20,597 research outputs found

    Five-level selective harmonic elimination PWM strategies and multicarrier phase-shifted sinusoidal PWM: A comparison

    Get PDF
    The multicarrier phase-shifted sinusoidal pulse-width modulation (MPS-SPWM) technique is well-known for its important advantage of offering an increased overall bandwidth as the number of carriers multiplied with their equal frequency directly controls the location of the dominant harmonics. In this paper, a five-level (line-to-neutral) multilevel selective harmonic elimination PWM (MSHE-PWM) strategy based on an equal number of switching transitions when compared against the previously mentioned technique is proposed. It is assumed that the four triangular carriers of the MPS-SPWM method have nine per unit frequency resulting in seventeen switching transitions for every quarter period. Requesting the same number of transitions from the MSHE-PWM allows the control of sixteen non-triplen harmonics. It is confirmed that the proposed MSHE-PWM offers significantly higher converter bandwidth along with higher modulation operating range. Selected results are presented to confirm the effectiveness of the proposed technique

    Leveraging Continuous Material Averaging for Inverse Electromagnetic Design

    Full text link
    Inverse electromagnetic design has emerged as a way of efficiently designing active and passive electromagnetic devices. This maturing strategy involves optimizing the shape or topology of a device in order to improve a figure of merit--a process which is typically performed using some form of steepest descent algorithm. Naturally, this requires that we compute the gradient of a figure of merit which describes device performance, potentially with respect to many design variables. In this paper, we introduce a new strategy based on smoothing abrupt material interfaces which enables us to efficiently compute these gradients with high accuracy irrespective of the resolution of the underlying simulation. This has advantages over previous approaches to shape and topology optimization in nanophotonics which are either prone to gradient errors or place important constraints on the shape of the device. As a demonstration of this new strategy, we optimize a non-adiabatic waveguide taper between a narrow and wide waveguide. This optimization leads to a non-intuitive design with a very low insertion loss of only 0.041 dB at 1550 nm.Comment: 20 pages, 9 figure

    Phase separation and enhanced charge-spin coupling near magnetic transitions

    Full text link
    The generic changes of the electronic compressibility in systems which show magnetic instabilities is studied. It is shown that, when going into the ordered phase, the compressibility is reduced by an amount comparable to the its original value, making charge instabilities also possible. We discuss, within this framework, the tendency towards phase separation of the double exchange systems, the pyrochlores, and other magnetic materials

    Statistics of the MLE and Approximate Upper and Lower Bounds - Part 2: Threshold Computation and Optimal Signal Design

    Get PDF
    Threshold and ambiguity phenomena are studied in Part 1 of this work where approximations for the mean-squared-error (MSE) of the maximum likelihood estimator are proposed using the method of interval estimation (MIE), and where approximate upper and lower bounds are derived. In this part we consider time-of-arrival estimation and we employ the MIE to derive closed-form expressions of the begin-ambiguity, end-ambiguity and asymptotic signal-to-noise ratio (SNR) thresholds with respect to some features of the transmitted signal. Both baseband and passband pulses are considered. We prove that the begin-ambiguity threshold depends only on the shape of the envelope of the ACR, whereas the end-ambiguity and asymptotic thresholds only on the shape of the ACR. We exploit the results on the begin-ambiguity and asymptotic thresholds to optimize, with respect to the available SNR, the pulse that achieves the minimum attainable MSE. The results of this paper are valid for various estimation problems

    Optimal control theory for unitary transformations

    Full text link
    The dynamics of a quantum system driven by an external field is well described by a unitary transformation generated by a time dependent Hamiltonian. The inverse problem of finding the field that generates a specific unitary transformation is the subject of study. The unitary transformation which can represent an algorithm in a quantum computation is imposed on a subset of quantum states embedded in a larger Hilbert space. Optimal control theory (OCT) is used to solve the inversion problem irrespective of the initial input state. A unified formalism, based on the Krotov method is developed leading to a new scheme. The schemes are compared for the inversion of a two-qubit Fourier transform using as registers the vibrational levels of the X1ÎŁg+X^1\Sigma^+_g electronic state of Na2_2. Raman-like transitions through the A1ÎŁu+A^1\Sigma^+_u electronic state induce the transitions. Light fields are found that are able to implement the Fourier transform within a picosecond time scale. Such fields can be obtained by pulse-shaping techniques of a femtosecond pulse. Out of the schemes studied the square modulus scheme converges fastest. A study of the implementation of the QQ qubit Fourier transform in the Na2_2 molecule was carried out for up to 5 qubits. The classical computation effort required to obtain the algorithm with a given fidelity is estimated to scale exponentially with the number of levels. The observed moderate scaling of the pulse intensity with the number of qubits in the transformation is rationalized.Comment: 32 pages, 6 figure
    • …
    corecore