of values of W (θ) and in particular its typical value. Considering the discretized
W∆Φ(Φ) ∈ [min(W∆Φ),max(W∆Φ)], we discretize its values into Nh bins. H(hi) is the number of cells
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Figure 3.11: Examples of distributions and corresponding histograms of heights falling into the
three different categories described in Sec. 3.6. Upper panels: Distributions obtained
from the master equation with N = 105, at parameters (M = 2.263, T = 3.498),
(M = 0.99, T = 1.811), (M = 4.052, T = 3.768). Lower panel: The corresponding
histograms of heights. From left to right categories 1 (localized, maximum at h =
∆h), 2 (maximum hmax at the leftmost non-zero bin h0 but at h0 > ∆h), and 3
(delocalized, maximum not at h0).

ci = [Φi− ∆Φ/2,Φi+ ∆Φ/2] with W∆Φ(Φi) ∈ [hi− ∆h, hi+ ∆h]. Each height bin has width 2∆h, and
the bin corresponding to the smallest height with H(hi) > 0 is centered around h0 = min(W∆Φ) + ∆h.

We analyze the typical value ofW∆Φ by considering the position of the histogram of heights maximum
hmax, such that H(hmax) = max(H). Based on our numerical experience, we distinguish three different
categories:

1. hmax = h0 = ∆h,

2. hmax = h0 > ∆h/2,

3. hmax > h0.

The first category means a vanishing12 typical value in analogy to the insulating phase of a disordered
system. The third category means a non-vanishing typical value in analogy to the metallic phase of
a disordered system. The second value corresponds to a non-vanishing typical value, however at the
left boundary of the distribution. This “transient regime” does not have an analogue in the Anderson
transition. For examples of distributions in all three categories and the corresponding characterizations
in terms of the histograms of heights see Fig. 3.11.

Fractality Having introduced observables to quantify “localization”, we now take a closer look at the
apparent substructure in some of the distributions. As an example, we consider M = 2.92, T ≈ 3.729
in Fig. 3.12 at high grid resolution N = 107. The upper left panel shows the entire distribution
12Note that the minimum value a height bin can be centered around is ∆h.
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Figure 3.12: Fractal GC distribution corresponding to M = 2.92, T ≈ 3.729, calculated with the
ME at N = 107 grid cells, starting from a uniform initial condition. The upper panel
shows W (Φ) on the entire GC, Φ ∈ [−π, π). The lower panels show progressively
smaller sections of the GC, with the respective interval indicated by blue shading
in the plot above.

W (Φ) with Φ ∈ [−π, π). The other panels show sections of the distribution taken from progressively
smaller intervals on the GC. The blue shaded areas indicate the intervals which are displayed in the
respective next panels. Remarkably, these four sections look similar to each other, suggesting that
the distribution “repeats itself” as modulations on different scales, with the interval considered in the
lower panel corresponding to a fraction of merely 5 · 10−5 of the GC.

Numerically, we can not further resolve this pattern without going to larger N . A heuristic argument
suggests however that this self-repetition can exist on any scale, rendering the distribution fractal.
We quantify fractality of the distribution by calculating a fractal dimension d: Overlaying the curve
corresponding to W (Φ) with a uniform grid of m−1 × m−1 cells, we count the number of cells C(m)
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3.6 Characterization of distributions in the generic case

required to fully cover the curve13. The relation

C(m) ∝
(

1
m

)d
m → 0 (3.104)

defines the box counting dimension d [144]. If the structure can be fully resolved at finite m, we get
d = 1. 1 < d < 2 corresponds to a fractal structure. Numerically calculating the fractal dimension we
can not increase m above the number of grid cells N without trivializing the box counting dimension.
Thus, any curve with d > 1 could turn out to scale trivially beyond our numerical resolution. However,
this numerical evidence supports our heuristical argument suggesting fractal scaling (layed out in the
next section).

The emergence of fractality is another parallel to the theory of Anderson transitions: At an An-
derson transition, the wave function of the system becomes multifractal [10], which means that its
self-similarity can be characterized by a whole set of non-trivial fractal dimensions by attributing a
fractal dimension f(α) to a subset of points of the wave function that is characterized by scaling as L−α

with the system size [10, 145–147]. The function f(α) is called the singularity spectrum and can be ex-
tracted from the scaling of moments of the wave function (like the IPR) with the system size [10, 145].
In terms of these moments, fractality is associated, for example, with a fractal dimension 0 < ζ < 1
of the PR. The box-counting dimension 1 < d < 2 of the entire wave function is closely related to the
singularity spectrum but contains less information14 [147].

(Non)ergodicity Finally, we ask about ergodicity of the Markov chain defined by [MN ]. There
exist several different notions of ergodicity for Markov processes in the literature [148, 149]. In the
following, we call the system ergodic, if the Markov process is irreducible 15. If this is the case,
the time- and outcome averaged distribution is probed by any typical post-measurement trajectory
implying ergodicity of the dynamical system [150]. Irreducibility means, that any state i (bin ci) can
be reached from every state j [148]. In our notation, for any i0, j0 there exists a natural number m
such that [

[MN ]m
]
i0,j

δj,j0 > 0. (3.105)

This is equivalent to ergodicity in the sense of a measure-preserving dynamical system, and the corre-
sponding ergodic theorems hold true [150].

For our GC distributions, ergodicity implies:

1. Support of the GC distribution (3.41) on the entire GC.

2. A unique stationary state of the Markov matrix.
13We cover the curve resulting from connecting the data points, not the points themselves. A single spike of height h

thus contributes h/m boxes, not one box.
14The reason we calculated the box-counting dimension of the curve is to describe the visible self-similarity in our GC

distributions, see Fig. 3.12. An analysis of the singularity spectrum would be interesting to further establish the
connection to the Anderson transition and is planned for future work.

15The apparently most common notion of ergodicity of a Markov chain requires aperiodicity as well [148]. This would
exclude for example our period-2-trajectory case. Irreducibility and aperiodicity together imply a unique stationary
distribution of the Markov process. However, including a time average in the definition of the GC distribution, we
can define a universal distribution for a set of parameters without this requirement.
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3 Ancilla measurements on a two-level system

3. Equivalence of GC distribution, stationary state16, and time average of a typical post-measurement
trajectory.

4. Independence of the GC distribution on the initial condition.

To numerically check whether a given [MN ] corresponds to an ergodic system, we can regard [MN ]
as the transition matrix of a directed graph

GN := (VN , EN ),
VN := {1, . . . , N},
EN := {(j, i) | (j, i) ∈ V 2 and [MN ]i,j > 0},

(3.106)

where VN is the set of nodes corresponding to the grid cells ci and E is the set of edges corresponding to
non-zero transitions j → i in the matrix [MN ]. Ergodicity of the Markov process with transition matrix
[MN ] is equivalent to GN having a single strongly connected component (SCC) containing all N nodes
(as an SCC is defined by every contained node being reachable by traversing exclusively edges within
the SCC). The SCCs of a graph GN can be calculated efficiently, within O(|VN |+|EN |) operations [151,
152] (we use the Python library networkx [153] to find SCCs). By calculating the SCCs of the graphs
induced by our transition matrices, we decide whether or not the discrete process is ergodic. Whether
or not this result at finite N can be used to make a statement about the continuous process, or the
limit N → ∞ is however not obvious and we do not prove (non)ergodicity for the continuous process
for arbitrary parameters.

We know with certainty, that the frozen case is non-ergodic in the limit N → ∞ because transitions
away from the initial state are impossible. In the next section we present analytical arguments for
non-ergodicity in an extended parameter regime.

From the numerical point of view calculating the number of SCCs gives a definite answer about
(non)ergodicity of the discretized process characterized by [MN ]. However, ergodicity can be an
artifact of the discretization. As an extreme example, suppose we discretized the entire GC into a
single cell c1 = [−π, π). This cell forms a single SCC, thus corresponding to an ergodic process. At
a higher number of grid cells, sub-intervals of the GC may prove unreachable, rendering the process
non-ergodic.

Importantly however, non-ergodicity of the process [MN ] at any discretization has definite physical
implications for the continuous process. To see this, consider the condensation of the corresponding
graph GN . (The condensation is constructed as follows: Define one supernode for each SCC of GN .
Introduce a directed edge between two SCC nodes, if there exists a corresponding transition between
the two represented sets of nodes [154].) The condensation is acyclic, such that we can define a partial
order of the SCC supernodes in terms of reachability [155], where supernodes have a higher order,
if they are reachable from a larger number of nodes. The SCC(s) at the highest order in this graph
correspond to invariant subsets of the GC: By construction, transitioning out of a highest order node
is impossible.

In this sense we refer to (non)ergodicity of the continuous process in the following: The process is non-
ergodic, if the GC can be deconstructed into at least two invariant subspaces (corresponding to a non-
ergodic discretization—not necessarily with uniform bins). Otherwise, the we call the process ergodic,
implying that for any discretization transitions between any two bins exist. Note, that non-ergodicity
does not imply degeneracy of the stationary state—as long as the condensation as an undirected graph
16Power-iteration does not necessarily work.

106



3.6 Characterization of distributions in the generic case

is fully connected, the stationary state is still non-degenerate.
Determining ergodicity with above method is numerically much favorable compared to, for exam-

ple, calculating the stationary state to determine whether it has full support. For example, some
components of the stationary distribution may be too small to be regarded finite in the numerical
solution.

A summary of all our different characterization criteria:

• Localization: The GC distribution reduces to a sum of δ-functions. At any sufficient discretization
the PR value (3.95) is RN ∼ 1 and the support (3.98) S1

N ∼ 1/N . This is associated with category
1 of the histogram of heights indicator. Localization can not be proven using numerics, since it
may always be a finite discretization artifact.

• Delocalization: The opposite of localization. It holds RN ∼ N and S1
N ≈ const. Category 3

of the histogram of height indicator is associated with delocalization. Delocalization is also not
provable numerically, since a continuous curve at given discretization may resolve as a set of
δ-peaks at higher discretization. With this definition, delocalization also includes distributions
which partly consist of δ peaks but also have extended regions.

• Non-ergodicity: This property is defined for the discrete process as featuring a number of strongly
connected components of GN greater than 1. Non-ergodicity of the discrete process implies non-
ergodicity of the continuous process (invariant subsets on the GC). In this case the GC distribu-
tion may or may not depend on the initial angle. A priori, there are no further implications for
the PR value, the support, or the histogram of heights.

• Ergodicity: The opposite of non-ergodicity. For the discrete process this property is defined by
the number of strongly connected components of GN being equal to 1. Ergodicity of the discrete
process does not imply ergodicity of the continuous process. Ergodicity of the continuous pro-
cess means that every point on the GC can be approach arbitrarily close by a post-measurement
trajectory starting on an arbitrary point on the GC. It cannot be proven numerically. Ergod-
icity implies a unique stationary state of the discrete ME, support S1

N = 1, delocalization, and
equivalence of time-average, stationary state, and GC distribution.

• Fractality: The fractal box-counting dimension (3.104) fulfills 1 < d < 2, implying a self-similar
structure of the curve W (Φ). Since we can not take the limit m → 0 numerically, this property
cannot be proven numerically. However, as solutions for the functional stationary ME (3.53)
fractal curves are a natural expectation. We expect the self-similarity of the curve to also
manifest in the singularity spectrum in analogy to the Anderson transition [10, 145–147].

To summarize, we introduced three criteria for localization of the GC distribution (participation
ratio, a support measure, and the typical value of the “histogram of heights”) based on a loose analogy
of the shape of our distributions (possibly at different discretizations) with localized and delocalized
wave functions in a disordered system. To account for a possible fractal substructure of the distri-
bution curves, we introduced a box-counting dimension. We can efficiently attribute ergodicity or
non-ergodicity to the discrete Markov process corresponding to the transition matrix [MN ]. This
allows us to draw conclusions about the continuous process.
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3 Ancilla measurements on a two-level system

3.7 (De-)localization, (Non-)ergodicity, and fractality

3.7.1 Cross-section through the M − T parameter plane

Using localization criteria, fractal dimension, and the ergodicity indicator of [MN ] we investigate a
cross-section through the parameter space at M = 2.92, considering 640 equally spaced values of T in
the interval T ∈ [10−3, 5], see Fig. 3.13. The distributions were obtained using the ME method with
N = 105 grid cells, starting from uniform distributions and iterating for up to 104 steps. Different
special conditions are indicated as black lines: Black solid lines correspond to period-2-trajectories,
dotted lines correspond to the shift cases and dashed lines correspond to the frozen cases. Additionally,
dash-dotted lines indicate the projective limit in either of the [M+], [M−] matrices.

Localization and Delocalization

Let us first consider the upper panel, showing the PR R105 . We note, that delocalization R105 ' 105

occurs in the vicinity of the frozen- and shift commensurability conditions (dashed and dotted lines),
while localization R105 � 105 is observed in the vicinity of period-2-trajectories and the projective
limit. Based on these conditions, all regions of the cross-section can be roughly distinguished. At
T = 0 the PR indicates delocalization, but this is an artifact of the uniform initial condition. In this
case the detector state is Zeno-frozen, since there is no (joint) unitary time evolution. Therefore, the
detector state never changes, and the measurement outcome is always no-click, corresponding to the
application of the [M−]-matrix. Consequently, the [M−]-matrix acts trivially on the chain state, such
that it remains frozen as well (though not in an eigenstate of a projective density measurement).

Similarly, exactly along the frozen cases, both matrices act trivially and the chain state never changes,
while the ME indicates a delocalized distribution. In these cases, any state is an eigenstate of the
Markov matrix, and these degenerate stationary states do not correspond to the actual (frozen) GC
distribution, which is given by the initial state. In the shift case, the ME also always has a uniformly
delocalized stationary state, as every bin has exactly the same incoming contributions. The actual
GC distribution depends on the shift angle φ: If this angle is commensurate with π, nφ = 2π for
some n ∈ N, the GC distribution only has support on a finite set of points. If the angle is non-
commensurate with 2π, any point on the GC can be approached arbitrarily closely, and the GC
distribution is delocalized. In any shift case, generic post-measurement quantum trajectories do not
converge to the generic distribution, since the Bloch-angle θ is frozen.

The situation is different in the vicinity of the freezing and shift cases: The freezing of state and
Bloch-angle is clearly broken away from the commensurabilities as we found that the trajectories
converge to the GC if we slightly deviate from these conditions. The deviation lifts the exact degeneracy
of eigenvalues in the frozen case, and the ME approach can be used—agreeing well with the MC
time average. Around these commensurabilities the PR indicates regions of delocalization of width
∆T h 1/2 with almost saturated PR values R105 ≈ 105. This means that the distributions are close
to uniform.

Uniform distributions in the vicinity of the frozen cases can be understood based on the structure of
the Markov matrix shown in the lower left panel of Fig. 3.6. The degenerate diagonal “band” of matrix
elements splits into two separate bands which are slightly shifted from the main diagonal and bent
towards opposite sites, crossing close to the middle and the ends. On the discretized level, it can be
understood that a slight shift of the bands away from the main diagonal should lead to delocalization,
since it essentially introduces transitions between neighboring grid cells. If the cells are smaller than
the distance of the band to the diagonal at some point, then there is a next-nearest neighbor transition,
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Figure 3.13: Cross-sections of different observables defined in Sec. 3.6 through the parameter
plane, with T ∈ [10−3, 5] and M = 2.92. Upper left panel: PR values R105 . Large
(small) values correspond to delocalization (localization). Upper right panel: Frac-
tal dimension d obtained from box counting. 1 < d < 2 corresponds to a self-similar
substructure, while d = 1 implies the absence of such substructure. Lower left
panel: Ergodicity of the Markov process corresponding to [M105 ]. The plot in-
dicates whether or not the corresponding graphs have a single strongly connected
component. Upper right panel: Box counting dimension of the distribution curve.
d = 1 corresponds to a fully resolvable curve, 1 < d < 2 corresponds to a repeating
(fractal) substructure to numerical resolution. Lower right panel: Different types
of behavior of the maximum of the histogram of heights, defined in Sec. 3.6. Types
1 / 3 are defined in analogy to the behavior of the typical value of the local density
of states in a disordered system in the localized / metallic phase. The distributions
were obtained with the ME method; for 640 equally spaced values of T ∈ [10−3, 5],
with N = 105 grid cells and a maximum of 104 iteration steps and starting from a
uniform initial distribution. Solid lines correspond to period-2-cases Y T = (2k+1)π
with k ∈ N0. Dashed lines correspond to the frozen cases TY = 2kπ. Dotted lines
correspond to the shift cases MT = kπ. Dash-dotted lines correspond to the pro-
jective limit, where one of the eigenvalues λ±

min vanishes.

but the other band can facilitate a back-transition to the cell in between and so on. At the same time,
perturbing the parameters of the frozen case, the outcome probabilities P± are almost independent of
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3 Ancilla measurements on a two-level system

the state, such that the stationary state is almost translationally invariant. From the trajectory point
of view, we can think of the state performing short-distance hops on the GC in a random direction,
eventually covering many points on the GC in a diffusive fashion. Similarly, in the shift case, existing
commensurabilities are broken by a perturbation.

Due to the above mechanism, the PR would reveal a sharp transition moving onto or off a frozen
parameter line, if we had chosen a localized initial state. Dynamically, this transition is more of a
crossover, since the distance from the commensurate line controls the “diffusion coefficient” in a post-
measurement trajectory. Close to the frozen case the time average of a post-measurement trajectory
converges slowly. Similarly, the difference between the two dominant eigenvalues of the Markov matrix
is controlled by the distance to the frozen line, such that the convergence rate of power iteration goes
to zero as the commensurability is approached.
Regions of localization can also be understood in terms of the corresponding special cases. The period-
2-trajectory (solid lines) corresponds to perfect localization of the GC distribution. We see from the
cross-section, that this localization can be destroyed by slight deviations from the commensurability.
Perturbatively, we may expect naively that a product [M±][M∓] still has eigenstates close to the
period-2-peaks. However, the attraction of the period-2-peaks depends on long chains of [M+][M−]
which emerge from the contraction argument [M±]2 = 1. If this contraction is not fulfilled exactly
anymore, the deviations add up particularly in long chains. This means that the number of chains
that project to the period-2-peaks becomes negligible and the peaks are immediately broadened.

The second special case related to small PR values is the projective limit (dash-dotted lines). In the
projective limit, the solution of the ME is given by a discrete set of δ-peaks, which decay exponentially
with the number of necessary transitions from the main projective peak, resulting in localization as
well. From the cross-section we see that the stability of this projective localization to variation in T
depends on the value of T . The first, fourth and fifth, and last projective lines are within regions of
smaller PR values; first and second-to-last line lie within extended “valleys”, and third and sixth lines
are enclosed by shift and frozen lines and only lead to a sharp dip in the PR. As mentioned above,
the vicinity of a projective case is special insofar, that a large interval of the GC is still mapped into
a narrow region around the dominant eigenangle of the almost projecting map, if this map is applied.
This may lead to a sharp peak at this eigenangle, which is translated by the second matrix. However,
the stability of this localization mechanism depends on the probability to apply the projecting map as
well as the stability of the strong eigenvalue hierarchy.

Interestingly, all broad regions of localization correspond to cases with a strong hierarchy in both
post-measurement matrices (see Fig. 3.4).

The support measure S0.99
105 and the scaling of the PR value with the discretization which were also

introduced in the previous section as indicators of localization show analogous behavior to the PR
diagram just described, see appendix B.1. A small value of the support measure means, that only
a small subset of the GC is needed to cover the support of the GC distribution which contains 0.99
of the total probability. A small PR exponent means, that the number of cells required to cover the
distribution depends only weakly on the discretization. In summary, our loosely defined “localization”
manifests in analogues of several common localization measures.

(Non-)Ergodicity and fractality

We move on to consider the ergodicity phase diagram in the lower left panel of Fig. 3.13. The plot
shows, whether or not the Markov process corresponding to [M105 ] is ergodic (whether or not G105

defined in Eq. (3.106) has a single SSC). Ergodicity does not necessarily imply delocalization in the

110



3.7 (De-)localization, (Non-)ergodicity, and fractality

sense of a large PR value: As long as the stationary solution is finite everywhere, the process can be
ergodic. For the same reason, non-ergodicity does not necessarily imply localization.

Most of the considered T interval is ergodic, but interestingly, we find extended non-ergodic regions
in the vicinity of projective lines, where both post-measurement matrices have strong eigenvalue hierar-
chies (at small T , the (+)-matrix has a strong eigenvalue hierarchy, see Fig. 3.4). As argued in Sec. 3.6,
non-ergodicity of the discrete process does imply non-ergodicity of the continuous process since there
are invariant subspaces on the GC. The same conclusion does not hold true for ergodic regions, but
the extent of these regions in the cross-sections suggests, that there is also genuine ergodicity in our
parameter space.

The existence of extended regions of non-ergodicity can be understood if both post-measurement
matrices have a strong (not necessarily singular) eigenvalue hierarchy. To understand this, consider two
small but finite intervals around the two eigenangles Φ±; say I± := [Φ± − δ±,Φ± + δ±]. These regions
make up an invariant subspace on the GC, leading to non-ergodicity. We prove this, by considering
the action of the post-measurement maps on these intervals. By definition, the eigenvalue is mapped
onto itself by the corresponding map, f−1

± (Φ±) = Φ±. A strong eigenvalue hierarchy means, that a
large fraction of the GC (around this eigenangle) is mapped into the vicinity of the eigenangle by the
corresponding map (see Sec. 3.4 and Fig. 3.6, upper right panel). In particular, a small vicinity of the
eigenvalue is mapped back into itself,

f−1
± (I±) ⊂ I±. (3.107)

If these “attractive regions” of the intervals I± are sufficiently extended to include the respective other
eigenangle as well, the condition

f−1
± (I∓) ⊂ I± (3.108)

is fulfilled. In this case, neither measurement operator can facilitate escape from the intervals I± which
thus form an invariant subset for the post-measurement state17.
Below, we use this line of reasoning to estimate the stability of non-ergodicity around the projective
cases due to this mechanism.

One may expect to find non-ergodicity also at least directly on the period-2-lines, since the period-
2-case is associated with an invariant set on the GC as well. However, this set contains exactly two
points and is never visible in a discretized picture.

Moving on to the fractal dimension displayed in the upper right panel of Fig. 3.13, we observe a
trivial box counting dimension d ≈ 1 around the frozen and shift cases. This is expected, since we
learned from the PR values that these cases correspond to almost uniform distributions. The projective
limit is also correlated with dips in the fractal dimension. Based on a series of exponentially shrinking
peaks in this limit, we indeed expect trivial scaling C(m) ∝ 1/m in the exact projective limit. This
is consistent with a low fractal dimension, even though our T -resolution is not sufficient to observe
d = 1. Period-2-trajectories correspond to dips in d, since the period-2-case with just two peaks also
corresponds to d = 1. All other cases have a non-trivial fractal dimension—this seems to be the generic
case in our system. Fractality of the distributions can be understood heuristically from the following
consideration. Suppose we are close to a projective case, such that the map f−1

+ maps a large fraction
of the GC to a narrow interval around its main eigenangle, resulting in a slightly broadened peak. The

17The existence of such a region is constructively proven with analogous reasoning, if we find more than one SCC in GN

at any N . The maps f± are not approximated in the numerics.
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(−) map translates this peak to another angle interval, slightly “distorting” the peak shape (because
f ′

− and P− are not constant). If we start from a peaked distribution around the main eigenangle, the
translating map generates a set of decaying “peak clones” on the GC. Many of these peak clones are
modulated back onto the main peak by the almost projecting map. Self-consistency requires those
modulations to be translated to the secondary peaks as well. Recursively applying this argument
suggests that the stationary limit is given by a fractal.

Generally, this mechanism is not limited to the projective cases. As soon as there is some back- and
forth copying between two points, fractality can emerge. Quantifying when exactly this breaks down
towards the uniform cases requires a more careful consideration, which we do not provide here.

To this point, we discussed “localization” in terms of the PR (and other localization indicators), and
ergodicity in the discrete and continuous Markov processes. We explicitly pointed out that these are
not necessarily correlated in any direction. A connection is established by the behavior of the maximum
histogram of heights—introduced as an observable inspired by the typical value of local the density of
states—which serves as an indicator for the Anderson (delocalization-localization) transition [10, 68],
see Sec. 3.6. The behavior of this typical value according to the three categories introduced in the
preceding section is shown in the lower right panel of Fig. 3.13. Interestingly, regions of non-ergodicity
are correlated with the first category (analogous to the manifestation of the insulating phase in the
local density of states). Around all of the non-ergodic projective cases, the maximum ventures into
the first category. Additionally, around the projective case at T ≈ 4, there is a small first-category
dip, which is not present in the ergodicity cross-section. Also, the behavior of hmax fluctuates, which
can be due to numerical inaccuracies18. The surrounding parameter regions of category-one behavior
are “transitional” category two regions (which does not have an analogue in the Anderson transition).
Delocalized regions (in PR terms) correspond to extended category three regions (delocalization in the
Anderson-picture) with occasional fluctuations into the second region around special lines.

To summarize up to this point: In terms of PR, we found localized and delocalized phases, which
can be qualitatively understood in terms of special cases. From the number of SCCs in the graph of the
discretized Markov process, we found ergodic- and non-ergodic phases, which we can also understand
based on the special cases. We established the existence of such non-ergodic phases also in the contin-
uous process and have reason to believe, that the ergodic phases also partially survive. The behavior
of hmax (inspired by the behavior of the typical local density of states around an Anderson transition)
establishes a connection between (de)-localization and (non)-ergodicity. Also, fractal curves are rather
generic as a solution of a continuous implicit equation of the form (3.52).

3.7.2 The M − T parameter plane

Having investigated a fixed M cross-section the M − T -parameter plane, we move on to study local-
ization, fractality, and ergodicity in the M − T plane. See Fig. 3.15 for the same quantities as in
Fig. 3.13, calculated for a 160 × 160 grid with M,T ∈ [10−2, 5]. Consider first the PR values R104 in
the upper left panel. Again, localized and delocalized phases can be distinguished based on the special
cases in analogy to what was discussed before. Delocalized phases are found around frozen- and shift
cases (dashed and dotted lines), while localization is related to the projective limit (orange and purple
lines) and period-2-trajectories (solid lines). Again, the almost uniform delocalization around frozen
and projective cases is remarkably stable with respect to change in parameters, manifesting in broad
yellow “bands” around the commensurate parameters. On the other hand, the period-2-trajectory
18There are two discretization steps, one to find the stationary solution of the discretized Master-equation and another

one to find the histogram of heights from which the maximum is extracted.
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crosses these bands on narrow “bridges” bridges of localization (for example at T = 0.3,M ≈ 4.7). For
the projective lines, it depends on the exact parameters whether they are surrounded by a narrow or
broad region of localization. Again, the case where both GC maps are almost projective is special in
that such regions always correspond to extended localization. (Support measure and PR scaling phase
diagrams are also visually very similar to the PR diagram, they are shown in the appendix B.2.)

Ergodicity regions where both matrices [M±] have a strong eigenvalue hierarchy are also special, due
to the argument lined out above. As expected, we find extended regions of non-ergodicity embedded
into the mostly ergodic phase diagrams; in the vicinity of strong hierarchies in both maps. To estimate
the expected extension of these vicinities, consider the following simple criterion for a non-ergodic
region, based on above argument:

1. Both matrices [M±] have eigenvectors on the GC (establishing the existence of a region according
to relation (3.107).)

2. The respective opposite eigenangle lies within the attractive region of the map (to fulfill rela-
tion (3.108)). This corresponds to19

(f−1
± )′(Φ∓) < 1. (3.109)

In Fig. 3.14 we show the evaluation of above criterion in our parameter range. Comparing to the
numerical data in Fig. 3.15 (lower left panel: ergodicity of the discrete process, lower right panel: hmax
indicator) we note, that the positions of the non-ergodic regions are strongly correlated. The criterion
covers all regions which we find to be non-ergodic at finite discretization (and which are category
one of the indicator). Furthermore, it shows the regions of non-ergodicity to extend further in the
parameter space. This could be either not true due to the inaccuracy of the estimation, or invisible in
the numerics due to insufficient discretization.

Considering the fractal dimension as a function of M and T (upper right panel of Fig. 3.15) confirms
again our conclusions from the cross-section. Extended regions of almost-uniform distributions around
frozen and shift cases correspond to a trivial fractal dimension of one. Away from these regions, the
fractal dimension is non-trivial (besides close to the projective cases, which are not drawn to avoid
covering fine lines of d ≈ 1).
Lastly, the behavior of hmax is displayed in the lower right panel. Again, there is astonishing agreement
between category three and uniform delocalization as well as between category one and non-ergodicity.
As before, the plot is somewhat noisy, probably due to discretization errors. Categories one and three
are separated by the “transient” category two.
With our semi-analytical explanation of different regimes in the parameter space, we cannot under-
stand every detail of the phase diagrams. One particularly prominent feature that we do not explain
here is visible in the lower left corner of the hmax, PR, and fractal dimension diagrams: Regions of
delocalization are broken by almost horizontal lines of localization (category two for hmax, d ≈ 1 for
the fractal dimension). This frequent change in behavior of the distributions may be attributed to
crossings of other commensurabilities, which we did not uncover here.

19Technically, none of the discussed properties of the maps prevents the second derivative from becoming negative
between those points (such that attraction at the “wrong” eigenangle does not imply attraction everywhere between
the eigenangles). We ignore this in our estimation.
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Figure 3.14: Evaluation of the analytical estimation for non-ergodicity in the continuous Markov
process on the grand circle (described in Sec. 3.7). This should be compared to
the numerical data in Fig. 3.15, lower panels. Purple / orange lines correspond to
projecting [M−] / [M+] matrix. Note, that the [M+] matrix has a strong eigenvalue
hierarchy in the region of the lower purple region as well, see Fig. 3.4.

3.8 Summary

We investigated a simple model of ancilla measurements where both the measured system (the “chain”),
as well as the detector only feature Hilbert spaces with two basis vectors each. In our time evolution
protocol, the detector is initialized in the |−〉 state at every step, evolves unitarily due to interaction
with the chain, and is projectively measured at the end of every step. This defines two measurement
operators, which map a post-measurement state onto one of two possible new post-measurement states,
depending on the measurement outcome. The time evolution of the post-measurement state is entirely
described by these measurement operators. We showed that the evolution generically takes place
on a one-dimensional circle on the Bloch sphere (the grand circle GC), see Figs. 3.3 and 3.3. We
characterized the evolution in terms of a distribution of states on the GC, which turned out to be
characteristic even for individual typical post-measurement trajectories, starting from an arbitrary
state on the Bloch-sphere. We described, how the evolution on the grand circle can be modeled as a
Markov process, which we discretized for numerical analysis. We described several special parametric
cases, their respective physical interpretations, and the corresponding behavior of the GC distribution.
Based on generic distributions for arbitrary points in the parameter plane of the model, we introduced
several observables to characterize the distributions. Depending on the parameters, the distributions
can “look” localized or delocalized on the GC. Even though there are fundamental differences between
apparent localization on the Bloch-sphere and Anderson localization, we defined some observables
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Figure 3.15: Diagrams of different observables defined in Sec. 3.6 in the M −T parameter plane.
Upper left panel: PR values R105 . Large (small) values correspond to delocalization
(localization). Upper right panel: Fractal dimension d obtained from box counting.
Lower left panel: Ergodicity of the Markov process corresponding to [M105 ] indi-
cating whether or not the corresponding graphs have a single strongly connected
component. Lower right panel: Behavior of the maximum of the histogram of
heights, defined in Sec. 3.6. Types 1 and 3 are defined in analogy to the behavior of
the typical value of the local density of states in a disordered system in the local-
ized and metallic phase. The distributions were obtained with the ME method, with
N = 104 grid cells and a maximum of 104 iteration steps, starting from a uniform
initial distribution. Solid lines correspond to period-2-cases Y T = (2k + 1)π with
k ∈ N0. Dashed lines correspond to the frozen cases TY = 2kπ. Dotted lines corre-
spond to the shift cases MT = kπ. Dash-dotted lines correspond to the projective
limit, where one of the eigenvalues λ±

min vanishes.
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based on counterparts from the analysis of the Anderson transition in a disordered material (the
participation ratio, the support measure, the behavior of the maximum of the histogram of heights).
Furthermore, due to remarkable self-similarity in some of our distributions (see Fig. 3.12), we analyzed
the distributions in terms of a box-counting dimension. Borrowing from the mathematical theory
of measure-preserving dynamical systems and Markov chains, we transferred a rigorous definition of
ergodicity in discrete Markov chains that corresponds to the physical concept of ergodicity to our
system.

Our main results are:

1. Our model provides a platform to consider non-trivial extensions of phenomena known from
projective measurements. We can have situations where none, one, or both of the measurement
maps leads to a collapse of the chain-state that is independent of the initial state. In the spirit
of the generalization of the quantum Zeno effect in terms of a partially measured model, put
forward by the authors of Ref. [67], this leads to a complex dynamical situation which manifests
itself in the distribution of post-measurement states on the GC.

2. The accessible Hilbert space of only four basis states renders the solution of one time step in the
model trivial. However, due to the randomness of the measurement outcomes, a complex Markov
process emerges on the GC, which we were only able to analytically solve for some special cases
(but analyzed numerically across a parameter plane). As was pointed out in Refs. [136–139] such
processes can give rise to a plethora of different distributions, which can be spread out, localized
around individual points, and even generically fractal (see Figs 3.10 and 3.12). Consequently,
the study of these distributions proved fruitful in our investigation as well.

3. At a discretized level, cross-overs and transitions between localization and delocalization exist in
the M−T parameter plane, reflecting in indicators known from Anderson localization such as the
participation ratio and support measures. These transitions and cross-overs can be understood
qualitatively based on analytical statements about the distributions in certain special cases. At
the same time, we found transitions between ergodicity and non-ergodicity in the discretized
Markov process on the GC (see Figs. 3.13 and 3.15). We demonstrated analytically that non-
ergodicity in extended parameter regions survives taking the limit to the continuous Markov
process and reasoned that extended regions of ergodicity exist as well, based on their stability in
all phase diagrams. This establishes transitions between ergodic- and non-ergodic behavior in the
state space, which is explored by individual typical quantum trajectories. Cross-overs between
localization and delocalization and transitions between ergodic and non-ergodic processes are
brought together by the typical value in the “histogram of heights” of the distribution, which we
constructed as an analogue of the typical value of the local density of states. This quantity is
sensitive to an Anderson transition [10, 68] and similarly indicates the ergodicity transition in our
system: In the non-ergodic phases, the “order parameter” indicates localization (in agreement
with the PR), while delocalization in the sense of the PR corresponds to delocalization in the
order parameter. In between, there is a transient phase that does not have any analogue in the
Anderson transition. Dynamical transitions where also observed and characterized previously in
a related model by the authors of Ref. [67].

Clearly, a lot can be learned from studying even the smallest non-trivial models of ancilla measurement
evolution. This encompasses interesting mathematical properties of dynamical processes, physical
implications of indirect measurements, and even the possibility of phase transitions in the dynamical
behavior.
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3.8 Summary

Regarding the model at hand, it may be interesting to understand better the mechanism of fractality,
to see when it breaks down. Exploring the possibility of multifractal curves in the category two regions
of the order parameter and analyzing fractality in terms of the singularity spectrum may establish
an even closer connection to the theory of Anderson localization. The similarities between Anderson
(de)localized wave functions and the distribution on the Bloch sphere could suggest a common math-
ematical origin—a connection between Anderson transitions in D ≥ 3 dimensions and measurement
induced transitions of free fermions in D− 1 dimensions was established in Refs. [38, 41] based on the
mathematical descriptions of these transitions. The investigation of this connection in our system in
particular is also left for further studies. Understanding delocalization in the continuous case based
on the Master equation would rigorously establish the transition in the continuous model.

Introducing small variations to specifics of our model—for example imbalanced energy levels in
the measured system, or a different kind of coupling—is expected to generate families of interesting
dynamical system, possibly not described by a single angular variable but with the entire Bloch-sphere
as the underlying manifold.

Slightly enlarging the measured system to permit for non-trivial evolution of two particles would
allow to introduce and study an entanglement entropy, which is the usual subject of interest in mea-
surement induced entanglement transitions.

Beyond such toy models, it would be interesting to see how and to what extent our results manifest
in larger systems, for example if the chain size is increased, or a “crystal” of our chain-detector pieces
is built. Ref. [39] considers both situations—ancilla measurements on a longer chain, and multiple
ancillas on a chain. A principle difference to our model besides the size is the fact that the detectors
are not reinitialized, allowing them to keep a memory of the measurement outcome. The authors
describe the effect a single ancilla can have on the entanglement entropy (calling this a “Zeno-valve
effect”) [39]. Using multiple ancillas, a measurement-induced transition is found. Establishing parallels
to our work requires further research.
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4 Chapter 4

Conclusion and outlook

4.1 Summary

Over the course of this thesis, we considered different settings of disordered and measured systems,
uncovering interesting dynamical effects emerging from these different sources of randomness.

In Chapter 1, we added projective onsite density measurements between long intervals of unitary
time evolution to a one dimensional, strongly localized Anderson featuring a single particle. We found,
that the introduction of measurements at randomly chosen locations restores transport in the chain,
while typical quantum trajectories still propagate within exponential envelopes. We demonstrated,
that the ensemble of particle trajectories—defined as the first moments of the quantum trajectories
immediately before a measurement—can be described by a simple classical random walk, where a lo-
calized wave function is associated with a classical random walker. In this picture, the main influence
of measurements on the wave function is a shift of the center site around which the particle is localized,
thus inducing random jumps. The distribution of effective localization lengths at the given disorder
strength is associated with a waiting time distribution in the random walk. Since it falls off quickly
towards long waiting times, the ensemble of pre-measurement trajectories spreads asymptotically diffu-
sively over the chain. This result holds true, even if only the measurement outcomes are random while
the disorder realization and the sequence of measurement locations is kept fixed. We found that a not
too large measurement frequency only impacts the diffusion constant, such that the system undergoes
a dynamical transition from localized to diffusive from the transport point of view. The main effect of
no-click measurements was found to be a slight modification of the effective localization length, which
we calculated from the spread of a wave function around its center site. The effective localization
length depends non-monotonously on the measurement frequency.
In above sense by combining measurements and disorder, we find coexisting localization (in the wave
functions) and delocalization (due to the mobile centers).

Furthermore, we formulated measurement protocols, that can be used to spatially steer the particle
to a designated target site within a polynomial number of measurements in the distance between initial
location and target. Ballistic steering can be realized if the outcome of every measurement is known,
by “dragging” the particle away from its last known location. Efficient steering is still possible without
having access to the detector readout anywhere but on the target site, by performing measurements
at random locations utilizing the diffusive spread.

In Chapter 2 was dedicated to the puzzlingly slow decay of large-wave vector initial states in the
presence of disorder, even without localization. As an important motivation, in many studies of
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many-body localization the density imbalance between neighboring sites is used as an indicator of the
delocalization-localization transition. The imbalance is monitored after setting up a highly imbalanced
state, which can not decay in a localized system, but is found to decay according to a power-law on the
ergodic side of the transition [59–61]. Naively, one could expect this decay to happen exponentially
fast due to the small distance each particle has to travel for the density to equilibrate. Using the
diagrammatic technique for disorder averaging [126], we demonstrated, that the slow power-law decay
of the imbalance is a universal property of disordered systems. It is related to so-called return pro-
cesses, where a particle scatters twice on the same impurity, moving diffusively in between these two
scattering events. In the diagrammatic picture this can be understood as the large external momentum
being transmitted through the first impurity across the diffuson ladder, which thus acquires a small
momentum leading to the diffusion pole. Consequently, the return probability enters the calculation of
the asymptotic imbalance decay and contributes a long-time tail that depends on the number of spatial
dimensions. This naturally leads to a relation between the imbalance- and mean-square displacement
power-law exponents, which was previously observed numerically in Refs. [59, 117]. The imbalance
exponent from our calculation coincides with numerical results in the diffusive phase of the many-body
localization transition [60]. Interestingly, our arguments can be generalized to the pre-thermal, subdif-
fusive phase on the delocalized side of a system with a many-body localization transition, by assuming
a modified diffusion propagator corresponding to a given subdiffusive exponent. Our analysis is also
applicable to the transient regime of weak disorder in a two-dimensional system with l � L � ξ. In
this situation, imbalance- and mean-square displacement exponents are slightly modified due to weak
multifractality of the wave functions [124, 125]. We check our results numerically by exact diagonaliza-
tion of a two-dimensional system in this parameter regime, confirming the imbalance exponent and the
relation between imbalance and mean-square displacement. To substantiate our numerical results, we
provide an additional analysis of the properties of transient weak localization in an intermediate-scale
two dimensional system in Appendix A.1.

In Chapter 3, we considered a simple model for ancilla-measurement dynamics, consisting of a two-
level system (one particle on a “chain” of two sites) and a two-level ancilla detector. During one period
of time evolution, the detector is first initialized in the (−) state, then evolved unitarily with the chain
through an interaction coupling of strength M during a time interval T , and is finally projectively mea-
sured in its eigenbasis. This time evolution protocol defines two measurement operators, corresponding
to the two possible outcomes of the detector measurement. The backaction of the measurement on the
chain depends on the parameters M and T . We gave some intuitive explanations for the effect of a
measurement, and demonstrated, that the chain state can generically be found on a one-dimensional
submanifold of the Bloch sphere (the GC). To characterize a parameter tuple M,T we introduced a
distribution function on the GC, by performing averages over time and measurement outcomes. We
investigated this distribution by establishing connections to the time-averaged distribution of states
in a typical post-measurement trajectory (accessible by Monte-Carlo simulation), and to the station-
ary state of a Markov-process on the GC, which can be approximated by solving a system of linear
equations after discretization. Intriguingly, the distribution is found to behave localized, delocalized,
and even fractal depending on the parameters. The discretized Markov process was shown to exhibit
transitions between ergodic- and non-ergodic phases, which are argued to be genuine features of the
continuous process. Using an analogue to an indicator which is used in the literature to pinpoint
the Anderson transition, we demonstrated, that these phases manifest themselves in the localization
properties of the distribution. We accompany our numerical results by discussions of the different
dynamical regimes in the M − T plane, being able to qualitatively explain the phase diagram based
on different special cases for which the GC distribution can be understood analytically.
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4.2 Outlook

In summary, we considered three different settings with measurements and disorder, that feature
non-trivial dynamical effects. In all three systems, we profited from analogies to classical Markov
processes, which inherited from the quantum properties of the dynamics. The omnipresence of random
walks in this context is a natural consequence of the central limit theorem for random numbers, which
can enter either through the disorder distribution or through the random outcomes of measurements.
The concept of localization is also somewhat common to disorder (due to Anderson localization) and
measurements (due to local projections, and the quantum Zeno effect). Indeed, in Chapter 3 we found
an interesting connection between a localization–delocalization (non-ergodic–ergodic) transition in the
dynamics of post measurement states on the Bloch sphere, and the Anderson transition.

4.2 Outlook

Our results lay a basis for further studies, building on the intuition provided by the respective models.
Possible directions include:

1. Further investigation of the applicability of our results from the second chapter numerically and
experimentally, in particular the relation between imbalance and mean-square exponent on the
ergodic side of the MBL transition. This could reveal details of the underlying process governing
subdiffusion in such systems.

2. Adding more particles while keeping the same time evolution protocol and Hamiltonian for the
measured Anderson chain. A continuously monitored, non-interacting Anderson-chain occupied
by several fermions was investigated in Ref. [46] from the perspective of the measurement-induced
entanglement transition. The entanglement transition in measured systems is a subject of debate
even in for the clean measured free fermion chain [28, 32, 38], and thus certainly interesting in
the presence of disorder as well. There are also other aspects of the dynamics that can be studied
in such systems, for example the influence of measurements on the shape of the wave functions,
as proposed in Ref. [46] (as we did for the wave function of a single particle). If several particles
are present, more complex steering targets can be chosen; with the goal to introduce non-trivial
correlations into the system that mimic the correlations in an interacting system.

3. Adding more particles and interaction effects to the measured Anderson chain. The possibility
of a measurement induced entanglement transition in a many-body localized system was in-
vestigated in Ref. [47]. Clearly, the introduction of interactions adds a whole new element of
complexity to the situation, since the relevant Hilbert space is exponentially large and can not
generically be parametrized efficiently. Additionally, the interaction strength enters the consid-
eration as another parameter.

4. Considering generalized (ancilla-) measurements instead of projective measurements on the An-
derson chain. In Ref. [39] it was shown, that even a single ancilla on a clean, interacting chain
can have an influence on the system dynamics. It is a natural extension to both Chapter 1 and 3
to take the more complex model of measurements from 3 and combine it with a larger (possibly
disordered) chain.

5. As already shown in Ref. [67], studying small models of generalized measurements can be inter-
esting in its own right, with the possibility of dynamical transitions that can not be observed in
projectively measured systems. In the model investigated in Chapter 3, open questions remain
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with regards to a possible connection to the Anderson transition, as well as to the solution of the
Markov equation. An investigation of multifractality of the curves would be a logical first step.
Even slight modifications of the model immediately complicate the situation, for example, the
introduction of an imbalance of onsite energies of the two chain sites (“disorder”) destroys GC
convergence and thus leads to a dynamical process on the two-dimensional surface of the Bloch
sphere.

Intriguingly, not even for the smallest systems (like our chain-detector setup) it is possible to accurately
predict the future in the form of a single quantum trajectory, contrary to main statement from the
initial quote by Laplace. This has been known for a long time and is owed to the nature of quantum
mechanical measurements. However, as also seen in the preceding chapters, measurements do not make
the field of dynamics less interesting but instead add a random element that leads to the emergence
of new phenomena. Dealing with random numbers is a problem familiar from disordered systems,
establishing a close connection between these two directions. The versatile effect of measurements
further motivates the joint investigation; with the possibilities of creating localization effects in clean
systems as well as establishing transport in otherwise localized systems. As outlined above, there are
many natural generalizations of the models considered in this thesis which can be expected to be rich
platforms for further studies.
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A Appendix A

Additional material for Chapter 2

The following sections were published in Ref. [54].

A.1 Additional numerical checks to Sec. 2.5: Fraction of localized
states and energy dependence of the conductance in calculations
of the imbalance

In Sec. 2.5, we numerically investigate memory effects in the (transient) diffusive regime of a 2D
Anderson lattice. Our numerical results on the decay of the imbalance I(t) in this regime are in
agreement with the analytical prediction (Sec. 2.4.2) of the power law behavior I(t) ∝ t−γI , with
exponent γI = 1 − 1/(πg) for a non-interacting 2D system. Here, g is the conductance and the term
−1/(πg) in the exponent γI originates from a weak-localization correction to the classical memory
effects (γI = 1).

It might come as a surprise that the imbalance numerics presented in Sec. 2.5 is described so well
by a power law I(t) ∝ t−γI , for the following two reasons. First, even though we consider not too
strong disorder, there is a fraction of localized states, with localization lengths smaller than the size
of the system. Some of these localized states (in the tails of the band) are so strongly localized that
their localization length is already probed on the time scales of our numerical simulations. Since the
imbalanced initial condition for the numerics (for example, a checkerboard pattern in the density)
encompasses the full range of energies, such strongly-localized states would also contribute to the
imbalance. Their contribution is different from the power law that is characteristic for delocalized
states: a strongly localized state is expected to give a time-independent contribution. Second, as
the conductance g(ε) is generically energy-dependent, the initial condition for the imbalance implies
averaging of the corresponding power-law decay over energy [here ν(ε) is the density of states]:

I(t) ∝
∫

dε ν(ε) t
−
(

1− 1
πg(ε)

)
. (A.1)

In Sec. 2.5, we provide explanation on why the numerical data for the imbalance in the transient
diffusive time window are described so well by a power law with a single power law exponent γI =
1 − 1/(πg). First, the fraction of strongly localized states in band tails is very small, so that they do
not play any essential role in the considered time regime. The dominant contribution to the imbalance
in this time range comes from the broad central region of the band (encompassing nearly all states),
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Figure A.1: Density of states ν (first row), inverse participation ratio P2 (second row), and
conductance g (third row) as functions of energy ε; imbalance I as a function of
time on a double-logarithmic scale (fourth row). These results are obtained from
exact diagonalization after averaging over 4000 disorder realizations of Hamiltonian
(2.67) in a system of 40×40 sites at disorder W = 1.5 (left column) and W = 2 (right
column). The vertical dotted lines separate the effectively delocalized states (ξ � 10)
from the localized states (ξ . 10) in band tails. The imbalance was obtained (up
to a constant prefactor) from ν(ε) and g(ε) using Eq. (A.1). For convenience of
comparison, the prefactors in the imbalance plots are chosen by fixing the values at
time t = 10 to the direct results in Fig. 2.4. Dashed lines are power-law fits slightly
shifted with respect to the imbalance curves (A.1) (solid) to make them easier to
distinguish.

while the expected asymptotic saturation (due to strong localization) will set in at still longer times.
Second, in this broad central part of the band, g is sufficiently large and depends only weakly on the
energy, so that the average (A.1) is numerically almost indistinguishable from a simple power law. The
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A.1 Additional numerical checks to Sec. 2.5: Fraction of localized states and energy dependence of the conductance in calculations of the imbalance

purpose of this appendix is to demonstrate these two statements explicitly by numerically evaluating
g(ε) and ν(ε) across the energy band.

To this end, we calculate the eigenstates and eigenvectors of Hamiltonian (2.67) for 4000 disorder
realizations with W = 1.5 and W = 2, in a system of N = 40 × 40 sites. From the eigenenergies we
obtain the density of states ν(ε), and for each eigenstate ψ(ε) at energy ε we determine the inverse
participation ratio (IPR)

P2(ε) =
N∑
i=1

∣∣∣ψi(ε)∣∣∣4 . (A.2)

Calculating the mean value 〈P2(ε)〉2 and the variance var[P2(ε)] of P2(ε) (with respect to averaging
over disorder realizations), we obtain information on the conductance g(ε) and the localization length
ξ(ε), as we are now going to explain. For delocalized states (localization length much larger than the
system size), the IPR is given by the random-matrix-theory value 〈P2〉 ≈ 3/N , with a weak-localization
correction. On the other hand, for strongly localized states (with ξ � L), the IPR becomes much larger
than this value. We can get an estimate of the localization length ξ of such a strongly localized state by
assuming (for 1 � ξ � L) that it spreads within the area ξ2, resulting in P2 ∼ 3/ξ2. This allows us to
estimate the contribution of the localized states to the conductance. Further, we use IPR fluctuations
to extract the conductance for the weakly localized states via [101]

g(ε) =
√

A 〈P2(ε)〉2

var[P2(ε)] , (A.3)

where A is a numerical factor that depends on the spatial dimensionality and boundary conditions; in
our case A ≈ 0.123. Using the obtained conductance and density of states, we numerically verify that
energy averaging (A.1) indeed does not lead to any essential deviations from a simple power law (in
the considered time window).

Before presenting our numerical data, we point out that the localization length ξ(ε) in the same 2D
model was determined numerically by the transfer-matrix approach in Ref. [156] (see upper panel of
Fig. 2 there). The disorder used in Ref. [156] was W = 2.5 in our units, i.e., somewhat stronger than
in our simulations. The results of Ref. [156] show that, even for this stronger disorder, the fraction of
strongly localized states with ξ < 10 (see below for the reason of the choice of this boundary) is very
small. Furthermore, the conductance that can be estimated (from the one-loop formula) as g ≈ π−1 ln ξ
varies in a relatively narrow interval only, 1.3 . g . 1.7, in the energy range |ε| < 3.5 comprising an
overwhelming majority of all states. These results fully support the above two statements [formulated
in the paragraph below Eq. (A.1)], in consistency with our numerics discussed below.

In Fig. A.1, we show the numerically obtained density of states (first row), average IPR (second
row), conductance (third row), and imbalance decay obtained from Eq. (A.1) (fourth row) for W = 1.5
(left column) and W = 2 (right column). Inspecting the density of states, we observe that nearly
all states lie within the energy band of the clean system, |ε| < 4. Already from this figure, one sees
that almost the whole band is effectively delocalized, with only a small fraction of strongly localized
states in the tails. From the IPR values, we find that states within |ε| . 4 are “delocalized” from the
finite-size perspective of the system, with ξ � L and thus 〈P2〉 ∼ 3/N ∼ 0.002.

Diffusion with D ∼ 1 over times t ∼ 100 implies spreading over ∼
√

100 = 10 sites in each direction.
Therefore, states with ξ & 10 still appear delocalized in the time window explored with our numerics
in Sec. 2.5. Placing a cut-off at 〈P2〉 = 0.02 . 3/102 on the density of states (dotted lines) to separate
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the strongly localized states, we find that the fraction of strongly localized states is indeed very small:
≈ 99% of all states at W = 1.5 and ≈ 97% of the states at W = 2 are delocalized according to this
criterion. Further, for the conductance within the energy window corresponding to delocalized states,
we find values between approximately 0.6 and 2.3 (0.5 and 1.2) for W = 1.5 (W = 2). Note that the
fact that g(ε) has a local minimum at the band center is in full agreement with the results of Ref. [156].

Using the obtained results for ν(ε) and g(ε), we numerically calculate the energy-averaged imbalance
curves according to Eq. (A.1), which are shown in the fourth row in Fig. A.1. We find that the resulting
curves for both values of disorder are virtually indistinguishable from power laws (dashed lines, slightly
shifted for ease of comparing), with γI = 0.78 at W = 1.5 and γI = 0.65 at W = 2. These results
are in good agreement with the values extracted from the direct imbalance simulations, γI = 0.69 for
W = 1.5 and γI = 0.61 for W = 2, see Fig. 2.4.

The fact that, despite the energy averaging (A.1), the imbalance is described so well by a single-
power law is fully consistent with the observation that, in most of the band, the conductance g(ε)
varies only weakly around its band-center value g(0) (see the third row in Fig. A.1). Specifically, we
find that for ∼ 85% of states, the conductance g(ε) is within ≈ 25% from its band-center value g(0).

The localized states are expected to give a time-independent contribution ∼ 1/ξ2 to the imbalance.
Even for our stronger disorder, we thus get an estimated contribution on the level of 10−4. This fully
supports our interpretation of the numerics, as provided in Sec. 2.5. The power laws observed there
are transient and will eventually saturate. However, the level at which saturation appears is very small
(∼ 10−4) and is not relevant in the considered time range (where the imbalance drops down only to
∼ 10−3).

A.2 Numerical calculation of the density response function

To calculate χ(q, t) in a 2D non-interacting system numerically, we start from the definition in the site
space:

χ̂r,r′(t) = −iθ(t)〈[n̂r(t), n̂r′(t)]〉. (A.4)

Here r and r′ label the sites on the two dimensional grid and n̂r(t) is the number operator in site space,
with

ñ(qx, qy, t) =
∑

r
e−iqran̂r(t). (A.5)

Applying Wick’s theorem, we find

χ̂r,r′(t) = −2Im
{

〈c†
r′(t)cr〉〈cr′(t)c†

r〉
}

= −2Im
{

[G<r′,r(t, 0)]∗G>r′,r(t, 0)
}
, (A.6)

where we have identified the lesser and greater Green’s functions G< and G>. These Green’s functions
are time-evolved according to

G≶
r,r′(t, 0) =

∑
r′′

Ur,r′′(t)G≶
r′′,r′(0, 0), (A.7)

Ur,r′(t) =
[
exp

(
−iHt

)]
r,r′

, (A.8)
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where H is the Hamiltonian in the site space.
We specify the initial condition in the eigenbasis of H (denoted with Greek indices), according to

the Fermi distribution:

G≶
r,r′(0, 0) = vr,αG

H,≶
α,β (v†)β,r′ , (A.9)

GH,<α,β (0, 0) = i δα,β

exp
[
β(εα − µ)

]
+ 1

, GH,>α,β (0, 0) = δα,β

[
−i +GH,<α,β (0, 0)

]
. (A.10)

Here, {εα} and {vr,α} are the eigenenergies and eigenvectors of H. The chemical potential µ is
chosen in the middle of the band, and the temperature T = 1/β is of the order of the bandwidth. We
obtain χ(qx, qy, t) by calculating the Fourier transform of χ̂r−r′(t) and performing the disorder average.

From χ(qx, qy, t), the imbalance tails are extracted by using the relations

Icheck(t) = 1
n0V

〈ñ(qx = π/a, qy = π/a, t)〉, n0 = 1
V

〈ñ(q = 0)〉, (A.11)

〈ñ(qx, qy, t)〉 = 〈ñ(qx, qy, 0)〉
[
1 + 1

ν

∫ t

0
dt′ χ(qx, qy, t− t′)

]
, (A.12)

see Sec. 2.3. We then perform numerical integration of χ(qx, qy, t), and fit the time dependence of the
result using Eq. (2.75). Comparing with the initial value of the imbalance, we find an estimate for the
fit parameter f1,

f1 ∼ 〈ñ(qx, qy, 0)〉
〈ñ(q = 0)〉ν . (A.13)
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B Appendix B

Additional material for Chapter 3

B.1 Additional phase diagrams

The contents of this Appendix are also presented in Ref. [65]. In this Section we show additional
indicators of localization: The support measure described in Eq. (3.98), and the exponent of PR
values (see Eq. (3.95)) scaling with the discretization. The PR scaling allow to distinguish between
localized peaks—becoming narrower with an increasing number of discretization cells—and narrow
peaks that remain identical as a function the discretization in the limit N → ∞. At finite N a scaling
exponent ζ = 0 is no more conclusive than the PR value at the highest resolution. The support
measure provides additional information about whether or not a delocalized distribution spreads over
the entire grand circle. The results are qualitatively similar to what was obtained for the PR values.
Fig. B.1 shows results for the T ∈ (0, 5] cross-section at M = 2.92 and should be compared to Fig. 3.13.
Fig. B.2 shows results for the M,T ∈ (0, 5] parameter plane and should be compared to Fig. 3.15.
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Figure B.1: Additional indicators of localization, calculated from the same distributions as
Fig. 3.13. Left panel: Support S0.99

105 , as defined in Eq. (3.98). Right panel: Scaling of
the PR exponent with discretization ∆Φ of the stationary distribution from Markov
matrix power iteration. These values were obtained by calculating the distributions
from [M104 ], coarse graining these highly resolved distributions to lower resolution,
calculating the PR value (Eq. (3.95)) at each discretization, and fitting the resulting
values to a power law. Different lines show special parameter regimes described in
Secs. 3.2 and 3.4. Solid lines correspond to period-2-cases Y T = (2k + 1)π with
k ∈ N0. Dashed lines correspond to the frozen cases TY = 2kπ. Dotted lines corre-
spond to the shift cases MT = kπ. Dash-dotted lines correspond to the projective
limit, conditions (3.85) or (3.86).
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Figure B.2: Additional indicators of localization, calculated from the same distributions as
Fig. 3.15. Left panel: Support S0.99

105 , as defined in Eq. (3.98). Right panel: Scaling of
the PR exponent with discretization ∆Φ of the stationary distribution from Markov
matrix power iteration. These values were obtained by calculating the distributions
from [M104 ], coarse graining these highly resolved distributions to lower resolution,
calculating the PR value (Eq. (3.95)) at each discretization, and fitting the resulting
values to a power law. Different lines show special parameter regimes described in
Secs. 3.2 and 3.4. Solid lines correspond to period-2-cases Y T = (2k + 1)π with
k ∈ N0. Dashed lines correspond to the frozen cases TY = 2kπ. Dotted lines corre-
spond to the shift cases MT = kπ. Dash-dotted lines correspond to the projective
limit, conditions (3.85) or (3.86).

131





Bibliography

1P. S. Laplace, A philosophical essay on probabilities (Dover Publications, 1952).
2H. Bruus and K. Flensberg, Many-body quantum theory in condensed matter physics - an introduc-
tion, English (Oxford University Press, United States, 2004).

3T. Vojta, “Disorder in quantum many-body systems,” Annual Review of Condensed Matter Physics
10, 233–252 (2019).

4B. Misra and E. C. G. Sudarshan, “The Zenos paradox in quantum theory,” Journal of Mathematical
Physics 18, 756–763 (1977).

5W. M. Itano, D. J. Heinzen, J. J. Bollinger, and D. J. Wineland, “Quantum zeno effect,” Phys. Rev.
A 41, 2295–2300 (1990).

6M. C. Fischer, B. Gutiérrez-Medina, and M. G. Raizen, “Observation of the quantum zeno and
anti-zeno effects in an unstable system,” Phys. Rev. Lett. 87, 040402 (2001).

7F. Schäfer, I. Herrera, S. Cherukattil, C. Lovecchio, F. Cataliotti, F. Caruso, and A. Smerzi, “Exper-
imental realization of quantum zeno dynamics,” Nature Communications 5, 10.1038/ncomms4194
(2014).

8P. W. Anderson, “Absence of Diffusion in Certain Random Lattices,” Phys. Rev. 109, 1492–1505
(1958).

9E. Abrahams, P. W. Anderson, D. C. Licciardello, and T. V. Ramakrishnan, “Scaling theory of
localization: Absence of quantum diffusion in two dimensions,” Phys. Rev. Lett. 42, 673–676 (1979).

10F. Evers and A. D. Mirlin, “Anderson transitions,” Rev. Mod. Phys. 80, 1355–1417 (2008).
11R. Nandkishore and D. A. Huse, “Many-Body Localization and Thermalization in Quantum Statis-

tical Mechanics,” Ann. Rev. Cond. Mat. Phys. 6, 15–38 (2015).
12Y. Zhao, D. Feng, Y. Hu, S. Guo, and J. Sirker, “Entanglement dynamics in the three-dimensional

anderson model,” Phys. Rev. B 102, 195132 (2020).
13L. Fleishman and P. W. Anderson, “Interactions and the anderson transition,” Phys. Rev. B 21,

2366–2377 (1980).
14I. V. Gornyi, A. D. Mirlin, and D. G. Polyakov, “Interacting Electrons in Disordered Wires: Anderson

Localization and Low-T Transport,” Phys. Rev. Lett. 95, 206603 (2005).
15D. Basko, I. Aleiner, and B. Altshuler, “Metalinsulator transition in a weakly interacting many-

electron system with localized single-particle states,” Annals of Physics 321, 11261205 (2006).
16E. Altman and R. Vosk, “Universal Dynamics and Renormalization in Many-Body-Localized Sys-

tems,” Ann. Rev. Cond. Mat. Phys. 6, 383–409 (2015).
17D. A. Abanin and Z. Papić, “Recent progress in many-body localization,” Ann. Phys. (Berl.) 529,

1700169 (2017).

133

https://doi.org/10.1146/annurev-conmatphys-031218-013433
https://doi.org/10.1146/annurev-conmatphys-031218-013433
https://doi.org/10.1063/1.523304
https://doi.org/10.1063/1.523304
https://doi.org/10.1103/PhysRevA.41.2295
https://doi.org/10.1103/PhysRevA.41.2295
https://doi.org/10.1103/PhysRevLett.87.040402
https://doi.org/10.1038/ncomms4194
https://doi.org/10.1038/ncomms4194
https://doi.org/10.1038/ncomms4194
https://doi.org/10.1103/PhysRev.109.1492
https://doi.org/10.1103/PhysRev.109.1492
https://doi.org/10.1103/PhysRevLett.42.673
https://doi.org/10.1103/RevModPhys.80.1355
https://doi.org/10.1146/annurev-conmatphys-031214-014726
https://doi.org/10.1103/PhysRevB.102.195132
https://doi.org/10.1103/PhysRevB.21.2366
https://doi.org/10.1103/PhysRevB.21.2366
https://doi.org/10.1103/PhysRevLett.95.206603
https://doi.org/10.1016/j.aop.2005.11.014
https://doi.org/10.1146/annurev-conmatphys-031214-014701
https://doi.org/10.1002/andp.201700169
https://doi.org/10.1002/andp.201700169


Bibliography

18F. Alet and N. Laflorencie, “Many-body localization: an introduction and selected topics,” Comptes
Rendus Physique 19, 498–525 (2018).

19D. A. Abanin, E. Altman, I. Bloch, and M. Serbyn, “Colloquium: many-body localization, thermal-
ization, and entanglement,” Rev. Mod. Phys. 91, 021001 (2019).

20S. Dhar and S. Dasgupta, “Measurement-induced phase transition in a quantum spin system,” Phys.
Rev. A 93, 050103 (2016).

21Y. Li, X. Chen, and M. P. A. Fisher, “Quantum Zeno effect and the many-body entanglement
transition,” Phys. Rev. B 98, 205136 (2018).

22B. Skinner, J. Ruhman, and A. Nahum, “Measurement-induced phase transitions in the dynamics
of entanglement,” Phys. Rev. X 9, 031009 (2019).

23Y. Li, X. Chen, and M. P. A. Fisher, “Measurement-driven entanglement transition in hybrid quan-
tum circuits,” Phys. Rev. B 100, 134306 (2019).

24A. Chan, R. M. Nandkishore, M. Pretko, and G. Smith, “Unitary-projective entanglement dynam-
ics,” Phys. Rev. B 99, 224307 (2019).

25Y. Bao, S. Choi, and E. Altman, “Theory of the phase transition in random unitary circuits with
measurements,” Phys. Rev. B 101, 104301 (2020).

26M. Szyniszewski, A. Romito, and H. Schomerus, “Entanglement transition from variable-strength
weak measurements,” Phys. Rev. B 100, 064204 (2019).

27M. P. Fisher, V. Khemani, A. Nahum, and S. Vijay, “Random quantum circuits,” Annual Review
of Condensed Matter Physics 14, 335–379 (2023).

28O. Alberton, M. Buchhold, and S. Diehl, “Entanglement transition in a monitored free-fermion
chain: From extended criticality to area law,” Phys. Rev. Lett. 126, 170602 (2021).

29M. Buchhold, Y. Minoguchi, A. Altland, and S. Diehl, “Effective theory for the measurement-induced
phase transition of Dirac fermions,” Phys. Rev. X 11, 041004 (2021).

30E. V. H. Doggen, Y. Gefen, I. V. Gornyi, A. D. Mirlin, and D. G. Polyakov, “Generalized quantum
measurements with matrix product states: Entanglement phase transition and clusterization,” Phys.
Rev. Research 4, 023146 (2022).

31J. Merritt and L. Fidkowski, “Entanglement transitions with free fermions,” Phys. Rev. B 107,
064303 (2023).

32X. Cao, A. Tilloy, and A. D. Luca, “Entanglement in a fermion chain under continuous monitoring,”
SciPost Phys. 7, 024 (2019).

33X. Turkeshi, M. Dalmonte, R. Fazio, and M. Schirò, “Entanglement transitions from stochastic
resetting of non-Hermitian quasiparticles,” Phys. Rev. B 105, L241114 (2022).

34A. Altland, M. Buchhold, S. Diehl, and T. Micklitz, “Dynamics of measured many-body quantum
chaotic systems,” Phys. Rev. Research 4, L022066 (2022).

35B. Ladewig, S. Diehl, and M. Buchhold, “Monitored open fermion dynamics: Exploring the interplay
of measurement, decoherence, and free Hamiltonian evolution,” Phys. Rev. Research 4, 033001
(2022).

36Y. Minoguchi, P. Rabl, and M. Buchhold, “Continuous Gaussian measurements of the free boson
CFT: A model for exactly solvable and detectable measurement-induced dynamics,” SciPost Phys.
12, 009 (2022).

134

https://doi.org/https://doi.org/10.1016/j.crhy.2018.03.003
https://doi.org/https://doi.org/10.1016/j.crhy.2018.03.003
https://doi.org/10.1103/RevModPhys.91.021001
https://doi.org/10.1103/PhysRevA.93.050103
https://doi.org/10.1103/PhysRevA.93.050103
https://doi.org/10.1103/PhysRevB.98.205136
https://doi.org/10.1103/PhysRevX.9.031009
https://doi.org/10.1103/PhysRevB.100.134306
https://doi.org/10.1103/PhysRevB.99.224307
https://doi.org/10.1103/PhysRevB.101.104301
https://doi.org/10.1103/PhysRevB.100.064204
https://doi.org/10.1146/annurev-conmatphys-031720-030658
https://doi.org/10.1146/annurev-conmatphys-031720-030658
https://doi.org/10.1103/PhysRevLett.126.170602
https://doi.org/10.1103/PhysRevX.11.041004
https://doi.org/10.1103/PhysRevResearch.4.023146
https://doi.org/10.1103/PhysRevResearch.4.023146
https://doi.org/10.1103/PhysRevB.107.064303
https://doi.org/10.1103/PhysRevB.107.064303
https://doi.org/10.21468/SciPostPhys.7.2.024
https://doi.org/10.1103/PhysRevB.105.L241114
https://doi.org/10.1103/PhysRevResearch.4.L022066
https://doi.org/10.1103/PhysRevResearch.4.033001
https://doi.org/10.1103/PhysRevResearch.4.033001
https://doi.org/10.21468/SciPostPhys.12.1.009
https://doi.org/10.21468/SciPostPhys.12.1.009


37Q. Yang, Y. Zuo, and D. E. Liu, “Keldysh nonlinear sigma model for a free-fermion gas under
continuous measurements,” Phys. Rev. Res. 5, 033174 (2023).

38I. Poboiko, P. Pöpperl, I. V. Gornyi, and A. D. Mirlin, Theory of free fermions under random
projective measurements, arXiv:2304.03138, 2023.

39E. V. H. Doggen, Y. Gefen, I. V. Gornyi, A. D. Mirlin, and D. G. Polyakov, “Evolution of many-body
systems under ancilla quantum measurements,” Phys. Rev. B 107, 214203 (2023).

40R. Vasseur, A. C. Potter, Y.-Z. You, and A. W. W. Ludwig, “Entanglement transitions from holo-
graphic random tensor networks,” Phys. Rev. B 100, 134203 (2019).

41I. Poboiko, I. V. Gornyi, and A. D. Mirlin, Measurement-induced phase transition for free fermions
above one dimension, arXiv:2309.12405, 2023.

42M. Ippoliti, M. J. Gullans, S. Gopalakrishnan, D. A. Huse, and V. Khemani, “Entanglement phase
transitions in measurement-only dynamics,” Phys. Rev. X 11, 011030 (2021).

43S. Roy, J. T. Chalker, I. V. Gornyi, and Y. Gefen, “Measurement-induced steering of quantum
systems,” Phys. Rev. Research 2, 033347 (2020).

44E. Schrödinger, “Discussion of probability relations between separated systems,” Mathematical Pro-
ceedings of the Cambridge Philosophical Society 31, 555563 (1935).

45E. Schrödinger, “Probability relations between separated systems,” Mathematical Proceedings of
the Cambridge Philosophical Society 32, 446452 (1936).

46M. Szyniszewski, O. Lunt, and A. Pal, Disordered monitored free fermions, arXiv:2211.02534, 2022.
47O. Lunt and A. Pal, “Measurement-induced entanglement transitions in many-body localized sys-

tems,” Phys. Rev. Res. 2, 043072 (2020).
48S. Gopalakrishnan, K. R. Islam, and M. Knap, “Noise-induced subdiffusion in strongly localized

quantum systems,” Phys. Rev. Lett. 119, 046601 (2017).
49S. Dhar, S. Dasgupta, and A. Dhar, “Quantum time of arrival distribution in a simple lattice model,”

Journal of Physics A: Mathematical and Theoretical 48, 115304 (2015).
50S. Dhar, S. Dasgupta, A. Dhar, and D. Sen, “Detection of a quantum particle on a lattice under

repeated projective measurements,” Phys. Rev. A 91, 062115 (2015).
51A. Comtet, J. Desbois, and C. Texier, “Functionals of brownian motion, localization and metric

graphs,” Journal of Physics A: Mathematical and General 38, R341 (2005).
52H. Perrin, J.-N. Fuchs, and R. Mosseri, “Robustness of Aharonov-Bohm cages in quantum walks,”

Phys. Rev. B 105, 235404 (2022).
53P. Pöpperl, I. V. Gornyi, and Y. Gefen, “Measurements on an anderson chain,” Phys. Rev. B 107,

174203 (2023).
54P. Pöpperl, I. V. Gornyi, and A. D. Mirlin, “Memory effects in the density-wave imbalance in

delocalized disordered systems,” Phys. Rev. B 106, 094201 (2022).
55M. Schreiber, S. S. Hodgman, P. Bordia, H. P. Lüschen, M. H. Fischer, R. Vosk, E. Altman, U.

Schneider, and I. Bloch, “Observation of many-body localization of interacting fermions in a quasir-
andom optical lattice,” Science 349, 842–845 (2015).

135

https://doi.org/10.1103/PhysRevResearch.5.033174
https://doi.org/10.48550/arXiv.2304.03138
https://doi.org/10.1103/PhysRevB.107.214203
https://doi.org/10.1103/PhysRevB.100.134203
https://doi.org/10.48550/arXiv.2309.12405
https://doi.org/10.1103/PhysRevX.11.011030
https://doi.org/10.1103/PhysRevResearch.2.033347
https://doi.org/10.1017/S0305004100013554
https://doi.org/10.1017/S0305004100013554
https://doi.org/10.1017/S0305004100019137
https://doi.org/10.1017/S0305004100019137
https://doi.org/10.48550/arXiv.2211.02534
https://doi.org/10.1103/PhysRevResearch.2.043072
https://doi.org/10.1103/PhysRevLett.119.046601
https://doi.org/10.1088/1751-8113/48/11/115304
https://doi.org/10.1103/PhysRevA.91.062115
https://doi.org/10.1088/0305-4470/38/37/R01
https://doi.org/10.1103/PhysRevB.105.235404
https://doi.org/10.1103/PhysRevB.107.174203
https://doi.org/10.1103/PhysRevB.107.174203
https://doi.org/10.1103/PhysRevB.106.094201
https://doi.org/10.1126/science.aaa7432


Bibliography

56J. yoon Choi, S. Hild, J. Zeiher, P. Schauß, A. Rubio-Abadal, T. Yefsah, V. Khemani, D. A. Huse, I.
Bloch, and C. Gross, “Exploring the many-body localization transition in two dimensions,” Science
352, 1547–1552 (2016).

57E. V. H. Doggen, F. Schindler, K. S. Tikhonov, A. D. Mirlin, T. Neupert, D. G. Polyakov, and
I. V. Gornyi, “Many-body localization and delocalization in large quantum chains,” Phys. Rev. B
98, 174202 (2018).

58E. V. H. Doggen, I. V. Gornyi, A. D. Mirlin, and D. G. Polyakov, “Slow many-body delocalization
beyond one dimension,” Phys. Rev. Lett. 125, 155701 (2020).

59D. J. Luitz and Y. B. Lev, “The ergodic side of the many-body localization transition,” Annalen
der Physik 529, 1600350 (2017).

60, A. Scardicchio, and V. K. Varma, “Diffusive and subdiffusive spin transport in the ergodic phase
of a many-body localizable system,” Phys. Rev. Lett. 117, 040601 (2016).

61S. Gopalakrishnan and S. Parameswaran, “Dynamics and transport at the threshold of many-body
localization,” Physics Reports 862, 1–62 (2020).

62A. D. Mirlin, J. Wilke, F. Evers, D. G. Polyakov, and P. Wölfle, “Strong magnetoresistance induced
by long-range disorder,” Phys. Rev. Lett. 83, 2801–2804 (1999).

63J. Wilke, A. D. Mirlin, D. G. Polyakov, F. Evers, and P. Wölfle, “Zero-frequency anomaly in quasi-
classical ac transport: memory effects in a two-dimensional metal with a long-range random potential
or random magnetic field,” Phys. Rev. B 61, 13774–13784 (2000).

64J. Rammer, Quantum transport theory, Vol. 117 (CRC Press, May 2018), p. 040601.
65P. Pöpperl, I. V. Gornyi, D. B. Saakian, and O. M. Yevtushenko, Localization, fractality, and er-

godicity in a monitored qubit, arXiv:2310.01997, 2023.
66M. A. Nielsen and I. L. Chuang, Quantum computation and quantum information: 10th anniversary

edition, Vol. 117 (Cambridge University Press, 2010), p. 040601.
67K. Snizhko, P. Kumar, and A. Romito, “Quantum zeno effect appears in stages,” Phys. Rev. Res.

2, 033512 (2020).
68A. D. Mirlin and Y. V. Fyodorov, “Distribution of local densities of states, order parameter function,

and critical behavior near the anderson transition,” Phys. Rev. Lett. 72, 526–529 (1994).
69M. Fava, L. Piroli, T. Swann, D. Bernard, and A. Nahum, Nonlinear sigma models for monitored

dynamics of free fermions, arXiv:2302.12820, 2023.
70T. Swann, D. Bernard, and A. Nahum, Spacetime picture for entanglement generation in noisy

fermion chains, arXiv:2302.12212, 2023.
71K. Chahine and M. Buchhold, Entanglement phases, localization and multifractality of monitored

free fermions in two dimensions, arXiv:2309.12391, 2023.
72V. Alba, “Unbounded entanglement production via a dissipative impurity,” SciPost Phys. 12, 011

(2022).
73F. Caceffo and V. Alba, “Entanglement negativity in a fermionic chain with dissipative defects:

exact results,” Journal of Statistical Mechanics: Theory and Experiment 2023, 023102 (2023).
74T. Jin, J. a. Ferreira, M. Bauer, M. Filippone, and T. Giamarchi, “Semiclassical theory of quantum

stochastic resistors,” Phys. Rev. Res. 5, 013033 (2023).

136

https://doi.org/10.1126/science.aaf8834
https://doi.org/10.1126/science.aaf8834
https://doi.org/10.1103/PhysRevB.98.174202
https://doi.org/10.1103/PhysRevB.98.174202
https://doi.org/10.1103/PhysRevLett.125.155701
https://doi.org/https://doi.org/10.1002/andp.201600350
https://doi.org/https://doi.org/10.1002/andp.201600350
https://doi.org/10.1103/PhysRevLett.117.040601
https://doi.org/https://doi.org/10.1016/j.physrep.2020.03.003
https://doi.org/10.1103/PhysRevLett.83.2801
https://doi.org/10.1103/PhysRevB.61.13774
https://doi.org/10.48550/arXiv.2310.01997
https://doi.org/10.1103/PhysRevResearch.2.033512
https://doi.org/10.1103/PhysRevResearch.2.033512
https://doi.org/10.1103/PhysRevLett.72.526
https://doi.org/10.48550/arXiv.2302.12820
https://doi.org/10.48550/arXiv.2302.12212
https://doi.org/10.48550/arXiv.2309.12391
https://doi.org/10.21468/SciPostPhys.12.1.011
https://doi.org/10.21468/SciPostPhys.12.1.011
https://doi.org/10.1088/1742-5468/acb429
https://doi.org/10.1103/PhysRevResearch.5.013033


75F. Evers and A. D. Mirlin, “Anderson transitions,” Rev. Mod. Phys. 80, 1355–1417 (2008).
76Y. Herasymenko, I. Gornyi, and Y. Gefen, “Measurement-driven navigation in many-body hilbert

space: active-decision steering,” PRX Quantum 4, 020347 (2023).
77S. J. Garratt, Z. Weinstein, and E. Altman, “Measurements conspire nonlocally to restructure

critical quantum states,” Phys. Rev. X 13, 021026 (2023).
78M. Wampler, B. J. J. Khor, G. Refael, and I. Klich, “Stirring by staring: Measurement-induced

chirality,” Phys. Rev. X 12, 031031 (2022).
79A. Peres, “Zeno paradox in quantum theory,” American Journal of Physics 48, 931–932 (1980).
80A. Z. Chaudhry, “A general framework for the quantum Zeno and anti-Zeno effects,” Scientific

Reports 6, 2045–2322 (2016).
81K. Snizhko, P. Kumar, and A. Romito, “Quantum Zeno effect appears in stages,” Phys. Rev. Res.

2, 033512 (2020).
82A. Didi and E. Barkai, “Measurement-induced quantum walks,” Phys. Rev. E 105, 054108 (2022).
83P. A. Lee and T. V. Ramakrishnan, “Disordered electronic systems,” Rev. Mod. Phys. 57, 287–337

(1985).
84P. Wölfle and D. Vollhardt, “Self-consistent theory of anderson localization: general formalism and

applications,” International Journal of Modern Physics B 24, 1526–1554 (2010).
85B Kramer and A MacKinnon, “Localization: theory and experiment,” Reports on Progress in Physics

56, 1469 (1993).
86J. J. Sakurai and J. Napolitano, Modern quantum mechanics, 2nd ed., Vol. 117 (Cambridge Univer-

sity Press, 2017), p. 040601.
87H. Carmichael, An open systems approach to quantum optics, Vol. 117 (Springer Berlin Heidelberg,

1993), p. 040601.
88J. Surace and L. Tagliacozzo, “Fermionic Gaussian states: an introduction to numerical approaches,”

SciPost Phys. Lect. Notes 117, 54 (2022).
89J. Eisert, M. Cramer, and M. B. Plenio, “Colloquium: area laws for the entanglement entropy,” Rev.

Mod. Phys. 82, 277–306 (2010).
90Q. Tang and W. Zhu, “Measurement-induced phase transition: a case study in the nonintegrable

model by density-matrix renormalization group calculations,” Phys. Rev. Res. 2, 013022 (2020).
91S. Goto and I. Danshita, “Measurement-induced transitions of the entanglement scaling law in

ultracold gases with controllable dissipation,” Phys. Rev. A 102, 033316 (2020).
92Y. Fuji and Y. Ashida, “Measurement-induced quantum criticality under continuous monitoring,”

Phys. Rev. B 102, 054302 (2020).
93M. Coppola, E. Tirrito, D. Karevski, and M. Collura, “Growth of entanglement entropy under local

projective measurements,” Phys. Rev. B 105, 094303 (2022).
94A. M. Childs, R. Cleve, E. Deotto, E. Farhi, S. Gutmann, and D. A. Spielman, “Exponential

algorithmic speedup by a quantum walk,” in Proceedings of the thirty-fifth annual acm symposium
on theory of computing, Vol. 117, STOC ’03 (2003), pp. 5968.

95E. Farhi and S. Gutmann, “Quantum computation and decision trees,” Phys. Rev. A 58, 915–928
(1998).

137

https://doi.org/10.1103/RevModPhys.80.1355
https://doi.org/10.1103/PRXQuantum.4.020347
https://doi.org/10.1103/PhysRevX.13.021026
https://doi.org/10.1103/PhysRevX.12.031031
https://doi.org/10.1119/1.12204
https://doi.org/10.1038/srep29497
https://doi.org/10.1038/srep29497
https://doi.org/10.1103/PhysRevResearch.2.033512
https://doi.org/10.1103/PhysRevResearch.2.033512
https://doi.org/10.1103/PhysRevE.105.054108
https://doi.org/10.1103/RevModPhys.57.287
https://doi.org/10.1103/RevModPhys.57.287
https://doi.org/10.1142/S0217979210064502
https://doi.org/10.1088/0034-4885/56/12/001
https://doi.org/10.1088/0034-4885/56/12/001
https://doi.org/10.21468/SciPostPhysLectNotes.54
https://doi.org/10.1103/RevModPhys.82.277
https://doi.org/10.1103/RevModPhys.82.277
https://doi.org/10.1103/PhysRevResearch.2.013022
https://doi.org/10.1103/PhysRevA.102.033316
https://doi.org/10.1103/PhysRevB.102.054302
https://doi.org/10.1103/PhysRevB.105.094303
https://doi.org/10.1145/780542.780552
https://doi.org/10.1145/780542.780552
https://doi.org/10.1103/PhysRevA.58.915
https://doi.org/10.1103/PhysRevA.58.915


Bibliography

96G. F. Lawler and V. Limic, Random walk: a modern introduction, Vol. 117, Cambridge Studies in
Advanced Mathematics (Cambridge University Press, 2010), p. 040601.

97R. Serfozo, Basics of applied stochastic processes, Vol. 117 (Springer Berlin Heidelberg, 2009),
p. 040601.

98R. Metzler and J. Klafter, “The random walk’s guide to anomalous diffusion: a fractional dynamics
approach,” Physics Reports 339, 1–77 (2000).

99R. Metzler, J.-H. Jeon, A. G. Cherstvy, and E. Barkai, “Anomalous diffusion models and their
properties: non-stationarity, non-ergodicity, and ageing at the centenary of single particle tracking,”
Phys. Chem. Chem. Phys. 16, 24128–24164 (2014).

100B. Wischmann and E. Müller-Hartmann, “Level statistics and localization: A study of the 1D
Anderson model,” Zeitschrift für Physik B Condensed Matter 79, 91–99 (1990).

101A. D. Mirlin, “Statistics of energy levels and eigenfunctions in disordered systems,” Physics Reports
326, 259–382 (2000).

102C.-M. Jian, H. Shapourian, B. Bauer, and A. W. W. Ludwig, Measurement-induced entanglement
transitions in quantum circuits of non-interacting fermions: born-rule versus forced measurements,
arXiv:2302.09094, 2023.

103R. Yin and E. Barkai, “Restart expedites quantum walk hitting times,” Phys. Rev. Lett. 130,
050802 (2023).

104J. Kurkijärvi, “Hopping conductivity in one dimension,” Phys. Rev. B 8, 922–924 (1973).
105J Machta, “Random walks on site disordered lattices,” Journal of Physics A: Mathematical and

General 18, L531 (1985).
106G. F. Lawler, “Expected hitting times for a random walk on a connected graph,” Discrete Mathe-

matics 61, 85–92 (1986).
107J. M. Deutsch, “Quantum statistical mechanics in a closed system,” Phys. Rev. A 43, 2046–2049

(1991).
108M. Srednicki, “Chaos and quantum thermalization,” Phys. Rev. E 50, 888–901 (1994).
109A. Morningstar, L. Colmenarez, V. Khemani, D. J. Luitz, and D. A. Huse, “Avalanches and many-

body resonances in many-body localized systems,” Phys. Rev. B 105, 174205 (2022).
110D. J. Luitz, N. Laflorencie, and F. Alet, “Many-body localization edge in the random-field heisenberg

chain,” Phys. Rev. B 91, 081103 (2015).
111K. Agarwal, S. Gopalakrishnan, M. Knap, M. Müller, and E. Demler, “Anomalous diffusion and

griffiths effects near the many-body localization transition,” Phys. Rev. Lett. 114, 160401 (2015).
112Y. Bar Lev, G. Cohen, and D. R. Reichman, “Absence of diffusion in an interacting system of

spinless fermions on a one-dimensional disordered lattice,” Phys. Rev. Lett. 114, 100601 (2015).
113I. V. Gornyi, A. D. Mirlin, and D. G. Polyakov, “Electron transport in a disordered luttinger liquid,”

Phys. Rev. B 75, 085421 (2007).
114G. Zala, B. N. Narozhny, and I. L. Aleiner, “Interaction corrections at intermediate temperatures:

longitudinal conductivity and kinetic equation,” Phys. Rev. B 64, 214204 (2001).
115D. J. Luitz, N. Laflorencie, and F. Alet, “Extended slow dynamical regime close to the many-body

localization transition,” Phys. Rev. B 93, 060201(R) (2016).

138

https://doi.org/https://doi.org/10.1016/S0370-1573(00)00070-3
https://doi.org/10.1039/C4CP03465A
https://doi.org/10.1103/PhysRevLett.117.040601
https://doi.org/10.1103/PhysRevLett.117.040601
https://doi.org/10.1103/PhysRevLett.117.040601
https://doi.org/10.48550/arXiv.2302.09094
https://doi.org/10.1103/PhysRevLett.130.050802
https://doi.org/10.1103/PhysRevLett.130.050802
https://doi.org/10.1103/PhysRevB.8.922
https://doi.org/10.1088/0305-4470/18/9/008
https://doi.org/10.1088/0305-4470/18/9/008
https://doi.org/https://doi.org/10.1016/0012-365X(86)90030-0
https://doi.org/https://doi.org/10.1016/0012-365X(86)90030-0
https://doi.org/10.1103/PhysRevA.43.2046
https://doi.org/10.1103/PhysRevA.43.2046
https://doi.org/10.1103/PhysRevE.50.888
https://doi.org/10.1103/PhysRevB.105.174205
https://doi.org/10.1103/PhysRevB.91.081103
https://doi.org/10.1103/PhysRevLett.114.160401
https://doi.org/10.1103/PhysRevLett.114.100601
https://doi.org/10.1103/PhysRevB.75.085421
https://doi.org/10.1103/PhysRevB.64.214204
https://doi.org/10.1103/PhysRevB.93.060201


116S. A. Weidinger, S. Gopalakrishnan, and M. Knap, “Self-consistent hartree-fock approach to many-
body localization,” Phys. Rev. B 98, 224205 (2018).

117P. Pöpperl, E. V. Doggen, J. F. Karcher, A. D. Mirlin, and K. S. Tikhonov, “Dynamics of many-body
delocalization in the time-dependent hartreefock approximation,” Annals of Physics 435, Special
Issue on Localisation 2020, 168486 (2021).

118P. Sierant and J. Zakrzewski, “Challenges to observation of many-body localization,” Phys. Rev. B
105, 224203 (2022).

119M. Ernst and A. Weyland, “Long time behaviour of the velocity auto-correlation function in a
lorentz gas,” Physics Letters A 34, 39–40 (1971).

120M. H. Ernst, J. Machta, J. R. Dorfman, and H. van Beijeren, “Long time tails in stationary random
media. i. theory,” Journal of Statistical Physics 34, 477–495 (1984).

121W. Götze, “The mobility of a quantum particle in a three-dimensional random potential,” Philo-
sophical Magazine B 43, 219–250 (1981).

122I. S. Burmistrov, I. V. Gornyi, and A. D. Mirlin, “Tunneling into the localized phase near anderson
transitions with coulomb interaction,” Phys. Rev. B 89, 035430 (2014).

123S. Gopalakrishnan, K. Agarwal, E. A. Demler, D. A. Huse, and M. Knap, “Griffiths effects and slow
dynamics in nearly many-body localized systems,” Phys. Rev. B 93, 134206 (2016).

124J. F. Karcher, I. A. Gruzberg, and A. D. Mirlin, “Generalized multifractality at metal-insulator
transitions and in metallic phases of two-dimensional disordered systems,” Phys. Rev. B 106, 104202
(2022).

125S. A. A. Ghorashi, J. F. Karcher, S. M. Davis, and M. S. Foster, “Criticality across the energy
spectrum from random artificial gravitational lensing in two-dimensional dirac superconductors,”
Phys. Rev. B 101, 214521 (2020).

126S. F. Edwards, “A new method for the evaluation of electric conductivity in metals,” The Philosoph-
ical Magazine: A Journal of Theoretical Experimental and Applied Physics 3, 1020–1031 (1958).

127D. Vollhardt and P. Wölfle, “Diagrammatic, self-consistent treatment of the anderson localization
problem in d ≤ 2 dimensions,” Phys. Rev. B 22, 4666–4679 (1980).

128A. I. Larkin and D. E. Khmel’nitski, “Anderson localization and anomalous magnetoresistance at
low temperatures,” Soviet Physics Uspekhi 25, 185 (1982).

129S. Chakravarty and A. Schmid, “Weak localization: the quasiclassical theory of electrons in a random
potential,” Physics Reports 140, 193–236 (1986).

130F. Wegner, “Inverse participation ratio in 2+ε dimensions,” Zeitschrift für Physik B Condensed
Matter 36, 209–214 (1980).

131V. I. Fal’ko and K. B. Efetov, “Statistics of prelocalized states in disordered conductors,” Phys.
Rev. B 52, 17413–17429 (1995).

132H. M. Wiseman and G. J. Milburn, Quantum measurement and control, Vol. 117 (Cambridge Uni-
versity Press, 2009), p. 040601.

133R. E. Kastner, “Demystifying weak measurements,” Foundations of Physics 47, 697–707 (2017).
134K. Jacobs and D. A. Steck, “A straightforward introduction to continuous quantum measurement,”

Contemporary Physics 47, 279–303 (2006).

139

https://doi.org/10.1103/PhysRevB.98.224205
https://doi.org/https://doi.org/10.1016/j.aop.2021.168486
https://doi.org/https://doi.org/10.1016/j.aop.2021.168486
https://doi.org/10.1103/PhysRevB.105.224203
https://doi.org/10.1103/PhysRevB.105.224203
https://doi.org/https://doi.org/10.1016/0375-9601(71)90987-X
https://doi.org/https://doi.org/10.1007/BF01018555
https://doi.org/10.1080/13642818108221896
https://doi.org/10.1080/13642818108221896
https://doi.org/10.1103/PhysRevB.89.035430
https://doi.org/10.1103/PhysRevLett.117.040601
https://doi.org/10.1103/PhysRevB.106.104202
https://doi.org/10.1103/PhysRevB.106.104202
https://doi.org/10.1103/PhysRevB.101.214521
https://doi.org/10.1080/14786435808243244
https://doi.org/10.1080/14786435808243244
https://doi.org/10.1103/PhysRevB.22.4666
https://doi.org/10.1070/PU1982v025n03ABEH004527
https://doi.org/https://doi.org/10.1016/0370-1573(86)90027-X
https://doi.org/10.1103/PhysRevLett.117.040601
https://doi.org/10.1103/PhysRevLett.117.040601
https://doi.org/10.1103/PhysRevLett.117.040601
https://doi.org/10.1103/PhysRevLett.117.040601
https://doi.org/10.1007/s10701-017-0085-4
https://doi.org/10.1080/00107510601101934


Bibliography

135M. Szyniszewski, A. Romito, and H. Schomerus, “Universality of entanglement transitions from
stroboscopic to continuous measurements,” Phys. Rev. Lett. 125, 210602 (2020).

136A. C. Morlet and J. Lorenz, “Numerical solution of a functional equation on a circle,” SIAM Journal
on Numerical Analysis 29, 1741–1768 (1992).

137D. B. Saakian, “Exact solution of the hidden markov processes,” Phys. Rev. E 96, 052112 (2017).
138D. B. Saakian, “Semianalytical solution of the random-product problem of matrices and discrete-

time random evolution,” Phys. Rev. E 98, 062115 (2018).
139H. Mineo, V. Suvorov, and D. B. Saakian, “Investigation of the product of random matrices and

related evolution models,” Mathematics 11, 040601 (2023).
140R. V. Mises and H. Pollaczek-Geiringer, “Praktische verfahren der gleichungsauflösung .,” ZAMM

- Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und
Mechanik 9, 152–164 (1929).

141R. Bronson, G. B. Costa, and J. T. Saccoman, “Chapter 4 - eigenvalues, eigenvectors, and differential
equations,” in Linear algebra (third edition), Vol. 117, edited by R. Bronson, G. B. Costa, and J. T.
Saccoman, Third Edition (Academic Press, 2014), pp. 237–288.

142K. Yakubo and S. Mizutaka, “Testing the order parameter of the anderson transition,” Journal of
the Physical Society of Japan 81, 104707 (2012).

143V. Dobrosavljevi, A. A. Pastor, and B. K. Nikoli, “Typical medium theory of anderson localization:
a local order parameter approach to strong-disorder effects,” Europhysics Letters 62, 76 (2003).

144K. Falconer, Fractal geometry, Vol. 117 (Wiley, Sept. 2003), p. 040601.
145A. Chhabra and R. V. Jensen, “Direct determination of the f(α) singularity spectrum,” Phys. Rev.

Lett. 62, 1327–1330 (1989).
146T. C. Halsey, M. H. Jensen, L. P. Kadanoff, I. Procaccia, and B. I. Shraiman, “Fractal measures

and their singularities: the characterization of strange sets,” Phys. Rev. A 33, 1141–1151 (1986).
147H. Hentschel and I. Procaccia, “The infinite number of generalized dimensions of fractals and strange

attractors,” Physica D: Nonlinear Phenomena 8, 435–444 (1983).
148, A. Scardicchio, and V. K. Varma, “6. markov chains: discrete parameter,” in Stochastic processes,

Vol. 117 (American Physical Society, 2016), pp. 187–275.
149D. Isaacson, “A characterization of geometric ergodicity,” Zeitschrift für Wahrscheinlichkeitstheorie

und Verwandte Gebiete 49, 267–273 (1979).
150P. Walters, An introduction to ergodic theory, Vol. 117, Graduate texts in mathematics ; 79 (Springer,

New York, 1982), pp. 187–275.
151R. Tarjan, “Depth-first search and linear graph algorithms,” SIAM Journal on Computing 1, 146–

160 (1972).
152E. Nuutila and E. Soisalon-Soininen, “On finding the strongly connected components in a directed

graph,” Information Processing Letters 49, 9–14 (1994).
153A. A. Hagberg, D. A. Schult, and P. J. Swart, “Exploring network structure, dynamics, and function

using networkx,” in Proceedings of the 7th python in science conference, Vol. 117, edited by G.
Varoquaux, T. Vaught, and J. Millman (2008), pp. 11 –15.

140

https://doi.org/10.1103/PhysRevLett.125.210602
https://doi.org/10.1137/0729098
https://doi.org/10.1137/0729098
https://doi.org/10.1103/PhysRevE.96.052112
https://doi.org/10.1103/PhysRevE.98.062115
https://doi.org/10.3390/math11153430
https://doi.org/https://doi.org/10.1002/zamm.19290090206
https://doi.org/https://doi.org/10.1002/zamm.19290090206
https://doi.org/https://doi.org/10.1002/zamm.19290090206
https://doi.org/https://doi.org/10.1016/B978-0-12-391420-0.00004-4
https://doi.org/10.1143/JPSJ.81.104707
https://doi.org/10.1143/JPSJ.81.104707
https://doi.org/10.1209/epl/i2003-00364-5
https://doi.org/10.1103/PhysRevLett.62.1327
https://doi.org/10.1103/PhysRevLett.62.1327
https://doi.org/10.1103/PhysRevA.33.1141
https://doi.org/https://doi.org/10.1016/0167-2789(83)90235-X
https://doi.org/10.1137/1.9781611971125.ch6
https://doi.org/10.1007/bf00535499
https://doi.org/10.1007/bf00535499
https://doi.org/10.1137/0201010
https://doi.org/10.1137/0201010
https://doi.org/https://doi.org/10.1016/0020-0190(94)90047-7
https://doi.org/10.1137/1.9781611971125.ch6


154B. A. Farbey, “Structural models: an introduction to the theory of directed graphs,” Journal of the
Operational Research Society 17, 202–203 (1966).

155D. C. Kozen, The design and analysis of algorithms, Vol. 117 (Springer New York, 1992), pp. 187–
275.

156A. D. Zdetsis, C. M. Soukoulis, E. N. Economou, and G. S. Grest, “Localization in two- and three-
dimensional systems away from the band center,” Phys. Rev. B 32, 7811–7816 (1985).

157J. D. Brehm, P. Pöpperl, A. D. Mirlin, A. Shnirman, A. Stehli, H. Rotzinger, and A. V. Ustinov,
“Tunable anderson localization of dark states,” Phys. Rev. B 104, 174202 (2021).

141

https://doi.org/10.1057/jors.1966.32
https://doi.org/10.1057/jors.1966.32
https://doi.org/10.1103/PhysRevB.32.7811
https://doi.org/10.1103/PhysRevB.104.174202




Publications

The publications I was involved in and their bibliography reference in this thesis are listed in the
following:

•Ref. [117]: Paul Pöpperl, Elmer V.H. Doggen, Jonas F. Karcher, Alexander D. Mirlin and
Konstantin S. Tikhonov, Dynamics of many-body delocalization in the time-dependent Hartree-
Fock approximation, Annals of Physics, pp. 168486, 2021.

•Ref. [157]: Jan David Brehm, and Paul Pöpperl, and Alexander D. Mirlin, and Alexander
Shnirman, and Alexander Stehli, and Hannes Rotzinger, and Alexey V. Ustinov, Tunable
Anderson localization of dark states Physical Review B 104, pp. 174202, 2021.

•Ref. [53]: Paul Pöpperl, Igor V. Gornyi, and Yuval Gefen, Measurements on an Anderson chain
Physical Review B 107, pp. 174203, 2023.

•Ref. [54]: Paul Pöpperl, Igor V. Gornyi, and Alexander D. Mirlin, Memory effects in the
density-wave imbalance in delocalized disordered systems Physical Review B 106, pp. 094201,
2022.

•Ref. [38]: Igor Poboiko, Paul Pöpperl, Igor V. Gornyi, Alexander D. Mirlin, Theory of free
fermions under random projective measurements, arXiv:2304.03138, 2023.

•Ref. [65]: Paul Pöpperl, Igor V. Gornyi, David B. Saakian, and Oleg M. Yevtushenko, Local-
ization, fractality, and ergodicity in a monitored qubit, arXiv:2310.01997, 2023.

143





Acknowledgments

First of all, many thanks to my advisors Igor V. Gornyi and Alexander D. Mirlin who gave me the
opportunity to work on topics that were very interesting and motivating to me. They found an ideal
balance between guiding my efforts and leaving me the freedom to find my own direction. I learned
a lot throughout many discussions, and their office doors and mail inboxes have always been open
for questions.
I am very grateful to Jonas F. Karcher, who spent a lot of time answering my questions and
explaining things to me, in person at TKM as well as from the other side of the Atlantic. I profited
a lot from his knowledge and insights.
I would also like to thank all of my other collaborators, in particular Elmer V. H. Doggen, Konstantin
S. Tikhonov, Jan David Brehm, Alexander Shnirman, Yuval Gefen, Sthitadhi Roy, Igor Poboiko,
and Oleg M. Yevtushenko, all of whom I enjoyed learning from as well as working and discussing
with.
Thanks to Marcin Szyniszewski for very helpful and interesting discussions about the contents of
Chapter 1, his work [46], and possible future directions regarding measured, disordered systems.
I am grateful to the members and organizers of KSQM, it was great meeting and discussing with
other PhD students during KSQM events.
A big thank you to Matthias Linster for thoroughly proofreading parts of this thesis, providing
many valuable suggestions (and harshly criticizing excessive use of parentheses).
Special thanks to Daniel Hauck for sharing a long tradition of regular exchanges about current
projects on the way to the bakery.
Thanks to my current and former colleagues at TKM for providing a very pleasant and friendly
working environment.
Lastly, I would like to thank my friends and family and in particular my partner Laura Schüber for
their continuous support and also for enduring uncalled-for rambling on physics.

145


	Introduction
	Contents
	1 Measurements on an Anderson chain
	1.1 Introduction
	1.2 Fundamentals
	1.2.1 Disorder and localization
	1.2.2 Time evolution and projective measurements
	1.2.3 Classical random walk and diffusion

	1.3 Model
	1.4 Particle trajectories and observables
	1.5 Measurement induced delocalization
	1.5.1 Different averages
	1.5.2 Length and time scales
	1.5.3 Effective localization lengths

	1.6 Steering with measurements
	1.7 Relation to a classical random walk
	1.8 Summary

	2 Memory effects in the imbalance in delocalized disordered systems
	2.1 Introduction
	2.2 Fundamentals
	2.2.1 Diagrammatic treatment of a disordered system
	2.2.2 Diffusion and weak localization
	2.2.3 Interference picture and relation to a random walk

	2.3 Imbalance and its relation to the density response function
	2.4 Diagrammatic analysis
	2.4.1 1D systems
	2.4.2 2D systems

	2.5 Numerical results
	2.5.1 Imbalance
	2.5.2 Density response function

	2.6 Summary

	3 Ancilla measurements on a two-level system
	3.1 Introduction
	3.2 The model
	3.2.1 Description
	3.2.2 Solving the model
	3.2.3 The Grand Circle
	3.2.4 Freezing and Shifting
	3.2.5 Information from measurement outcomes

	3.3 Distributions on the GC
	3.3.1 Master equation
	3.3.2 Quantum trajectory approach and Monte-Carlo simulation

	3.4 Solutions for two more special cases
	3.4.1 Period-2-trajectories, Y T = (2l + 1) 
	3.4.2 Projective case

	3.5 Comparison of stationary solution and time average
	3.6 Characterization of distributions in the generic case
	3.7 (De-)localization, (Non-)ergodicity, and fractality
	3.7.1 Cross-section through the M-T parameter plane
	3.7.2 The M-T parameter plane

	3.8 Summary

	4 Conclusion and outlook
	4.1 Summary
	4.2 Outlook

	A Additional material for Chapter 2
	A.1 Additional numerical checks to Sec. 2.5: Fraction of localized states and energy dependence of the conductance in calculations of the imbalance
	A.2 Numerical calculation of the density response function

	B Additional material for Chapter 3
	B.1 Additional phase diagrams

	Bibliography
	Publications
	Acknowledgments

