38 research outputs found

    Phase groups and the origin of non-locality for qubits

    Get PDF
    We describe a general framework in which we can precisely compare the structures of quantum-like theories which may initially be formulated in quite different mathematical terms. We then use this framework to compare two theories: quantum mechanics restricted to qubit stabiliser states and operations, and Spekkens's toy theory. We discover that viewed within our framework these theories are very similar, but differ in one key aspect - a four element group we term the phase group which emerges naturally within our framework. In the case of the stabiliser theory this group is Z4 while for Spekkens's toy theory the group is Z2 x Z2. We further show that the structure of this group is intimately involved in a key physical difference between the theories: whether or not they can be modelled by a local hidden variable theory. This is done by establishing a connection between the phase group, and an abstract notion of GHZ state correlations. We go on to formulate precisely how the stabiliser theory and toy theory are `similar' by defining a notion of `mutually unbiased qubit theory', noting that all such theories have four element phase groups. Since Z4 and Z2 x Z2 are the only such groups we conclude that the GHZ correlations in this type of theory can only take two forms, exactly those appearing in the stabiliser theory and in Spekkens's toy theory. The results point at a classification of local/non-local behaviours by finite Abelian groups, extending beyond qubits to finitary theories whose observables are all mutually unbiased.Comment: 24 pages, many picture

    The GHZ/W-calculus contains rational arithmetic

    Full text link
    Graphical calculi for representing interacting quantum systems serve a number of purposes: compositionally, intuitive graphical reasoning, and a logical underpinning for automation. The power of these calculi stems from the fact that they embody generalized symmetries of the structure of quantum operations, which, for example, stretch well beyond the Choi-Jamiolkowski isomorphism. One such calculus takes the GHZ and W states as its basic generators. Here we show that this language allows one to encode standard rational calculus, with the GHZ state as multiplication, the W state as addition, the Pauli X gate as multiplicative inversion, and the Pauli Z gate as additive inversion.Comment: In Proceedings HPC 2010, arXiv:1103.226

    Geometric Quantization and Epistemically Restricted Theories: The Continuous Case

    Full text link
    It is possible to reproduce the quantum features of quantum states, starting from a classical statistical theory and then limiting the amount of knowledge that an agent can have about an individual system [5, 18].These are so called epistemic restrictions. Such restrictions have been recently formulated in terms of the symplectic geometry of the corresponding classical theory [19]. The purpose of this note is to describe, using this symplectic framework, how to obtain a C*-algebraic formulation for the epistemically restricted theories. In the case of continuous variables, following the groupoid quantization recipe of E. Hawkins, we obtain a twisted group C*-algebra which is the usual Moyal quantization of a Poisson vector space [12].Comment: In Proceedings QPL 2016, arXiv:1701.00242. 10 page

    A Diagrammatic Axiomatisation for Qubit Entanglement

    Full text link
    Diagrammatic techniques for reasoning about monoidal categories provide an intuitive understanding of the symmetries and connections of interacting computational processes. In the context of categorical quantum mechanics, Coecke and Kissinger suggested that two 3-qubit states, GHZ and W, may be used as the building blocks of a new graphical calculus, aimed at a diagrammatic classification of multipartite qubit entanglement that would highlight the communicational properties of quantum states, and their potential uses in cryptographic schemes. In this paper, we present a full graphical axiomatisation of the relations between GHZ and W: the ZW calculus. This refines a version of the preexisting ZX calculus, while keeping its most desirable characteristics: undirectedness, a large degree of symmetry, and an algebraic underpinning. We prove that the ZW calculus is complete for the category of free abelian groups on a power of two generators - "qubits with integer coefficients" - and provide an explicit normalisation procedure.Comment: 12 page

    Environment and classical channels in categorical quantum mechanics

    Full text link
    We present a both simple and comprehensive graphical calculus for quantum computing. In particular, we axiomatize the notion of an environment, which together with the earlier introduced axiomatic notion of classical structure enables us to define classical channels, quantum measurements and classical control. If we moreover adjoin the earlier introduced axiomatic notion of complementarity, we obtain sufficient structural power for constructive representation and correctness derivation of typical quantum informatic protocols.Comment: 26 pages, many pics; this third version has substantially more explanations than previous ones; Journal reference is of short 14 page version; Proceedings of the 19th EACSL Annual Conference on Computer Science Logic (CSL), Lecture Notes in Computer Science 6247, Springer-Verlag (2010

    Mermin Non-Locality in Abstract Process Theories

    Full text link
    The study of non-locality is fundamental to the understanding of quantum mechanics. The past 50 years have seen a number of non-locality proofs, but its fundamental building blocks, and the exact role it plays in quantum protocols, has remained elusive. In this paper, we focus on a particular flavour of non-locality, generalising Mermin's argument on the GHZ state. Using strongly complementary observables, we provide necessary and sufficient conditions for Mermin non-locality in abstract process theories. We show that the existence of more phases than classical points (aka eigenstates) is not sufficient, and that the key to Mermin non-locality lies in the presence of certain algebraically non-trivial phases. This allows us to show that fRel, a favourite toy model for categorical quantum mechanics, is Mermin local. We show Mermin non-locality to be the key resource ensuring the device-independent security of the HBB CQ (N,N) family of Quantum Secret Sharing protocols. Finally, we challenge the unspoken assumption that the measurements involved in Mermin-type scenarios should be complementary (like the pair X,Y), opening the doors to a much wider class of potential experimental setups than currently employed. In short, we give conditions for Mermin non-locality tests on any number of systems, where each party has an arbitrary number of measurement choices, where each measurement has an arbitrary number of outcomes and further, that works in any abstract process theory.Comment: In Proceedings QPL 2015, arXiv:1511.0118

    A Functorial Construction of Quantum Subtheories

    Full text link
    We apply the geometric quantization procedure via symplectic groupoids proposed by E. Hawkins to the setting of epistemically restricted toy theories formalized by Spekkens. In the continuous degrees of freedom, this produces the algebraic structure of quadrature quantum subtheories. In the odd-prime finite degrees of freedom, we obtain a functor from the Frobenius algebra in \textbf{Rel} of the toy theories to the Frobenius algebra of stabilizer quantum mechanics.Comment: 19 page

    Quantum cube: A toy model of a qubit

    Full text link
    Account of a system may depend on available methods of gaining information. We discuss a simple discrete system whose description is affected by a specific model of measurement and transformations. It is shown that the limited means of investigating the system make the epistemic account of the model indistinguishable from a constrained version of a qubit corresponding to the convex hull of eigenstates of Pauli operators, Clifford transformations and Pauli observables.Comment: 5 pages, 4 figures; Final version as published in Physics Letters
    corecore