1,234 research outputs found

    Data Hiding in Digital Video

    Get PDF
    With the rapid development of digital multimedia technologies, an old method which is called steganography has been sought to be a solution for data hiding applications such as digital watermarking and covert communication. Steganography is the art of secret communication using a cover signal, e.g., video, audio, image etc., whereas the counter-technique, detecting the existence of such as a channel through a statistically trained classifier, is called steganalysis. The state-of-the art data hiding algorithms utilize features; such as Discrete Cosine Transform (DCT) coefficients, pixel values, motion vectors etc., of the cover signal to convey the message to the receiver side. The goal of embedding algorithm is to maximize the number of bits sent to the decoder side (embedding capacity) with maximum robustness against attacks while keeping the perceptual and statistical distortions (security) low. Data Hiding schemes are characterized by these three conflicting requirements: security against steganalysis, robustness against channel associated and/or intentional distortions, and the capacity in terms of the embedded payload. Depending upon the application it is the designer\u27s task to find an optimum solution amongst them. The goal of this thesis is to develop a novel data hiding scheme to establish a covert channel satisfying statistical and perceptual invisibility with moderate rate capacity and robustness to combat steganalysis based detection. The idea behind the proposed method is the alteration of Video Object (VO) trajectory coordinates to convey the message to the receiver side by perturbing the centroid coordinates of the VO. Firstly, the VO is selected by the user and tracked through the frames by using a simple region based search strategy and morphological operations. After the trajectory coordinates are obtained, the perturbation of the coordinates implemented through the usage of a non-linear embedding function, such as a polar quantizer where both the magnitude and phase of the motion is used. However, the perturbations made to the motion magnitude and phase were kept small to preserve the semantic meaning of the object motion trajectory. The proposed method is well suited to the video sequences in which VOs have smooth motion trajectories. Examples of these types could be found in sports videos in which the ball is the focus of attention and exhibits various motion types, e.g., rolling on the ground, flying in the air, being possessed by a player, etc. Different sports video sequences have been tested by using the proposed method. Through the experimental results, it is shown that the proposed method achieved the goal of both statistical and perceptual invisibility with moderate rate embedding capacity under AWGN channel with varying noise variances. This achievement is important as the first step for both active and passive steganalysis is the detection of the existence of covert channel. This work has multiple contributions in the field of data hiding. Firstly, it is the first example of a data hiding method in which the trajectory of a VO is used. Secondly, this work has contributed towards improving steganographic security by providing new features: the coordinate location and semantic meaning of the object

    Doctor of Philosophy

    Get PDF
    dissertationThis dissertation presents original research that improves the ability of magnetic resonance imaging (MRI) to measure temperature in aqueous tissue using the proton resonance frequency (PRF) shift and T1 measurements in fat tissue in order to monitor focused ultrasound (FUS) treatments. The inherent errors involved in measuring the longitudinal relaxation time T1 using the variable flip angle method with a two-dimensional (2D) acquisition are presented. The edges of the slice profile can contribute a significant amount of signal for large flip angles at steady state, which causes significant errors in the T1 estimate. Only a narrow range of flip angle combinations provided accurate T1 estimates. Respiration motion causes phase artifacts, which lead to errors when measuring temperature changes using the PRF method. A respiration correction method for 3D imaging temperature of the breast is presented. Free induction decay (FID) navigators were used to measure and correct phase offsets induced by respiration. The precision of PRF temperature measurements within the breast was improved by an average factor of 2.1 with final temperature precision of approximately 1 °C. Locating the position of the ultrasound focus in MR coordinates of an ultrasound transducer with multiple degrees of freedom can be difficult. A rapid method for predicting the position using 3 tracker coils with a special MRI pulse iv sequence is presented. The Euclidean transformation of the coil's current positions to their calibration positions was used to predict the current focus position. The focus position was predicted to within approximately 2.1 mm in less than 1 s. MRI typically has tradeoffs between imaging field of view and spatial and temporal resolution. A method for acquiring a large field of view with high spatial and temporal resolution is presented. This method used a multiecho pseudo-golden angle stack of stars imaging sequence to acquire the large field of view with high spatial resolution and k-space weighted image contrast (KWIC) to increase the temporal resolution. The pseudo-golden angle allowed for removal of artifacts introduced by the KWIC reconstruction algorithm. The multiple echoes allowed for high readout bandwidth to reduce blurring due to off resonance and chemical shift as well as provide separate water/fat images, estimates of the initial signal magnitude M(0), T2 * time constant, and combination of echo phases. The combined echo phases provided significant improvement to the PRF temperature precision, and ranged from ~0.3-1.0 °C within human breast. M(0) and T2 * values can possibly be used as a measure of temperature in fat

    Engineering data compendium. Human perception and performance. User's guide

    Get PDF
    The concept underlying the Engineering Data Compendium was the product of a research and development program (Integrated Perceptual Information for Designers project) aimed at facilitating the application of basic research findings in human performance to the design and military crew systems. The principal objective was to develop a workable strategy for: (1) identifying and distilling information of potential value to system design from the existing research literature, and (2) presenting this technical information in a way that would aid its accessibility, interpretability, and applicability by systems designers. The present four volumes of the Engineering Data Compendium represent the first implementation of this strategy. This is the first volume, the User's Guide, containing a description of the program and instructions for its use

    Scattering Center Extraction and Recognition Based on ESPRIT Algorithm

    Get PDF
    Inverse Synthetic Aperture Radar (ISAR) generates high quality radar images even in low visibility. And it provides important physical features for space target recognition and location. This thesis focuses on ISAR rapid imaging, scattering center information extraction, and target classification. Based on the principle of Fourier imaging, the backscattering field of radar target is obtained by physical optics (PO) algorithm, and the relation between scattering field and objective function is deduced. According to the resolution formula, the incident parameters of electromagnetic wave are set reasonably. The interpolation method is used to realize three-dimensional (3D) simulation of aircraft target, and the results are compared with direct imaging results. CLEAN algorithm extracts scattering center information effectively. But due to the limitation of resolution parameters, traditional imaging can’t meet the actual demand. Therefore, the super-resolution Estimation of Signal Parameters via Rotational Invariance Techniques (ESPRIT) algorithm is used to obtain spatial target location information. The signal subspace and noise subspace are orthogonal to each other. By combining spatial smoothing method with ESPRIT algorithm, the physical characteristics of geometric target scattering center are obtained accurately. In particular, the proposed method is validated on complex 3D aircraft targets and it proves that this method is applied to most scattering mechanisms. The distribution of scattering centers reflects the geometric information of the target. Therefore, the electromagnetic image to be recognized and ESPRIT image are matched by the domain matching method. And the classification results under different radii are obtained. In addition, because the neural network can extract rich image features, the improved ALEX network is used to classify and recognize target data processed by ESPRIT. It proves that ESPRIT algorithm can be used to expand the existing datasets and prepare for future identification of targets in real environments. Final a visual classification system is constructed to visually display the results

    34th Midwest Symposium on Circuits and Systems-Final Program

    Get PDF
    Organized by the Naval Postgraduate School Monterey California. Cosponsored by the IEEE Circuits and Systems Society. Symposium Organizing Committee: General Chairman-Sherif Michael, Technical Program-Roberto Cristi, Publications-Michael Soderstrand, Special Sessions- Charles W. Therrien, Publicity: Jeffrey Burl, Finance: Ralph Hippenstiel, and Local Arrangements: Barbara Cristi

    Aeronautical Engineering: A continuing bibliography, supplement 120

    Get PDF
    This bibliography contains abstracts for 297 reports, articles, and other documents introduced into the NASA scientific and technical information system in February 1980

    Technical Feasibility of MR-Integrated Proton Therapy: Beam Deflection and Image Quality

    Get PDF
    Es wird erwartet, dass die Integration der Magnetresonanztomografie (MRT) in die Protonentherapie die Treffgenauigkeit bei der Strahlentherapie für Krebserkrankungen deutlich verbessern wird. Besonders für Tumoren in beweglichen Organen des Thorax oder des Abdomens könnte die MRT-integrierte Protonentherapie (MRiPT) eine Synchronisierung der Bestrahlung mit der Tumorposition ermöglichen, was zu einer verminderten Normalgewebsdosis und weniger Nebenwirkungen führen könnte. Bis heute ist solch eine Integration jedoch aufgrund fehlender Studien zu potenziellen gegenseitigen Störeinflüssen dieser beiden Systeme nicht vollzogen worden. Diese Arbeit widmete sich zwei solcher Störeinflüsse, und zwar der Ablenkung des Protonenstrahls im Magnetfeld des MRT- Scanners, und umgekehrt, dem Einfluss der elekromagnetischen Felder der Protonentherapieanlage und des Protonenstrahls selbst auf die MRT-Bilder. Obwohl vorangegangene Studien den derzeitigen Konsens aufgezeigt haben, dass die Trajektorie eines abgebremsten Protonenstrahls im homogenen Phantom in einem transversalen Magnetfeld vorhersagbar ist, zeigte sich im quantitativen Vergleich der publizierten Modelle, der im ersten Teil dieser Arbeit vorgestellt wurde, dass die Vorhersagen dieser Modelle nur für eine begrenzte Anzahl von Kombinationen aus Magnetfeldstärke und Protonenenergie übereinstimmen. Die Schwächen bestehender analytischer Modelle wurden deshalb analysiert und quantifiziert. Kritische Annahmen und die mangelnde Anwendbarkeit auf realistische, d.h. inhomogene Magnetfeldstärken und Patientengeometrien wurden als Hauptprobleme identifiziert. Um diese zu überwinden, wurde ein neues semianalytisches Modell namens RAMDIM entwickelt. Es wurde gezeigt, dass dieses auf realistischere Fälle anwendbar und genauer ist als existierende analytische Modelle und dabei schneller als Monte-Carlo-basierte Teilchenspursimulationen. Es wird erwartet, dass dieses Modell in der MRiPT Anwendung findet zur schnellen und genauen Ablenkungsberechnung, zur Betrahlungsplanoptimierung und bei der MRT-geführten Strahlnachführung. In einem zweiten Schritt wurde die magnetfeldinduzierte Protonenstrahlablenkung in einem gewebeähnlichen Material durch Filmdosimetrie erstmalig gemessen und mit Monte-Carlo-Simulationen verglichen. In einem transversalen Magnetfeld einer Flussdichte von 0,95 T wurde experimentell gezeigt, dass die laterale Versetzung des Bragg-Peaks für Protonenenergien zwischen 80 und 180 MeV in PMMA zwischen 1 und 10 mm liegt. Die Retraktion des Bragg-Peaks war ≤ 0,5 mm. Es wurde gezeigt, dass die gemessene Versetzung des Bragg-Peaks innerhalb von 0,8 mm mit Monte-Carlo-basierten Vorhersagen übereinstimmt. Diese Ergebnisse weisen darauf hin, dass die Protonenstrahlablenkung durch Monte-Carlo-Simulationen genau vorhersagbar ist und damit der Realisierbarkeit der MRiPT nicht im Wege steht. Im zweiten Teil dieser Arbeit wurde erstmalig ein MRT-Scanner in eine Protonenstrahlführung integriert. Hierfür wurde ein offener Niederfeld-MRT-Scanner am Ende einer statischen Forschungsstrahlführung einer Protonentherapieanlage platziert. Die durch das statische Magnetfeld des MRT-Scanners hervorgerufene Strahlablenkung wurde bei der Ausrichtung des MRT-Scanners berücksichtigt. Die sequenzabhängigen, veränderlichen Gradientenfelder hatten keinen messbaren Einfluss auf das transversale Strahlprofil hinter dem MRT-Scanner. Die Magnetfeldhomogenität des Scanners lag innerhalb der Herstellervorgaben und zeigte keinen relevanten Einfluss von Rotationen der Protonengantry im benachbarten Bestrahlungsraum. Eine magnetische Abschirmung war zum gleichzeitigen Betrieb des MRT-Scanners und der Protonentherapieanlage nicht notwendig. Dies beweist die Machbarkeit gleichzeitiger Bestrahlung und Bildgebung in einem ersten MRiPT Aufbau. Die MRT-Bildqualität des Aufbaus wurde darauffolgend anhand eines angepassten Standardprotokolls aus Spin-Echo- und Gradienten-Echo-Sequenzen quantifiziert und es wurde gezeigt, dass die Bildqualität sowohl ohne als auch mit gleichzeitiger Bestrahlung hinreichend ist. Alle bestimmten geometrischen Parameter stimmten mit den physikalischen Abmessungen des verwendeten Phantoms innerhalb eines Bildpixels überein. Wie es für Niederfeld-MRT-Scanner üblich ist, war das Signal-Rausch-Verhältnis (SNR) der MRT-Bilder gering, was im Vergleich zu den Standardkriterien zu einer geringen Bildhomogenität und zu einem hohen Geisterbildanteil im Bild führte. Außerdem wurde aufgrund von Unsicherheiten in der Hochfrequenzkalibrierung des MRT-Scanners eine starke Schwankung der vertikalen Phantomposition mit einem Interquartilabstand von bis zu 1,5 mm beobachtet. T2*-gewichtete Gradientenechosequenzen zeigten zudem aufgrund von Magnetfeldinho- mogenitäten relevante ortsabhängige Bildverzerrungen. Es wurde gezeigt, dass die meisten Bildqualitätsparameter mit und ohne gleichzeitige Betrahlung äquivalent sind. Es wurde jedoch ein signifikanter Betrahlungseinfluss in Form von einer vertikalen Bildverschiebung und einer Verminderung des SNR beobachtet, die durch eine Änderung im Magnetfeld des MRT-Scanners erklärt werden können, welche durch zu diesem Feld parallel ausgerichtete Komponenten im Fernfeld der Strahlführungsmagneten hervorgerufen wird. Während das verminderte SNR vermutlich irrelevant ist (Dif- ferenz im Median ≤ 1,5), ist die sequenzabhängige Bildverschiebung (Differenz im Median bis zu 0,7 mm) nicht immer vernachlässigbar. Diese Ergebisse zeigen, dass die MRT-Bilder durch gleichzeitige Bildgebung nicht schwerwiegend verfälscht werden, dass aber eine dedizierte Optimierung der Hochfrequenzkalibrierung und der MRT-Bildsequenzen notwendig ist. Im letzten Teil der Arbeit wurde gezeigt, dass ein stromabhängiger Einfluss des Protonenstrahls auf MRT-Bilder eines Wasserphantoms durch zwei verschiedene MRT-Sequenzen messbar gemacht und zur Reichweiteverifikation genutzt werden kann. Der Effekt war in verschiedenen Flüssigkeiten, jedoch nicht in viskosen und festen Materialen, nachweisbar und wurde auf Hitzekonvektion zurückgeführt. Es wird erwartet, dass diese Methode in der MRiPT für Konstanztests der Protonenreichweite bei der Maschinenqualitätssicherung nützlich sein wird. Zusammenfassend hat diese Arbeit die Genauigkeit der Vorhersage der Strahlablenkung quantifiziert und verbessert, sowie Potenzial und Realisierbarkeit einer gleichzeitigen MRT-Bildgebung und Protonenbestrahlung gezeigt. Die weitere Entwicklung eines ersten MRiPT-Prototyps ist demnach gerechtfertigt.:List of Figures v List of Tables vii 1 General Introduction 1 2 State of the Art: Proton Therapy and Magnetic Resonance Imaging 3 2.1 Proton Therapy 4 2.1.1 Physical Principle 4 2.1.2 Beam Delivery 7 2.1.3 Motion Management and the Role of Image Guidance 10 2.2 Magnetic Resonance Imaging 14 2.2.1 Physical Principle 14 2.2.2 Image Generation by Pulse Sequences 18 2.2.3 Image Quality 21 2.3 MR-Guided Radiotherapy 24 2.3.1 Offline MR Guidance 24 2.3.2 On-line MR Guidance 25 2.4 MR-Integrated Proton Therapy 28 2.4.1 Aims of this Thesis 32 3 Magnetic Field-Induced Beam Deflection and Bragg Peak Displacement 35 3.1 Analytical Description 36 3.1.1 Review of Analytical Models 36 3.1.2 New Model Formulation 41 3.1.3 Evaluation of Analytical and Numerical Models 44 3.1.4 Discussion 51 3.2 Monte Carlo Simulation and Experimental Verification 54 3.2.1 Verification Setup 54 3.2.2 Monte Carlo Simulation 56 3.2.3 Experimental Verification 60 3.2.4 Discussion 61 3.3 Summary 63 4 Integrated In-Beam MR System: Proof of Concept 65 4.1 Integration of a Low-Field MR Scanner and a Static Research Beamline 65 4.1.1 Proton Therapy System 66 4.1.2 MR Scanner 66 4.1.3 Potential Sources of Interference 67 4.1.4 Integration of Both Systems 68 4.2 Beam and Image Quality in the Integrated Setup 70 4.2.1 Beam Profile 70 4.2.2 MR Magnetic Field Homogeneity 72 4.2.3 MR Image Quality - Qualitative In Vivo and Ex Vivo Test 74 4.2.4 MR Image Quality - Quantitative Phantom Tests 77 4.3 Feasibility of MRI-based Range Verification 86 4.3.1 MR Sequences 86 4.3.2 Proton Beam Parameters 88 4.3.3 Target Material Dependence 91 4.3.4 Discussion 92 4.4 Summary 96 5 Discussion and Future Perspectives 99 6 Summary/Zusammenfassung 105 6.1 Summary 105 6.2 Zusammenfassung 108 Bibliography I Supplementary Information XXIX A Beam Deflection: Experimental Measurements XXIX A.1 Setup XXIX A.2 Film Handling and Evaluation XXX A.3 Uncertainty Estimation XXX B Beam Deflection: Monte Carlo Simulations XXXIII B.1 Magnetic Field Model XXXIII B.2 Uncertainty Estimation XXXIV C Integrated MRiPT Setup XXXVI C.1 Magnetic Field Map XXXVI C.2 Sequence Parameters XXXVI C.3 Image Quality Parameters XLII C.4 Range Verification Sequences XLIIThe integration of magnetic resonance imaging (MRI) into proton therapy is expected to strongly increase the targeting accuracy in radiation therapy for cancerous diseases. Especially for tumours situated in mobile organs in the thorax and abdomen, MR-integrated proton therapy (MRiPT) could enable the synchronisation of irradiation to the tumour position, resulting in less dose to normal tissue and reduced side effects. However, such an integration has been hindered so far by a lack of scientific studies on the potential mutual interference between the two components. This thesis was dedicated to two of these sources of interference, namely the deflection of the proton beam by the magnetic field of the MR scanner and, vice versa, alterations of the MR image induced by the electromagnetic fields of the proton therapy facility and by the beam itself. Although previous work has indicated that there is general consensus that the trajectory of a slowing down proton beam in a homogeneous phantom inside a transverse magnetic field is predictable, a quantitative comparison of the published methods, as presented in the first part of this thesis, has shown that predictions of different models only agree for certain proton beam energies and magnetic flux densities. Therefore, shortcomings of previously published analytical methods have been analysed and quantified. The inclusion of critical assumptions and the lack of applicability to realistic, i.e. non-uniform, magnetic flux densities and patient anatomies have been identified as main problems. To overcome these deficiencies, a new semi-analytical model called RAMDIM has been developed. It was shown that this model is both applicable to more realistic setups and less assumptive than existing analytical approaches, and faster than Monte Carlo based particle tracking simulations. This model is expected to be useful in MRiPT for fast and accurate deflection estimations, treatment plan optimisation, and MR-guided beam tracking. In a second step, the magnetic field-induced proton beam deflection has been measured for the first time in a tissue-mimicking medium by film dosimetry and has been compared against Monte Carlo simulations. In a transverse magnetic field of 0.95 T, it was experimentally shown that the lateral Bragg peak displacement ranges between 1 mm and 10 mm for proton energies between 80 and 180 MeV in PMMA. Range retraction was found to be ≤ 0.5 mm. The measured Bragg peak displacement was shown to agree within 0.8 mm with Monte Carlo simulations. These results indicate that proton beam deflection in a homogeneous medium is accurately predictable for intermediate proton beam energies and magnetic flux densities by Monte Carlo simulations and therefore not impeding the feasibility of MRiPT. In the second part of this thesis, an MR scanner has been integrated into a proton beam line for the first time. For this purpose, an open low-field MR scanner has been placed at the end of a fixed horizontal proton research beam line in a proton therapy facility. The beam deflection induced by the static magnetic field of the scanner was taken into account for alignment of the beam and the FOV of the scanner. The pulse sequence-dependent dynamic gradient fields did not measurably affect the transverse beam profile behind the MR scanner. The MR magnetic field homogeneity was within the vendor’s specifications and not relevantly influenced by the rotation of the proton gantry in the neighbouring treatment room. No magnetic field compensation system was required for simultaneous operation of the MR scanner and the proton therapy system. These results proof that simultaneous irradiation and imaging is feasible in an in-beam MR setup. The MR image quality of the in-beam MR scanner was then quantified by an adapted standard protocol comprising spin and gradient echo imaging and shown to be acceptable both with and without simultaneous proton beam irradiation. All geometrical parameters agreed with the mechanical dimensions of the used phantom within one pixel width. As common for low-field MR scanners, the signal-to-noise ratio (SNR) of the MR images was low, which resulted in a low image uniformity and a high ghosting ratio in comparison to the standardised test criteria. Furthermore, a strong fluctuation of the vertical phantom position due to uncertainties in the pre-scan frequency calibration was observed, with an interquartile range of up to 1.5 mm. T2*-weighted gradient echo images showed relevant nonuniform deformations due to magnetic field inhomogeneities. Most image quality parameters were shown to be equivalent with and without simultaneous proton beam irradiation. However, a significant influence of simultaneous irradiation was observed as a shift of the vertical phantom position and a decrease in the SNR, both of which can be explained by a change in the B0 field of the MR scanner induced by components of the fringe field of the beam line magnets directed parallel to B0 . While the decrease in SNR is not expected to be relevant (median differences were within 1.5 ), the sequence-dependent phantom shift (median differences of up to 0.7 mm) can become non-negligible. These results show that the MR images are not severely distorted by simultaneous irradiation, but a dedicated optimisation of the pre-scan RF calibration and the MR sequences is required for MRiPT. Lastly, a current-dependent influence of the proton beam on the MR image was shown to be measurable in water in two different MR sequences, which allowed for range verification measurements. The effect was observed in different liquids but not in highly viscose and solid materials, and most probably induced by heat convection. This method is expected to be useful in MRiPT for consistency tests of the proton range during machine-specific quality assurance. In conclusion, this work has improved and quantified the accuracy of beam deflection predictions and shown the feasibility and potential of in-beam MR imaging, justifying further research towards a first MRiPT prototype.:List of Figures v List of Tables vii 1 General Introduction 1 2 State of the Art: Proton Therapy and Magnetic Resonance Imaging 3 2.1 Proton Therapy 4 2.1.1 Physical Principle 4 2.1.2 Beam Delivery 7 2.1.3 Motion Management and the Role of Image Guidance 10 2.2 Magnetic Resonance Imaging 14 2.2.1 Physical Principle 14 2.2.2 Image Generation by Pulse Sequences 18 2.2.3 Image Quality 21 2.3 MR-Guided Radiotherapy 24 2.3.1 Offline MR Guidance 24 2.3.2 On-line MR Guidance 25 2.4 MR-Integrated Proton Therapy 28 2.4.1 Aims of this Thesis 32 3 Magnetic Field-Induced Beam Deflection and Bragg Peak Displacement 35 3.1 Analytical Description 36 3.1.1 Review of Analytical Models 36 3.1.2 New Model Formulation 41 3.1.3 Evaluation of Analytical and Numerical Models 44 3.1.4 Discussion 51 3.2 Monte Carlo Simulation and Experimental Verification 54 3.2.1 Verification Setup 54 3.2.2 Monte Carlo Simulation 56 3.2.3 Experimental Verification 60 3.2.4 Discussion 61 3.3 Summary 63 4 Integrated In-Beam MR System: Proof of Concept 65 4.1 Integration of a Low-Field MR Scanner and a Static Research Beamline 65 4.1.1 Proton Therapy System 66 4.1.2 MR Scanner 66 4.1.3 Potential Sources of Interference 67 4.1.4 Integration of Both Systems 68 4.2 Beam and Image Quality in the Integrated Setup 70 4.2.1 Beam Profile 70 4.2.2 MR Magnetic Field Homogeneity 72 4.2.3 MR Image Quality - Qualitative In Vivo and Ex Vivo Test 74 4.2.4 MR Image Quality - Quantitative Phantom Tests 77 4.3 Feasibility of MRI-based Range Verification 86 4.3.1 MR Sequences 86 4.3.2 Proton Beam Parameters 88 4.3.3 Target Material Dependence 91 4.3.4 Discussion 92 4.4 Summary 96 5 Discussion and Future Perspectives 99 6 Summary/Zusammenfassung 105 6.1 Summary 105 6.2 Zusammenfassung 108 Bibliography I Supplementary Information XXIX A Beam Deflection: Experimental Measurements XXIX A.1 Setup XXIX A.2 Film Handling and Evaluation XXX A.3 Uncertainty Estimation XXX B Beam Deflection: Monte Carlo Simulations XXXIII B.1 Magnetic Field Model XXXIII B.2 Uncertainty Estimation XXXIV C Integrated MRiPT Setup XXXVI C.1 Magnetic Field Map XXXVI C.2 Sequence Parameters XXXVI C.3 Image Quality Parameters XLII C.4 Range Verification Sequences XLI

    Data compression techniques applied to high resolution high frame rate video technology

    Get PDF
    An investigation is presented of video data compression applied to microgravity space experiments using High Resolution High Frame Rate Video Technology (HHVT). An extensive survey of methods of video data compression, described in the open literature, was conducted. The survey examines compression methods employing digital computing. The results of the survey are presented. They include a description of each method and assessment of image degradation and video data parameters. An assessment is made of present and near term future technology for implementation of video data compression in high speed imaging system. Results of the assessment are discussed and summarized. The results of a study of a baseline HHVT video system, and approaches for implementation of video data compression, are presented. Case studies of three microgravity experiments are presented and specific compression techniques and implementations are recommended
    corecore