234 research outputs found

    Coherency Matrix Decomposition-Based Polarimetric Persistent Scatterer Interferometry

    Get PDF
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.The rationale of polarimetric optimization techniques is to enhance the phase quality of the interferograms by combining adequately the different polarization channels available to produce an improved one. Different approaches have been proposed for polarimetric persistent scatterer interferometry (PolPSI). They range from the simple and computationally efficient BEST, where, for each pixel, the polarimetric channel with the best response in terms of phase quality is selected, to those with high-computational burden like the equal scattering mechanism (ESM) and the suboptimum scattering mechanism (SOM). BEST is fast and simple, but it does not fully exploit the potentials of polarimetry. On the other side, ESM explores all the space of solutions and finds the optimal one but with a very high-computational burden. A new PolPSI algorithm, named coherency matrix decomposition-based PolPSI (CMD-PolPSI), is proposed to achieve a compromise between phase optimization and computational cost. Its core idea is utilizing the polarimetric synthetic aperture radar (PolSAR) coherency matrix decomposition to determine the optimal polarization channel for each pixel. Three different PolSAR image sets of both full- (Barcelona) and dual-polarization (Murcia and Mexico City) are used to evaluate the performance of CMD-PolPSI. The results show that CMD-PolPSI presents better optimization results than the BEST method by using either DAD_{\mathrm{ A}} or temporal mean coherence as phase quality metrics. Compared with the ESM algorithm, CMD-PolPSI is 255 times faster but its performance is not optimal. The influence of the number of available polarization channels and pixel's resolutions on the CMD-PolPSI performance is also discussed.Peer ReviewedPostprint (author's final draft

    Application of Differential and Polarimetric Synthetic Aperture Radar (SAR) Interferometry for Studying Natural Hazards

    Get PDF
    In the following work, I address the problem of coherence loss in standard Differential Interferometric SAR (DInSAR) processing, which can result in incomplete or poor quality deformation measurements in some areas. I incorporate polarimetric information with DInSAR in a technique called Polarimetric SAR Interferometry (PolInSAR) in order to acquire more accurate and detailed maps of surface deformation. In Chapter 2, I present a standard DInSAR study of the Ahar double earthquakes (Mw=6.4 and 6.2) which occurred in northwest Iran, August 11, 2012. The DInSAR coseismic deformation map was affected by decorrelation noise. Despite this, I employed an advanced inversion technique, in combination with a Coulomb stress analysis, to find the geometry and the slip distribution on the ruptured fault plane. The analysis shows that the two earthquakes most likely occurred on a single fault, not on conjugate fault planes. This further implies that the minor strike-slip faults play more significant role in accommodating convergence stress accumulation in the northwest part of Iran. Chapter 3 presents results from the application of PolInSAR coherence optimization on quad-pol RADARSAT-2 images. The optimized solution results in the identification of a larger number of reliable measurement points, which otherwise are not recognized by the standard DInSAR technique. I further assess the quality of the optimized interferometric phase, which demonstrates an increased phase quality with respect to those phases recovered by applying standard DInSAR alone. Chapter 4 discusses results from the application of PolInSAR coherence optimization from different geometries to the study of creep on the Hayward fault and landslide motions near Berkeley, CA. The results show that the deformation rates resolved by PolInSAR are in agreement with those of standard DInSAR. I also infer that there is potential motion on a secondary fault, northeast and parallel to the Hayward fault, which may be creeping with a lower velocity

    SMF-POLOPT: an adaptive multitemporal pol(DIn)SAR filtering and phase optimization algorithm for PSI applications

    Get PDF
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Speckle noise and decorrelation can hamper the application and interpretation of PolSAR images. In this paper, a new adaptive multitemporal Pol(DIn)SAR filtering and phase optimization algorithm is proposed to address these limitations. This algorithm first categorizes and adaptively filters permanent scatterer (PS) and distributed scatterer (DS) pixels according to their polarimetric scattering mechanisms [i.e., the scattering-mechanism-based filtering (SMF)]. Then, two different polarimetric DInSAR (POLDInSAR) phase OPTimization methods are applied separately on the filtered PS and DS pixels (i.e., POLOPT). Finally, an inclusive pixel selection approach is used to identify high-quality pixels for ground deformation estimation. Thirty-one full-polarization Radarsat-2 SAR images over Barcelona (Spain) and 31 dual-polarization TerraSAR-X images over Murcia (Spain) have been used to evaluate the performance of the proposed algorithm. The PolSAR filtering results show that the speckle of PolSAR images has been well reduced with the preservation of details by the proposed SMF. The obtained ground deformation monitoring results have shown significant improvements, about ×7.2 (the full-polarization case) and ×3.8 (the dual-polarization case) with respect to the classical full-resolution single-pol amplitude dispersion method, on the valid pixels' densities. The excellent PolSAR filtering and ground deformation monitoring results achieved by the adaptive Pol(DIn)SAR filtering and phase optimization algorithm (i.e., the SMF-POLOPT) have validated the effectiveness of this proposed scheme.Peer ReviewedPostprint (author's final draft

    Parameters affecting interferometric coherence and implications for long-term operational monitoring of mining-induced surface deformation

    Get PDF
    Includes abstract.Includes bibliographical references.Surface deformation due to underground mining poses risks to health and safety as well as infrastructure and the environment. Consequently, the need for long-term operational monitoring systems exists. Traditional field-based measurements are point-based meaning that the full extent of deforming areas is poorly understood. Field-based techniques are also labour intensive if large areas are to be monitored on a regular basis. To overcome these limitations, this investigation considered traditional and advanced differential radar interferometry techniques for their ability to monitor large areas over time, remotely. An area known to be experiencing mining induced surface deformation was used as test case. The agricultural nature of the area implied that signal decorrelation effects were expected. Consequently, four sources of data, captured at three wavelengths by earth-orbiting satellites were obtained. This provided the opportunity to investigate different phase decorrelation effects on data from standard imaging platforms using real-world deformation phenomenon as test-case. The data were processed using standard dInSAR and polInSAR techniques. The deformation measurement results together with an analysis of parameters most detrimental to long-term monitoring were presented. The results revealed that, contrary to the hypothesis, polInSAR techniques did not provide an enhanced ability to monitor surface deformation compared to dInSAR techniques. Although significant improvements in coherence values were obtained, the spatial heterogeneity of phase measurements could not be improved. Consequently, polInSAR could not overcome ecorrelation associated with vegetation cover and evolving land surfaces. However, polarimetric information could be used to assess the scattering behaviour of the surface, thereby guiding the definition of optimal sensor configuration for long-term monitoring. Despite temporal and geometric decorrelation, the results presented demonstrated that mining-induced deformation could be measured and monitored using dInSAR techniques. Large areas could be monitored remotely and the areal extent of deforming areas could be assessed, effectively overcoming the limitations of field-based techniques. Consequently, guidelines for the optimal sensor configuration and image acquisition strategy for long-term operational monitoring of mining-induced surface deformation were provided

    Advanced pixel selection and optimization algorithms for Persistent Scatterer Interferometry (PSI)

    Get PDF
    Tesi amb diferents seccions retallades per dret de l'editorPremi Extraordinari de Doctorat, promoció 2018-2019. Àmbit de les TICGround deformation measurements can provide valuable information for minimization of associated loss and damage caused by natural and environmental hazards. As a kind of remote sensing technique, Persistent Scatterer Interferometry (PSI) SAR is able to measure ground deformation with high spatial resolution, efficiently. Moreover, the ground deformation monitoring accuracy of PSI techniques can reach up to millimeter level. However, low coherence could hinderthe exploitation of SAR data, and high-accuracy deformation monitoring can only be achieved by PSI for high quality pixels. Therefore, pixel optimization and identification of coherent pixels are crucial for PSI techniques. In this thesis, advanced pixel selection and optimization algorithms have been investigated. Firstly, a full-resolution pixel selection method based on the Temporal Phase Coherence (TPC) has been proposed. This method first estimates noise phase term of each pixel at interferogram level. Then, for each pixel, its noise phase terms of all interferograms are used to assess this pixel’s temporal phase quality (i.e., TPC). In the next, based on the relationship between TPC and phase Standard Deviation (STD), a threshold can be posed on TPC to identify high phase quality pixels. This pixel selection method can work with both Deterministic Scatterers (PSs) and Distributed Scatterers (DSs). To valid the effectiveness of the developed method, it has been used to monitor the Canillo (Andorra) landslide. The results show that the TPC method can obtained highest density of valid pixels among the employed three approaches in this challenging area with X-band SAR data. Second, to balance the polarimetric DInSAR phase optimization effect and the computation cost, a new PolPSI algorithm is developed. This proposed PolPSI algorithm is based on the Coherency Matrix Decomposition result to determine the optimal scattering mechanism of each pixel, thus it is named as CMD-PolPSI. CMDPolPSI need not to search for solution within the full space of solution, it is therefore much computationally faster than the classical Equal Scattering Mechanism (ESM) method, but with lower optimization performance. On the other hand, its optimization performance outperforms the less computational costly BEST method. Third, an adaptive algorithm SMF-POLOPT has been proposed to adaptive filtering and optimizing PolSAR pixels for PolPSI applications. This proposed algorithm is based on PolSAR classification results to firstly identify Polarimetric Homogeneous Pixels (PHPs) for each pixel, and at the same time classify PS and DS pixels. After that, DS pixels are filtered by their associated PHPs, and then optimized based on the coherence stability phase quality metric; PS pixels are unfiltered and directly optimized based on the DA phase quality metric. SMF-POLOPT can simultaneously reduce speckle noise and retain structures’ details. Meanwhile, SMF-POLOPT is able to obtain much higher density of valid pixels for deformation monitoring than the ESM method. To conclude, one pixel selection method has been developed and tested, two PolPSI algorithms have been proposed in this thesis. This work make contributions to the research of “Advanced Pixel Selection and Optimization Algorithms for Persistent Scatterer InterferometryLes mesures de deformació del sòl poden proporcionar informació valuosa per minimitzar les pèrdues i els danys associats causats pels riscos naturals i ambientals. Com a tècnica de teledetecció, la interferometria de dispersors persistents (Persistent Scatter Interferometry, PSI) SAR és capaç de mesurar de forma eficient la deformació del terreny amb una alta resolució espacial. A més, la precisió de monitorització de la deformació del sòl de les tècniques PSI pot arribar a arribar a nivells del mil·límetre. No obstant això, una baixa coherència pot dificultar l’explotació de dades SAR i el control de deformació d’alta precisió només es pot aconseguir mitjançant PSI per a píxels d’alta qualitat. Per tant, l’optimització de píxels i la identificació de píxels coherents són crucials en les tècniques PSI. En aquesta tesi s¿han investigat algorismes avançats de selecció i optimització de píxels. En primer lloc, s'ha proposat un mètode de selecció de píxels de resolució completa basat en la coherència temporal de fase (Temporal Phase Coherence, TPC). Aquest mètode estima per primera vegada el terme de fase de soroll de cada píxel a nivell d’interferograma. A continuació, per a cada píxel, s'utilitzen els termes de la fase de soroll de tots els interferogrames per avaluar la qualitat de fase temporal d'aquest píxel (és a dir, TPC). A la següent, basant-se en la relació entre el TPC i la desviació estàndard de fase (STD), es pot plantejar un llindar de TPC per identificar píxels de qualitat de fase alta. Aquest mètode de selecció de píxels es capaç de detectar tant els dispersors deterministes (PS) com els distribuïts (DS). Per validar l’eficàcia del mètode desenvolupat, s’ha utilitzat per controlar l’esllavissada de Canillo (Andorra). Els resultats mostren que el mètode TPC pot obtenir la major densitat de píxels vàlids, comparat amb els mètodes clàssics de selecció, en aquesta àrea difícil amb dades de SAR de banda X. En segon lloc, per equilibrar l’efecte d’optimització de fase DInSAR polarimètrica i el cost de càlcul, es desenvolupa un nou algorisme de PolPSI. Aquest algorisme proposat de PolPSI es basa en el resultat de la descomposició de la matriu de coherència per determinar el mecanisme de dispersió òptim de cada píxel, de manera que es denomina CMD-PolPSI. CMDPolPSI no necessita buscar solucions dins de l’espai complet de la solució, per tant, és molt més eficient computacionalment que el mètode clàssic de mecanismes d’igualtat de dispersió (Equal Scattering Mechanism, ESM), però amb un efecte d’optimització no tant òptim. D'altra banda, el seu efecte d'optimització supera el mètode BEST, el que te un menor cost computacional. En tercer lloc, s'ha proposat un algoritme adaptatiu SMF-POLOPT per al filtratge adaptatiu i l'optimització de píxels PolSAR per a aplicacions PolPSI. Aquest algorisme proposat es basa en els resultats de classificació PolSAR per identificar primer els píxels homogenis polarimètrics (PHP) per a cada píxel i, alhora, classificar els píxels PS i DS. Després d'això, els píxels DS es filtren pels seus PHP associats i, a continuació, s'optimitzen en funció de la mètrica de qualitat de la fase d'estabilitat de coherència; els píxels classificats com PS no es filtren i s'optimitzen directament en funció de la mètrica de qualitat de la fase DA. SMF-POLOPT pot reduir simultàniament el soroll de la fase interferomètrica i conservar els detalls de les estructures. Mentrestant, SMF-POLOPT aconsegueix obtenir una densitat molt més alta de píxels vàlids per al seguiment de la deformació que el mètode ESM. Per concloure, en aquesta tesi s’ha desenvolupat i provat un mètode de selecció de píxels, i s’han proposat dos algoritmes PolPSI. Aquest treball contribueix a la recerca en "Advanced Pixel Selection and Optimization Algorithms for Persistent Scatterer Interferometry"Postprint (published version

    A temporal phase coherence estimation algorithm and its application on DInSAR pixel selection

    Get PDF
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Pixel selection is a crucial step of all advanced Differential Interferometric Synthetic Aperture Radar (DInSAR) techniques that have a direct impact on the quality of the final DInSAR products. In this paper, a full-resolution phase quality estimator, i.e., the temporal phase coherence (TPC), is proposed for DInSAR pixel selection. The method is able to work with both distributed scatterers (DSs) and permanent scatterers (PSs). The influence of different neighboring window sizes and types of interferograms combinations [both the single-master (SM) and the multi-master (MM)] on TPC has been studied. The relationship between TPC and phase standard deviation (STD) of the selected pixels has also been derived. Together with the classical coherence and amplitude dispersion methods, the TPC pixel selection algorithm has been tested on 37 VV polarization Radarsat-2 images of Barcelona Airport. Results show the feasibility and effectiveness of TPC pixel selection algorithm. Besides obvious improvements in the number of selected pixels, the new method shows some other advantages comparing with the other classical two. The proposed pixel selection algorithm, which presents an affordable computational cost, is easy to be implemented and incorporated into any advanced DInSAR processing chain for high-quality pixels' identification.Peer ReviewedPostprint (author's final draft

    Orbital differential SAR interferometry with polarimetric data

    Get PDF
    Space-borne Synthetic Aperture Radar (SAR) systems have demonstrated great effectiveness to survey wide areas, independently of the weather conditions and the day/night cycle. One of the most exploited applications is Differential SAR Interferometry (DInSAR), and by extension, advanced multi-temporal techniques addressed as Persistent Scatterers Interferometry (PSI). These techniques provide the means to retrieve the displacement on the observed terrain surface. Taking advantage of the high coverage provided by this technology, natural and human induced phenomena may be monitored and detected in order to avoid and prevent hazardous or even catastrophic situations. A good characterization of such events is often related to the density and quality of the information delivered. In many cases, the success in the interpretation of localized surface motion phenomena relies on having as much measurements as possible. Conventional insitu techniques, when used properly, are able to provide reliable measurements. However, they are limited to their localization, and deploy a high number of instruments is not cost effective. The good characterization provided by PSI measurements is limited by the acquisition parameters and the actual scene under monitoring. SAR images sensitivity over the scene depends strongly on the geometric shape and distribution of targets. Historically, satellite SAR sensors had single polarimetric capabilities, so sensitivity over the scene was restricted to a certain antenna configuration. On the contrary, polarimetric acquisitions emit an receive with different antenna configurations, providing sensitivity to different geometries in the scenario. The launch in these later years of several satellites with polarimetric capabilities has triggered its use in several fields of application. The objective of this thesis is to evaluate the use of Polarimetric SAR (PolSAR) data for its application in the PSI framework. The extra information contained in PolSAR datasets is bound to improve the effectiveness of PSI techniques. Obtaining a higher density and quality of motion measurements will ease the detection and interpretation of terrain displacement phenomena.Els Radars d'Obertura Sintètica (SAR) embarcats en satèl·lits han demostrat ser molt efectius per monitoritzar grans àrees, independentment de les condicions atmosfèriques i del cicle dia/nit. L'aplicació més explotada es l'Interferometria Diferencial SAR (DInSAR), i per extensió, les tècniques avançades de processament multi-temporal anomenades Interferometria de Reflectors Persistents (PSI). Aquestes tècniques són capaces de mesurar el desplaçament en superfície del terreny observat. Aprofitant la gran cobertura que s'aconsegueix amb aquesta tecnologia, fenòmens d'origen tant natural com humà poden ser detectats i controlats per evitar i prevenir situacions de perill o fins i tot catastròfiques. La bona caracterització d'aquestes situacions sovint es relaciona tant amb la densitat com en la qualitat de la informació obtinguda. En molts casos, l’èxit en la interpretació de moviments de terreny localitzats depèn de tenir tants punts de mesura com sigui possible. Les tècniques convencionals de mesura in-situ, quan s'usen de forma adequada, són capaces de donar mesures fiables. No obstant, la seva cobertura està limitada a la localització de l'instrument, i la instal·lació d’un gran nombre d'instruments no és una solució econòmica. La bona caracterització de l'àrea mesurada amb tècniques PSI està limitada pels paràmetres d'adquisició i les característiques de la pròpia escena observada. La sensitivitat de les imatges SAR depèn en gran mesura de la distribució i la forma geomètrica dels blancs mesurats. Històricament, els sensors SAR emetien en polarització simple, i per tant la sensitivitat a la escena estava restringida a aquesta configuració específica de la antena. Per altra banda, durant les adquisicions polarimètriques s'emet i es rep en diferents configuracions de l'antena. Això permet tenir sensitivitat a geometries diferents dins la mateixa escena. El llançament aquest últims anys de diferents satèl·lits amb capacitats polarimètriques ha permès el seu ús en diversos camps d'aplicació. L'objectiu d’aquesta tesi és avaluar l'ús de dades polarimètriques SAR (PolSAR) per la seva aplicació en el marc de les tècniques PSI. La informació addicional que contenen els conjunts d’adquisicions PolSAR ha de millorar l'efectivitat de les tècniques PSI. L'obtenció d'una millor densitat i qualitat de les mesures permet una millor detecció i interpretació dels fenòmens de desplaçament superficial del terreny.Postprint (published version

    Investigation of polarimetric coherence optimization in persistent scatterer interferometry

    Get PDF
    "December 2010.""A Thesis presented to the Faculty of the Graduate School University of Missouri--Columbia In Partial Fulfillment of the Requirements for the Degree Master of Science."Thesis supervisor: Dr. Justin J. Legarsky.Interferometric Synthetic Aperture Radar (InSAR) provides a means of imaging small deformations of the Earth's surface (millimeter scale). Furthermore, interferometric point target analysis (IPTA) and time-series analyses can be enhanced using polarimetric and interferometric synthetic aperture radar (PolInSAR) processing techniques to improve detection of point targets or coherent scatterers (CS) that are characterized by a point-like scattering behavior. A mixture of single or multiple scattering mechanisms with a high range of backscattering amplitudes characterize many SAR images over a number of areas. However, the fact that a number of scatterers are characterized by a strongly polarized behavior and are located at different heights even within the same resolution cell make the combination of polarimetric and interferometric information a promising one. For the study site of Socorro, New Mexico, full polarization techniques provided a significant increase (i.e. more than doubled) in CSs compared to a non full polarization. Scattering mechanism and temporal behavior of the CSs were investigated. The CS scattering mechanism behavior was found consistent amongst the CS lists. Full polarization processing was found to increase the CS quantity significantly compared to single polarizations while maintaining high temporal coherence. Thus, this significant increase in full polarization CSs has the potential to increase the overall InSAR processing quality. For sites that challenge (e.g. vegetated areas and other low coherence environments) the single polarization InSAR processing, the full polarization increase in CSs may be essential for processing.Includes bibliographical references (pages 55-56)

    PSI deformation map retrieval by means of temporal sublook coherence on reduced sets of SAR images

    Get PDF
    Prior to the application of any persistent scatterer interferometry (PSI) technique for the monitoring of terrain displacement phenomena, an adequate pixel selection must be carried out in order to prevent the inclusion of noisy pixels in the processing. The rationale is to detect the so-called persistent scatterers, which are characterized by preserving their phase quality along the multi-temporal set of synthetic aperture radar (SAR) images available. Two criteria are mainly available for the estimation of pixels' phase quality, i.e., the coherence stability and the amplitude dispersion or permanent scatterers (PS) approach. The coherence stability method allows an accurate estimation of the phase statistics, even when a reduced number of SAR acquisitions is available. Unfortunately, it requires the multi-looking of data during the coherence estimation, leading to a spatial resolution loss in the final results. In contrast, the PS approach works at full-resolution, but it demands a larger number of SAR images to be reliable, typically more than 20. There is hence a clear limitation when a full-resolution PSI processing is to be carried out and the number of acquisitions available is small. In this context, a novel pixel selection method based on exploiting the spectral properties of point-like scatterers, referred to as temporal sublook coherence (TSC), has been recently proposed. This paper seeks to demonstrate the advantages of employing PSI techniques by means of TSC on both orbital and ground-based SAR (GB-SAR) data when the number of images available is small (10 images in the work presented). The displacement maps retrieved through the proposed technique are compared, in terms of pixel density and phase quality, with traditional criteria. Two X-band datasets composed of 10 sliding spotlight TerraSAR-X images and 10 GB-SAR images, respectively, over the landslide of El Forn de Canillo (Andorran Pyrenees), are employed for this study. For both datasets, the TSC technique has showed an excellent performance compared with traditional techniques, achieving up to a four-fold increase in the number of persistent scatters detected, compared with the coherence stability approach, and a similar density compared with the PS approach, but free of outliers.Peer ReviewedPostprint (published version

    ACE-OT: Polarimetric SAR data based amplitude contrast enhancement algorithm for offset tracking applications

    Get PDF
    The use of polarimetric synthetic aperture radar (SAR) data can improve the performance of persistent scatterer interferometry (PSI). However, its huge potential remains locked for the amplitude information-based offset tracking (OT) technology. For example, to the best knowledge of the authors, there is no single example of a polarization-based image optimization method that has been developed for OT processing. In this article, an amplitude contrast enhancement (ACE) algorithm is introduced, which demonstrates the potential of the polarimetric SAR data on the improvement of OT performance. Its core idea is finding the optimal combination of the different scattering mechanisms for each pixel to improve the contrast. First, the orientation of the reflected polarization ellipse is removed, to avoid the influence of the geometric relationship between the antenna and the target, and the properties of the target. Then three similarity parameters are defined to represent the three basic reflection types of the single bounce, the double bounce, and the random reflection. After that, the optimizing equation is constructed with two optimizing vectors. Finally, the optimizing vectors are calculated to obtain the enhanced amplitude image. Three examples of the enhancement are presented with different PolSAR images sets of both full- (Radarsat-2) and dual-polarization (TerraSAR-X and Sentinel-1). The performance of ACE-OT has been compared with another method, the adaptive histogram enhancement (AHE). The impact of the number of polarization channels available on ACE-OT performance has also been studied.This work was supported in part by the China Scholarship Council under Grant 201806420035, in part by the Spanish Ministry of Science and Innovation (MCIN), in part by the State Research Agency (AEI) Project under Grant PID2020-117303GB-C21 and Grant MCIN/AEI/10.13039/501100011033, in part by the National Natural Science Foundation of China under Grant 42004011, in part by the China Postdoctoral Science Foundation under Grant 2020M671646, and in part by the Construction Program of Space-Air-Ground-Well Cooperative Awareness Spatial Information Project under Grant B20046.Peer ReviewedPostprint (author's final draft
    • …
    corecore