4,790 research outputs found

    EVM as generic QoS trigger for heterogeneous wieless overlay network

    Full text link
    Fourth Generation (4G) Wireless System will integrate heterogeneous wireless overlay systems i.e. interworking of WLAN/ GSM/ CDMA/ WiMAX/ LTE/ etc with guaranteed Quality of Service (QoS) and Experience (QoE).QoS(E) vary from network to network and is application sensitive. User needs an optimal mobility solution while roaming in Overlaid wireless environment i.e. user could seamlessly transfer his session/ call to a best available network bearing guaranteed Quality of Experience. And If this Seamless transfer of session is executed between two networks having different access standards then it is called Vertical Handover (VHO). Contemporary VHO decision algorithms are based on generic QoS metrics viz. SNR, bandwidth, jitter, BER and delay. In this paper, Error Vector Magnitude (EVM) is proposed to be a generic QoS trigger for VHO execution. EVM is defined as the deviation of inphase/ quadrature (I/Q) values from ideal signal states and thus provides a measure of signal quality. In 4G Interoperable environment, OFDM is the leading Modulation scheme (more prone to multi-path fading). EVM (modulation error) properly characterises the wireless link/ channel for accurate VHO decision. EVM depends on the inherent transmission impairments viz. frequency offset, phase noise, non-linear-impairment, skewness etc. for a given wireless link. Paper provides an insight to the analytical aspect of EVM & measures EVM (%) for key management subframes like association/re-association/disassociation/ probe request/response frames. EVM relation is explored for different possible NAV-Network Allocation Vectors (frame duration). Finally EVM is compared with SNR, BER and investigation concludes EVM as a promising QoS trigger for OFDM based emerging wireless standards.Comment: 12 pages, 7 figures, IJWMN 2010 august issue vol. 2, no.

    Frequency Offset Correction in a Software Defined HiperLAN/2 Demodulator using Preamble Section A

    Get PDF
    In our Software Defined Radio project we perform a feasibility study of a software defined radio for two communication standards: HiperLAN/2 and Bluetooth. In this paper the Matlab/Simulink implementation of the HiperLAN/2 demodulator for the demonstrator of the project is discussed, with special attention for the frequency offset corrector. This type of correction is necessary to prevent large bit error rates that are caused by inter-subcarrier interference. The method that is proposed in this paper uses preamble section A to estimate the frequency offset. Simulation results for an AWGN channel show that the method is capable of correcting frequency offsets up to the boundary defined in the standard [1]. It was observed that frequency offset correction using only preamble section A is sensitive to ¿for example¿ synchronization errors in case real-life analog front-end signals are used

    Analysis of DVB-H network coverage with the application of transmit diversity

    Get PDF
    This paper investigates the effects of the Cyclic Delay Diversity (CDD) transmit diversity scheme on DVB-H networks. Transmit diversity improves reception and Quality of Service (QoS) in areas of poor coverage such as sparsely populated or obscured locations. The technique not only povides robust reception in mobile environments thus improving QoS, but it also reduces network costs in terms of the transmit power, number of infrastructure elements, antenna height and the frequency reuse factor over indoor and outdoor environments. In this paper, the benefit and effectiveness of CDD transmit diversity is tackled through simulation results for comparison in several scenarios of coverage in DVB-H networks. The channel model used in the simulations is based on COST207 and a basic radio planning technique is used to illustrate the main principles developed in this paper. The work reported in this paper was supported by the European Commission IST project—PLUTO (Physical Layer DVB Transmission Optimization)

    Uplink Performance of Time-Reversal MRC in Massive MIMO Systems Subject to Phase Noise

    Full text link
    Multi-user multiple-input multiple-output (MU-MIMO) cellular systems with an excess of base station (BS) antennas (Massive MIMO) offer unprecedented multiplexing gains and radiated energy efficiency. Oscillator phase noise is introduced in the transmitter and receiver radio frequency chains and severely degrades the performance of communication systems. We study the effect of oscillator phase noise in frequency-selective Massive MIMO systems with imperfect channel state information (CSI). In particular, we consider two distinct operation modes, namely when the phase noise processes at the MM BS antennas are identical (synchronous operation) and when they are independent (non-synchronous operation). We analyze a linear and low-complexity time-reversal maximum-ratio combining (TR-MRC) reception strategy. For both operation modes we derive a lower bound on the sum-capacity and we compare their performance. Based on the derived achievable sum-rates, we show that with the proposed receive processing an O(M)O(\sqrt{M}) array gain is achievable. Due to the phase noise drift the estimated effective channel becomes progressively outdated. Therefore, phase noise effectively limits the length of the interval used for data transmission and the number of scheduled users. The derived achievable rates provide insights into the optimum choice of the data interval length and the number of scheduled users.Comment: 13 pages, 6 figures, 2 tables, IEEE Transactions on Wireless Communications (accepted
    corecore