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Abstract

We describe a general framework in which we can precisely compare the structures of quantum-like theories
which may initially be formulated in quite different mathematical terms. We then use this framework
to compare two theories: quantum mechanics restricted to qubit stabiliser states and operations, and
Spekkens’s toy theory. We discover that viewed within our framework these theories are very similar, but
differ in one key aspect - a four element group we term the phase group which emerges naturally within our
framework. In the case of the stabiliser theory this group is Z4 while for Spekkens’s toy theory the group is
Z2×Z2. We further show that the structure of this group is intimately involved in a key physical difference
between the theories: whether or not they can be modelled by a local hidden variable theory. This is done
by establishing a connection between the phase group, and an abstract notion of GHZ state correlations.
We go on to formulate precisely how the stabiliser theory and toy theory are ‘similar’ by defining a notion
of ‘mutually unbiased qubit theory’, noting that all such theories have four element phase groups. Since Z4
and Z2×Z2 are the only such groups we conclude that the GHZ correlations in this type of theory can only
take two forms, exactly those appearing in the stabiliser theory and in Spekkens’s toy theory. The results
point at a classification of local/non-local behaviours by finite Abelian groups, extending beyond qubits to
finitary theories whose observables are all mutually unbiased.
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1 Introduction

Much interest recently has focused on picking out the key features of quantum me-

chanics which make it special (for example, incompatible observables, non-locality,

computational speed-up, no-cloning), investigating the relationships between these

features, and identifying the mathematical aspects of the theory which embody
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these physical features. Quantum-like theories have been constructed, which dis-

play certain features of quantum mechanics but not others, allowing us to see which

of these features are interlinked, and which are essentially independent.

These theories had diverse motivations and are expressed in a range of mathe-

matical forms. Quantum mechanics uses Hilbert space. Another theory which has

recently attracted much interest [25] employs subsets of certain sets to represent

states, and relations between these sets to represent the operations of the theory.

Other quantum-like theories use quite different mathematical formalisms again [5,4].

The task of comparing these theories would be simplified if we had a single math-

ematical framework in which they could all be expressed. We could then pinpoint

aspects of the framework where theories differed, and identify these aspects with

differing physical features of the theories.

This paper will outline such a framework, developed in [1,23,12,13,8], and then

use it to analyse some key examples. In this case the physical property we will

be interested in is non-locality. To this end we extend the existing framework

to encompass an abstract definition of GHZ state, and a corresponding notion of

correlations.

What is nonlocality? The name tells us that “it’s not locality.” The technical

definition tells us that “there is no local hidden variable theory.” By Bell’s Theorem

this means that “some inequality is not satisfied.” All this tells us what nonlocality

is not, but what actually “is” nonlocality? It is our goal in this paper to identify the

piece of structure of Hilbert space quantum mechanics that generates non-locality.

To this end we will use our framework to analyse two theories which make

very similar predictions, but differ principally in that one is local and the other

is non-local. We will express both standard quantum mechanics, and a quantum-

like toy theory proposed by one of the authors[25], called Spekkens’s toy theory,

in the unifying framework. The toy theory replicates many features of QM (e.g.

incompatible observables, teleportation, no-cloning), but it is essentially a local

hidden variable theory, and so it lacks other typically quantum features, specifically

violation of Bell inequalities, and other ‘non-local’ behaviour. We will identify a

key piece of the structure of the unifying framework where QM and the Spekkens’s

toy theory differ (an Abelian group we term the phase group). Furthermore we will

show explicitly that it is this piece of structure which in the QM case facilitates

a ‘no-go theorem’ which rules out a hidden variable interpretation. Conversely, in

the toy theory case, the phase group does not allow construction of such a no-

go theorem. We speculate that this key piece of structure is responsible for the

locality/non-locality of any quantum-like theory that our framework is capable of

encompassing.

2 The framework: Dagger compositional theories

To make a comparison between qubit stabiliser formalism and Spekkens’s toy theory

we need a framework with concepts that are sufficiently general to accommodate

both of them. In particular, we need to be able to speak about GHZ states and
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observables for theories other than Hilbert space quantum mechanics. Such a gen-

eral account of physical theories was initiated by Abramsky and one of the authors

in [1], and further developed by several others [23,12,13,8]. We refer the reader for

physicist friendly introductions and tutorials on symmetric monoidal categories to

[6,3] and [11,2] respectively.

The operational foundation for these structures is as follows – detailed discus-

sions are in [6,11]. Systems are represented by their names A,B,C, . . . Processes (or

operations) are represented by arrows A
f� B or f : A → B indicating the initial

system A and the resulting system B. States are special arrows ψ : I → A where I is

the ‘unspecified’ system. We can sequentially compose processes if the intermediate

systems match i.e. A
h◦g� C = A

g� B
h� C. There also are processes which

leave the system invariant: A
1A� A. Compound systems are denoted A⊗B and

separate processes thereon A⊗ C
f⊗g� B ⊗D. We refer to the arrows I

s� I as

numbers. In addition we assume that each process A
f� B comes equipped with

an adjoint process B
f†
� A. The precise mathematical notion which accounts for

how sequential composition, denoted ◦, and the tensor, denoted ⊗, interact is that

of a dagger symmetric monoidal category.

Definition 2.1 A dagger symmetric monoidal category C is a category with a bi-

functor − ⊗ − : C × C → C, associativity, unit and symmetry natural isomor-

phisms, subject to the usual coherence conditions, and a contravariant involutive

functor −† : C → C which coherently preserves the monoidal structure. An ar-

row f : A → B is unitary if we have f † ◦ f = 1A and f ◦ f † = 1B. We assume

associativity, unit and symmetry natural isomorphisms to be unitary.

Each such dagger symmetric monoidal category moreover admits a purely dia-

grammatic calculus [6,11,23,24], for example:

f ≡ f 1A ≡ g ◦ f ≡
g

f
f ⊗ g ≡ f fg

These diagrams are not merely denotation but are truly equivalent to the algebraic

symbolic presentation in the following sense.

Theorem 2.2 [23] An equation expressible in the language of dagger symmetric

monoidal categories is provable from the axioms of a dagger symmetric monoidal

category if and only if it is derivable in the corresponding diagrammatic calculus.

Definition 2.3 A dagger compositional theory, or in short, †C-theory, is a dagger

symmetric monoidal category in which we interpret objects as systems, morphisms

as processes, with states and effects as the particular cases arising from the unit

object, composition as performing one process after the other, and the tensor as

composing systems and paralleling processes.

Example 2.4 In the †C-theory FHilb the objects are finite dimensional Hilbert

spaces, the arrows are linear maps, the tensor is the tensor product, and the dagger
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is the linear algebraic adjoint. States are of the form

|ψ〉 : C → H :: 1 �→ ψ ,

and hence correspond to vectors, and the numbers are of the form

〈c〉 : C → C :: 1 �→ c ,

and hence correspond to complex numbers. One can interpret these operations as

pure quantum processes with postselection, since postselected logic gate teleporta-

tion allows us to produce any linear map up to a probabilistic weight.

Example 2.5 In the †C-theory FRel, the objects are finite sets, the arrows are

relations, the tensor is the cartesian product, the dagger is the relational converse.

The identity object is the single element set {∗}. Now states are of the form

|r〉 : {∗}→ X :: 1 �→ Y ⊆X ,

and hence correspond to subsets, and the numbers are of the form

〈b〉 : {∗}→{∗} :: ∗ �→ ∅ or ∗ ,
and hence correspond to the booleans. One can interpret these relational operations

as ‘possibilistic’ (classical) processes.

Example 2.6 [From vectors to rays] The states of the †C-theory FHilb as defined

above are vectors in a Hilbert space, not one-dimensional subspaces. In other words,

it contains physically redundant ‘global phases’. One way to eliminate these global

phases is by considering equivalence classes of linear maps that are equal up to a

global phase. Another way applies to arbitrary †C-theories:
Definition 2.7 [7] [W-construction] Given a †C-theory C we define a †C-theory
WC to have the same objects as C, with WC(A,B) := {f ⊗ f† | f ∈ C(A,B)},
and with (f ◦ g)⊗ (f ◦ g)† as the composite of f ⊗ f † and g⊗ g†. For f a morphism

in C we set Wf := f ⊗ f † for the corresponding morphism in WC.

Example 2.8 [From vectors to rays continued] This W-construction has the added

advantage that expressions of the form 〈ψ|φ〉 := ψ† ◦ φ, after application of the W-

construction, become |〈ψ|φ〉|2 = (ψ† ◦ φ)† ◦ (ψ† ◦ φ), that is, transition probabilities

according to the Born rule. For states in FHilb, applying the W-construction

essentially boils down to the same thing as passing from kets |ψ〉 to projectors

|ψ〉〈ψ| in the density matrix formulation. The numbers in WFHilb are positive

real numbers, which we interpret as probabilistic weights. We have W(WFHilb) 
WFHilb, and WFRel  FRel.

Definition 2.9 [7] A †C-theory C is without global phases iff WC  C

Below, we will always assume that we have eliminated the global phases from

FHilb, even when we write FHilb. Hence the numbers in this category are the pos-

itive reals, which we interpret as probabilistic weights. Inner-products then provide

the correct transition probabilities according to the Born rule. More generally, we

will interpret the numbers in †C-theories as probabilistic weights and inner-products

〈−|−〉 := (−)† ◦ (−) as transition probabilities.
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3 Key features of the †C-theory framework

3.1 Observables in †C-theories
In this section we explain how the usual notion of a non-degenerate observable can

be generalised from Hilbert spaces to other †C-theories.
Definition 3.1 [12] Let C be a †C-theory. By a(n) (non-degenerate) observable

for an object X we mean any commutative isometric dagger Frobenius comonoid

(X, δ, ε).

Elsewhere we have referred to these non-degenerate observables as basis struc-

tures [8] or classical structures [12]. What this mathematical concept stands for

exactly will be explained below. Their name is justified by the following theorem.

Theorem 3.2 [13] In FHilb, observables in the sense of Definition 3.1 on a Hilbert

space H are in bijective correspondence with the orthonormal bases of H. More

precisely, each (unordered) orthonormal basis {|i〉}i yields an observable (H, δ, ε)

with ⎧⎨
⎩

δ : H → H⊗H :: | i 〉 �→ | ii 〉
ε : H �→ C :: | i 〉 �→ 1

.

Conversely, all observables in the sense of Definition 3.1 arise uniquely in this

manner.

Hence in FHilb an orthonormal basis can be equivalently defined as a commu-

tative isometric dagger Frobenius comonoid. The orthonormal basis is ‘encoded’ as

the linear map which copies the vectors of that basis together with the linear map

which uniformly erases them. Of course, in quantum theory observables correspond

to rays spanned by an element of an orthonormal basis rather than to the basis

itself. For a discussion of observables in the sense of Definition 3.1 within WFHilb

we refer the reader to [8].

The definition of an observable in a †C-theory has an equivalent, purely dia-

grammatic, incarnation which suffices for our purposes in this paper. We set:

δ = ε =

Theorem 3.3 [17,18,10] All connected diagrams built from ‘copying’ (δ), ‘erasing’

(ε), their daggers and straight wires, which have the same number of inputs and

outputs, are equal. We represent these diagrams by a ‘spider’:
.........

....
Conversely, the defining equations of an observable in a †C-theory (Definition 3.1)

are all implied by the assumption that connected diagrams with the same number of

inputs and outputs are equal.
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Observables on ‘subsystems’ always lift to the whole system:

Proposition 3.4 [8] Two observables (A, δX , εX) and (B, δX′ , εX′) in a †C-theory
canonically induce an observable (A⊗B, δX⊗X′ , εX⊗X′) with

δX⊗X′ = (1A ⊗ σA,B ⊗ 1B) ◦ (δX ⊗ δX′) εX⊗X′ = εX ⊗ εX′ ,

where σA,B is the morphism that swaps objects A and B. That is, diagrammatically,

δX⊗X′ = εX⊗X′ =

Proposition 3.5 [12] Each observable (A, δ, ε) in †C-theory induces a self-dual dag-

ger compact structure (A, η := δ ◦ ε† : I → A⊗A), diagrammatically,
=:

,

where ‘compactness’ means that:

(η† ⊗ 1A) ◦ (1A ⊗ η) = 1A σA,A ◦ η = η ,

that is, diagrammatically, = =
and .

Given two such induced compact structures (A, ηA) and (B, ηB), and an ar-

bitrary morphism f : A → B, we can define abstract notions of the transpose

morphism f∗ : B → A and the conjugate morphism f∗ : B → A [1], respectively as

follows

f∗ := (η†B ⊗ 1A) ◦ (1B ⊗ f ⊗ 1A) ◦ (1B ⊗ ηA)

f∗ := (η†A ⊗ 1B) ◦ (1A ⊗ f † ⊗ 1B) ◦ (1A ⊗ ηB) .

diagrammatically,

f∗ := f f∗ := f †

We also refer to a dagger compact structure (A, η) as a Bell state. A graphical

interpretation of Bell states can be found below in Definition 3.8.

Let λI : I  I⊗I. Now we define abstract counterparts of the basis vectors which

are copied in FHilb:

Definition 3.6 [8] The eigenstates of an observable (X, δ, ε) in a †C-theory are all

states x : I → X which satisfy δ ◦ x = (x⊗ x) ◦ λI, ε ◦ x = 1I and x∗ = x, that is,

x

=x
,

x
x

= † =

x
†x

.

The first of these conditions tells us that ‘eigenstates commute through dots’.

Eigenstates moreover lift from subsystems to the whole system:

Proposition 3.7 [8] If x is an eigenstate for observable (A, δX , εX) and x′ is

an eigenstate for observable (B, δX′ , εX′) then x ⊗ x′ is an eigenstate for (A ⊗
B, δX⊗X′ , εX⊗X′) as defined in Proposition 3.4.
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3.2 GHZ states in †C-theories
Definition 3.8 A GHZ structure for an object X in a †C-theory is a triple

(X , Ψ : I → X ⊗X ⊗X , ε : X → I)

where Ψ is called a GHZ state, with

• Ψ symmetric i.e.

= =

• (ε⊗ 1X⊗X) ◦Ψ is a Bell state i.e

=: =
such that

=
and

• Ψ and ε are both self-conjugate, i.e.

= =

• when ‘tracing out’ two subsystems we obtain the maximally mixed state:

=

Theorem 3.9 GHZ structures in a †C-theory are in bijective correspondence with

observables in that †C-theory via the correspondence:=

=
which assigns to each observable a GHZ structure, and its converse:

= =

which assigns to each GHZ structure an observable.

Proof: This can straightforwardly be verified using Theorem 16.2 in [12]. �

3.3 Phase groups in †C-theories
Proposition 3.10 [8] For (X, δ, ε) an observable in a †C-theory let

• statesX := {x : I → X}

• x� y := δ† ◦ (x⊗ y) = x y

• actionsX := {Ux := δ† ◦ (x⊗ 1X) = x | x : I → X}
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then (statesX ,�, ε) and (actionsX , ◦, 1X) are isomorphic commutative monoids.

This follows straightforwardly from Theorem 3.3 (the spider theorem).

Example 3.11 In FHilb, for vectors ψ = (ψ1, . . . , ψn) and φ = (φ1, . . . , φn) in the

basis corresponding to (H, δ, ε) via Theorem 3.2, we have ψ�φ = (ψ1·φ1, . . . , ψn·φn),

that is, ψ � φ is the component-wise product of ψ and φ.

Proposition 3.12 [8] In FHilb a state ψ (normalised so that |ψ|2 = dim(H)) is

unbiased with respect to the orthonormal basis corresponding to (H, δ, ε) via Theorem

3.2 iff ψ∗ � ψ = ε†.

Returning now to a general †C, let dim(X) = ε ◦ ε† for observable (X, δ, ε).

Definition 3.13 [8] In any †C-theory a state ψ : I → X with ψ† ◦ ψ = dim(X) is

unbiased for an observable (X, δ, ε) iff

ψ∗ � ψ = ε† that is ψ ψ∗
= .

By choosing ψ† ◦ ψ = dim(X) rather than ψ† ◦ ψ = 1I as our normalisation

convention we substantially simplify the expressions in this paper. We refer to

states ψ : I → X which satisfy ψ† ◦ ψ = dim(X) as states of length
√

dim(X).

Definition 3.14 [8] Two observables are mutually unbiased if the eigenstates of

one are unbiased for the other.

The diagrammatic significance of this definition is studied in detail in [8].

Theorem 3.15 [8] Let now

• U -statesX be all states in statesX unbiased with respect to the observable (X, δ, ε)

• U -actionsX be all unitary actions in actionsX

then (U -statesX ,�, ε) and (U -actionsX , ◦, 1X) are isomorphic abelian groups. For

U -statesX the inverses are provided by the adjoint, and for U -actionsX the inverses

are provided by the conjugates for the induced compact structure.

Definition 3.16 [8] We call the isomorphic groups of Theorem 3.15 the phase

group.

Example 3.17 In the case of a qubit the phase group is the circle of ‘relative

phases’. Concretely, when expressed in the standard basis, the unbiased states and

the unitary actions have respective matrices:

ψα =

⎛
⎝ 1

eiα

⎞
⎠ Uα = δ ◦ (ψα ⊗ 1Q) =

⎛
⎝ 1 0

0 eiα

⎞
⎠ .

3.4 GHZ correlations in †C-theories
In Theorem 3.9, we showed the correspondence between observables and GHZ states.

It comes as no great surprise then, that the measurement correlations of our GHZ
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states are closely related to the phase groups described in the previous section.

Definition 3.18 Let (X, δ, ε) be an observable in a †C-theory and let (X,Ψ, ε)

be the corresponding GHZ state. By a GHZ correlation triple we mean a triple

(x, x′, x′′) of states x, x′, x′′ : I → X of length
√

dim(X) which is such that

x′′ = (x⊗ x′ ⊗ 1X)† ◦Ψ =
x x,

.

By GHZ correlations we mean the set

Γ ⊆ C(I, X)×C(I, X)×C(I, X)

consisting of all GHZ correlation triples.

We can interpret these GHZ correlation triples in operational terms: when, in a

measurement of the first and second qubit of the GHZ state Ψ, the effects x† and

x′† occur then the third qubit is necessarily in state x′′. If x′′ = 0 this means that

effects x† and x′† can never occur together.

Proposition 3.19 For GHZ correlations Γ we have:

i. For states x, x′, x′′ : I → X, (x, x′;x′′) ∈ Γ iff x′′∗ = x�x′; in other words, correla-

tion triples are exactly all triples of the form (x, x′, (x�x′)∗) where x, x′, (x�x′)∗ �=
0.

ii. If (ψ, ψ′, ψ′′) is a correlation triple and ψ, ψ′, ψ′′ are in the phase group then any

triple obtained by permuting ψ, ψ′and ψ′′ is also a correlation triple.

Proof: Part i. follows from (reversed triangles are the transposed):

=x x,

x x,

Part ii. We have ψ′ = (ψ∗ � ψ) � ψ′ = ψ∗ � (ψ � ψ′) = (ψ � (ψ � ψ′)∗)∗ so

(ψ, (ψ � ψ′)∗;ψ′) = (ψ, (ψ � ψ′)∗; (ψ � (ψ � ψ′)∗)∗) is indeed a correlation triple by

part i of this proposition. �

4 The key examples: Stab and Spek

Having surveyed our unifying categorical framework we now proceed to consider

two specific examples. The first is stabiliser qubit QM, a restricted version of

standard qubit QM. The second is Spekkens’s toy theory, which closely models

many features of stabiliser QM, despite being essentially a local hidden variable

theory. When considered within the categorical framework the similarity between

the two is striking; and the precise difference between the two can be clearly pin-

pointed. Furthermore the difference is to be found precisely in a certain categorical

structure which is intimately involved in describing the physical phenomena where

the two theories differ most significantly - locality v. non-locality.
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4.1 Stabiliser qubit quantum mechanics

This is a subset of standard QM. The only systems in the theory are qubits, or collec-

tions of qubits. The states which these ‘qubits’ can occupy are the stabiliser states

of standard QM (these are the +1 eigenstates of tensor products of Pauli operators).

For the single qubit there are six such states, the standard |0〉, |1〉, |+〉, |−〉, |i〉 and
| − i〉. For two qubits we have all 36 possible tensor products of these single qubit

states, plus 24 maximally entangled states, all related to the Bell state 1√
2
|00〉+ |11〉

by local unitary operations. For three qubits we have many more states, including

the GHZ state 1√
2
|000〉+ |111〉.

The time evolution of states is given by those unitary operations which preserve

stabiliser states. Such operations are called Clifford unitaries and form a group. In

fact, all n-qubit Clifford operations can be simulated using the CNOT gate (which

is itself a Clifford unitary), and the single qubit Clifford unitaries. These single

qubit operations themselves form a group, isomorphic to the permutation group S4.

The only measurements allowed in the theory are projective Pauli measurements.

Though a restricted version of QM, qubit stabiliser theory exhibits most of the

key features of full QM. It has incompatible observables. There is a no-cloning

theorem. Local hidden variable no-go proofs hold, as we shall soon see (although in

the case of stabiliser QM we need to employ three qubit states, as in the GHZ no-go

proof: although we have the Bell state, making Pauli measurements alone cannot

violate Bell inequalities).

We have chosen to investigate stabiliser QM rather than the full theory, because

it is much closer to the second theory which we will consider.

4.2 Spekkens’s toy theory

We don’t have space here to give full details of Spekkens’s toy theory, these can be

found in Ref. [25]. A brief description of the key points will suffice. The theory

attempts to approximate stabiliser qubit QM: there is only one type of system, which

is something like a qubit, and the states are discrete. The theory does not employ

vector space. Instead a single system is described by a four state phase space. The

actual state occupied in the phase space is called the ontic state. However, the

theory posits a fundamental restriction on our knowledge of the ontic state. This

restriction is the fundamental principle of the theory, called the ‘knowledge balance

principle’. In full generality this principle is a bit awkward to state, but in the case

of a single ‘qubit’ it boils down to saying that we can at best know that the system

is in one of two ontic states, with equal probability. Our state of knowledge - the

epistemic state - is the toy theory’s analogue of the quantum state. The theory is

clearly, by construction, a local hidden variable theory.

Because of the equal probability caveat, mathematically the epistemic states

of the ‘qubit’ system are subsets of a four element set, hence there are six such

states, just as in the case of stabiliser qubit QM. Invoking the knowledge balance

principle, one can go on to derive the allowed states of composite systems, and all

the operations on systems which are allowed in the theory. There turns out to be
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a one-to-one correspondence between the states and operations of the toy theory

and those of the stabiliser theory, although how the operations combine together is

not homomorphic. The operations of the toy theory transform between subsets of

sets which represent the phase spaces of the various systems - thus they are most

naturally described by relations on these sets.

4.3 The †C-theories Stab and Spek

We now express both these theories within our †C-theory framework. Interestingly,

both theories can be defined in a constructive fashion:

Definition 4.1 [Stab] The †C-theory Stab is the sub-†C-theory of FHilb (recall

example 2.4) generated by:

• nth tensor powers of qubits Q := C
2

• the single qubit Clifford unitaries

• the linear map

δstab : Q → Q⊗Q ::

⎧⎨
⎩

|0〉 �→ |00〉
|1〉 �→ |11〉

together with the (necessarily unique) counit of this comultiplication, εStab.

That this collection of operations is enough to generate all the states and oper-

ations of the stabiliser theory can be seen as follows:

• The Hadamard operation H is a single qubit Clifford unitary.

• CNOT := (1Q ⊗ (H ◦ δ†Stab ◦ (H ⊗H))) ◦ (δStab ⊗ 1Q)
• Arbitrary n-qubit Clifford unitaries UClifford can be generated from the single

qubit Clifford unitaries and CNOT.

• An arbitrary n-qubit stabiliser state Ψstabilizer = UClifford(ε
† ⊗ ε† ⊗ . . .⊗ ε†)

Note that a similar construction actually applies to FHilb if we substitute the

single qubit unitaries for the single qubit Clifford unitaries.

It is straightforward to verify that (Q, δStab, εStab) is an observable as defined

in Section 3.1. The abstract GHZ state derived via Theorem 3.9 is exactly the

standard GHZ state 1√
2
|000〉 + |111〉, which, as mentioned earlier, is a stabiliser

state. All the results of Section 3, on phase groups, correlation triples etc. apply.

Proposition 4.2 The object Q in Stab has three observables in total: the one

mentioned in Definition 4.1, and two others which copy the vectors |+〉 and |−〉,
and |i〉 and | − i〉 respectively. All three observables are mutually unbiased.

Proof: That these are the only other observables on Q follows as a corollary of

Theorem 3.2, and the fact that Stab is a sub-category of FHilb. That they are all

mutually unbiased follows from straightforward computation. �

B. Coecke et al. / Electronic Notes in Theoretical Computer Science 270 (2) (2011) 15–36 25



Definition 4.3 [9][Spek] The †C-theory Spek is the sub-†C-theory of FRel (recall

example 2.5) generated by:

• nth powers of qubits IV := {1, 2, 3, 4}
• all permutations on IV

• the relation

δSpek : IV → IV × IV ::

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 �→ {(1, 1), (2, 2)}
2 �→ {(1, 2), (2, 1)}
3 �→ {(3, 3), (4, 4)}
4 �→ {(3, 4), (4, 3)}

together with the (necessarily unique) unit of this comultiplication, εSpek.

That these relations are sufficient to generate all the states and operations of

Spekkens’s toy theory (and no more) is not at all obvious, and is proved in [9].

Perhaps unsurprisingly, given our choice of notation, (IV, δSpek, εSpek) turns out to

be an observable. All the results of Section 3, on phase groups, correlation triples

etc. again apply.

Proposition 4.4 The object IV in Spek has three observables in total. All three

observables are mutually unbiased.

Proof: The three observables are detailed in [9]. That these are the only observables

is shown in [21]. That they are mutually unbiased follows from straightforward

computation. �

Remark 4.5 The use of relations in our construction actually leads to something

we would term a possibilistic theory. The scalars in FRel and thus in Spek are

the Booleans. Such a theory can’t really tell us the probability of any measurement

outcomes, only whether such outcomes are possible or not. This is actually adequate

for our later discussions of non-locality, since the kind of non-locality proofs we will

invoke only involve measurement probabilities of 0 and 1. However, it should be

noted that there is a well-defined procedure for modifying Spek so that its scalars

are positive real numbers, and we can discuss probabilities.

4.4 Pinpointing the difference between Spek and Stab

Our definitions of Stab and Spek are in terms of concrete vector spaces and linear

maps, sets and relations. This allows us to make a clear connection with the way

in which the theories were originally formulated. From our categorical perspective

however the internal structure of the objects of a category is irrelevant, only the

algebra of composition of morphisms is important. From this perspective, both

Stab and Spek are generated by:

• nth powers of qubit objects Q

• the group S4 acting on Q
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• an observable: δ : Q → Q⊗Q and its unit ε : Q → I

By definition, we know that the δ and ε morphisms always combine in the same

way: according to Theorem 3.3. And by specifying the group S4 we have ensured

that the group elements combine with one another in the same way in both cases.

From this point of view it looks like Stab and Spek might be the same theory

viewed in abstract categorical grounds. But this can’t be the case: they describe

quite different physical theories!

In fact the difference lies in the way that the group elements interact with the

observable. One key example of such an interaction is the phase group. And indeed

it is straightforward to verify that the phase groups of the qubit observables of Stab

and Spek differ:

Theorem 4.6 The phase group for qubits in Stab is the four element cyclic group

Z4 and the phase group for qubits in Spek is the Klein four group Z2 × Z2.

Proof: Straightforward computation. �

In the next section we will show that this mathematical difference between the

theories is intimately related to one of their key physical differences: the presence

or absence of non-locality.

5 Mutually unbiased qubit theories

We have mentioned how Spekkens’s toy theory and stabiliser qubit QM are similar

kinds of theory: in both cases there is a discrete collection of states; in both cases

the ‘qubit’ system’s observables (of which there are three) are all mutually unbiased.

We next try to formally pin down the features which these theories share, within

our categorical framework.

Definition 5.1 A mutually unbiased qubit theory, or MUQT, is a dagger symmetric

monoidal category with basis structures, which satisfies the following additional

conditions:

(i) The objects of the category are I, Q (which will represent a qubit-like system),

and n-fold tensor products of Q, i.e. Q⊗Q⊗ . . .⊗Q.

(ii) The observables on any given object are all alike: that is to say, they have the

same number of eigenstates, and the same phase groups.

(iii) The observables of Q are all mutually unbiased (recall Definition 3.14).

(iv) All states of Q (i.e. morphisms of type I → Q) are eigenstates of some observ-

able.

(v) Q has three observables, each with two eigenstates.

Various results follow directly from this definition. (iv) and (v) together imply

that Q has six states. (iii) and (iv) together imply that, with respect to any observ-

able on Q, all states are either eigenstates or unbiased. We can further conclude

that each observable on Q has two eigenstates and four unbiased states.
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Proposition 5.2 Stab and Spek are both MUQTs.

Proof: This follows from the definitions of the categories, and Propositions 4.2 and

4.4. �

MUQTs apparently have some fairly severe restrictions placed upon them but

these apply principally to the observables and states on the object Q, and there

is still considerable freedom to define the properties of the observables and states

on compound systems. Furthermore, MUQTs could differ greatly in their other

morphisms on Q. Stab and Spek are far from being the only MUQTs.

5.1 Classification

However we will show that in a MUQT the possibilities for the basis structures on

Q are quite limited. More precisely the GHZ correlations can take one of two forms,

and Stab and Spek cover these two possibilities.

The outline of this argument is fairly straightforward. Firstly, we recall the

connection established in 3.19 between GHZ correlations and the monoid generated

by the corresponding observable. We will shortly show that in a MUQT the monoid

generated by the basis structures on Q is completely determined by their phase

group. Next we note that the phase group is an Abelian group, and has as many

members as the basis structure has unbiased states, in this case four. Finally we

recall that there are only two Abelian groups of four elements, the cyclic group Z4

and the Klein four-group Z2 × Z2.

So it simply remains to prove the first step, that in a MUQT the GHZ cor-

relations on Q are completely determined by the phase group. Recall Definition

3.6 of an eigenstate. From the axioms of an eigenstate it immediately follows that

x† ◦ x = 1I. More specifically, if δ ◦ x = (x⊗ x) ◦ λI and x∗ = x, then we have that

ε ◦ x = x† ◦ x.
Lemma 5.3 For x, x′ : I → X eigenstates we have (x† ◦ x′)2 = x† ◦ x′.
Proof: (x† ◦ x′)2 = λ†

I ◦ (x⊗ x)† ◦ (x′ ⊗ x′) ◦ λI = x† ◦ δ† ◦ δ ◦ x′ = x† ◦ x′. �

Lemma 5.4 If for x, x′ : I → X eigenstates x† ◦ x′ = 1I then x = x′.

Proof: Ignoring natural isomorphisms, (1X ⊗ x†) ◦ δ ◦ x′ = (1X ⊗ x†) ◦ (x′ ⊗ x′) =
(x† ◦ x′) · x′ = x′ (where we use · in place of ⊗ when the objects are numbers) from

which it follows by x∗ = x that x� x′ = x′. By symmetry we also have x� x′ = x

and hence x′ = x� x′ = x. �

Hence the inner product of two eigenstates is always an idempotent and for

non-equal eigenstates this idempotent cannot be 1I.

Definition 5.5 A †C-theory has a zero if it has exactly two idempotent numbers.

The idempotent number 0 which is not the identity is referred to as zero.
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Proposition 5.6 If two states x �= x′ are eigenstates for an observable in a †C-
theory with zero then we have x† ◦ x′ = 0 and x† ◦ x = 1I.

Proof: Follows from Lemma 5.3 and Lemma 5.4. �

In R, R+ and C the only idempotents are 0 and 1. We will furthermore assume

that any 0-multiple of a state ψ : I → A is a unique (trivial) state which we also

denote by 0A. We will indicate reliance on this assumption that there is a unique

‘absorbing idempotent number’ by (0). This assumption is conceptually justified

by the interpretation of numbers as probabilistic weights – see Example 2.6.

Lemma 5.7 [8] For x : I → X an eigenstate and ψ : I → X unbiased we have:

dim(X) · (x† ◦ ψ)† · (x† ◦ ψ) = 1I .

Setting |〈x|ψ〉|2 := (x†◦ψ)† ·(x†◦ψ) and assuming that dim(X) admits an inverse

1/D, i.e. dim(X) · 1/D = 1I, results in the familiar form |〈x|ψ〉|2 = 1/D. When

we now subject a †C-theory to the W-construction of [7] discussed in Example 2.6,

then in the newly constructed category we have

〈Wx|Wψ〉 = (Wx)† ◦Wψ = (x† ◦ ψ)† · (x† ◦ ψ) = 1/D .

We will assume below that we always are in a ‘†C-theory without global phases’ i.e. a

†C-theory which is invariant under the W- construction. We will indicate reliance

on this assumption by (W). This assumption is again conceptually justified by the

interpretation of numbers as probabilistic weights – see Example 2.6.

Remark 5.8 Note that while Spek, as a subcategory of FRel, obviously has no

global phases, it does have non-trivial relative phases, namely Z2 × Z2.

Lemma 5.9 Let (X, δ, ε) be an observable in a †C-theory, let ψ, φ : I → X be

unbiased for it and let x �= x′ : I → X be eigenstates for it. Then we have:

(1) x� x = x and x� x′ = (x† ◦ x′) · x (0)
= 0 ;

(2) x� ψ = (x† ◦ ψ) · x (W)
= 1/D · x ;

(3) ψ � φ is completely determined by the phase group.

Proof: For (1) we have:

=

x x, x x,

=x

x,
x =

x
x,
x

where the last step follows by x = x∗. Hence x � x′ = (x† · x′) · x = 0 · x = 0. If

rather than x′ we would have considered x itself then this graphical argument yields

x � x = (x† · x) · x = x. For (2) the same graphical argument, now substituting ψ

for x′, results in x� x′ = (x† ◦ ψ) · x = 1/D · x. (3) is simply a consequence of the

definition of the phase group (definition 3.16). �

Corollary 5.10 Consider a †C-theory which obeys (0) and (W) and consider an

observable in it for which all states on the underlying object are either eigenstates or
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unbiased. Then, the choice of phase group constitutes the only degree of axiomatic

freedom for how the multiplication −�− of the observable acts on states.

Next we can use Proposition 3.19 to make the link to GHZ correlations:

Lemma 5.11 Let (X,Ψ, ε) be a GHZ state in a †C-theory, let ψ, φ : I → X be

unbiased for it and let x �= x′ : I → X be eigenstates for it. Then we have:

(1a) (x, x;x) is a correlation triple ;

(1b) there are no correlation triples involving both x and x′ ;

(2) (x, ψ;x) is a correlation triple ;

(3) all correlation triples involving at least two phase group elements are of the

form (ψ, φ; (ψ � φ)∗) – which by Prop. 3.19 ii. includes permutations thereof.

Proof: Using Proposition 3.19, each of these items follows from the similarly num-

bered item of lemma 5.9. �

Corollary 5.12 Consider a †C-theory which obeys (0) and (W) and consider a

GHZ state in it for which all states on the underlying object are either eigenstates

or unbiased. Then, the choice of phase group constitutes the only degree of axiomatic

freedom for the corresponding GHZ correlations.

Finally considering that in a MUQT the phase group must have four elements,

and that there are only two four element groups Z4 and Z2 × Z2, we can state our

main result:

Theorem 5.13 The GHZ correlations of the ‘qubit’ object in a MUQT can take

only two forms, corresponding to the two four-element groups, Z4 (as in the case of

Stab) and Z2 × Z2 (as in the case of Spek).

We conclude that, whilst there is a vast number of possible MUQTs, their GHZ

correlations can take only one of two forms, and Stab and Spek exemplify the two

possibilities.

5.2 Link to non-locality

The GHZ correlations in the theories are of particular interest, because these corre-

lations are invoked in one of the most elegant ‘no-go’ proofs showing that quantum

mechanics cannot be explained by a local realist theory. For the full details of this

famous proof the reader is referred to [20].

Note the following key points:

• This no-go proof also applies to stabiliser theory. The proof begins with a GHZ

state. The key ingredients are the probabilities of outcomes when we measure the

variables X ⊗X ⊗X, X ⊗ Y ⊗ Y , Y ⊗X ⊗ Y , and Y ⊗ Y ⊗X. GHZ states and

Pauli measurements both survive the restriction from full QM to the stabiliser

theory, so the proof applies equally well in this case, i.e. it is impossible to model

stabiliser theory with a local realist theory.
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• The key structural ingredients of the proof are all present in any MUQT 2 . We

can depict all the key ingredients of the proof in our categorical framework. Di-

agrammatically the relevant probabilities are given by:

x x xi j k y y xi j k y x yi j k x y yi j k

In our abstract terminology we would say that the proof is employing a basis

structure, and four of its unbiased states. An analogue of the argument could

be reconstructed in any dagger symmetric monoidal category with these features,

and with scalars which are numbers or Booleans. Certainly any MUQT will

have an analogue of the proof, where the scalars pictured above are the GHZ

correlations.

• No Z4 MUQT can have a local realist model. For MUQTs with a Z4 qubit basis

structure the proof will be identical to the quantum stabiliser case, ruling out a

local realist model.

• A local realist model can be constructed for the GHZ state in any Z2×Z2 MUQT.

Hence, in the case of general MUQTs with Z2 × Z2 correlations, we cannot rule

out such a model, because we have a concrete example of a local realist theory,

Spek, which exhibits exactly these correlations. Put another way, if we were

presented with the data of a set of Z2 ×Z2 correlations, we could always explain

them via the hidden variables of Spek.

Thus we can conclude that no MUQT of the Z4 type can have a local realist

interpretation, since at least one of its states (the GHZ) does not have such an

interpretation. We cannot conclude that all MUQTs of the Z2 × Z2 type will have

a local realist interpretation, since they might have other states which had no such

interpretation. We can at least conclude though, that GHZ-type no-go arguments

will not work for them.

Turning this on its head, we can see that the Z4 type basis structure, within our

framework, is a structural fragment which embodies non-locality. If your theory has

a basis structure of this type, then your theory has ‘got non-locality’. The Z2 ×Z2

structure has no non-locality. Whilst a Z2×Z2 type MUQT might have some other

non-local piece of structure, the Z2 × Z2 type basis structure cannot itself endow a

theory with non-locality.

6 Non-locality directly from abstract arguments

The arguments above are slightly round-about: we show that certain phase groups

are exhibited by either Stab or Spek, which we know by other arguments to be

non-local and local respectively. We then conclude that Z4 GHZ states must have

non-locality, whereas Z2×Z2 GHZ states can not. In fact, in the case of Z4 we can

2 In fact, in this section we restrict attention to probabilistic and possibilistic MUQTs, since these are the
only †-C theories where it makes sense to discuss locality/non-locality.
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provide a more general argument directly from abstract reasoning.

Z4
�� ����

abstract
��

Stab �� �� non-local

Let OA be the set of observables on an object A in a †C-theory. Let EoA be the set

of eigenstates of an observable oA ∈ OA. We now define a notion of local realist

representation which applies to arbitrary †C-theories with R+ as numbers. This

can be extended to †C-theories with more general numbers, as we show at the end

of this section for the case of purely qualitative relational theories.

Definition 6.1 Let C be a †C-theory with R+ as numbers. A state Ψ : I →
A1 ⊗ . . .⊗An in C admits a local realist representation if there exist:

• a set of hidden states Ξ ⊆ ∏
o1∈O1

Eo1 × . . .×∏
on∈On

Eon each of which assigns an

eigenstate in Eoi to each observable oi ∈ Oi on each subsystem Ai, and we denote

this eigenstate for ξ ∈ Ξ by ξ(oi)

• a σ-additive measure μ : B(Ξ) → R+ with μ(Ξ) = 1

and these are such that for each choice of observables o1 ∈ O1, . . . , on ∈ On and

each choice of eigenstates x1 ∈ Eo1 , . . . , xn ∈ Eon we have

μ ({ξ ∈ Ξ | x1 = ξ(o1), . . . , xn = ξ(on)}) =
(
x†1 ⊗ . . .⊗ x†1

)
◦Ψ .

The †C-theory C admits a local realist representation if each of its states admits a

local realist representation

We provide a no-go argument for GHZ states that applies to the GHZ states

on qubits in Stab and FHilb. This argument is not very different from the usual

one [20], except for the fact that there is no reference to Hilbert space anymore and

that a contradiction is directly drawn from the structure of the Z4 phase group.

Definition 6.2 Let (A,Ψ, ε) be a GHZ state in a †C-theory. A forbidden triple is

a triple of states (x, x′;x′′) such that x′′ and x � x′ are distinct eigenstates for the

same observable.

Proposition 6.3 If (x, x′;x′′) is a forbidden triple for GHZ state (A,Ψ, ε) in a

†C-theory with zero then we have (x⊗ x′ ⊗ x′′)† ◦Ψ = 0.

Proof: Since x′′ and x�x′ are distinct eigenstates for the same observable, ignoring

natural isomorphisms, we have (x ⊗ x′ ⊗ x′′)† ◦ Ψ = x′′† ◦ (x ⊗ x′ ⊗ 1A)
† ◦ Ψ =

x′′† ◦ (x� x′) = 0 by Proposition 5.6. �

Theorem 6.4 Let (A,ΨZ , εZ) be a GHZ state in a †C-theory with R+ as num-

bers, which contains Z4 as a subgroup of the phase group, and let the identity and

the involutive element of this subgroup constitute the eigenstates of an observable

(A,ΨX , εX), and its other two elements the eigenstates of an observable (A,ΨY , εY ).

Then the state ΨZ : I → A⊗A⊗A does not admit a local realist representation.

Proof: We denote the identity of the phase group by |+〉 and the involutive element

by |−〉, and the two other elements by |
〉 and |=〉. By the Z4 structure we have:

|+〉 � |+〉 = |+〉 |+〉 � |−〉 = |−〉 |−〉 � |−〉 = |+〉 .
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Hence, by Proposition 3.19 ii we have that each correlation triple involving only

states {|+〉, |−〉} must have an even number of occurrences of |−〉’s, and hence

those with an odd number of |−〉’s are forbidden triples. Also:

|
〉 � |=〉 = |+〉 |=〉 � |=〉 = |−〉 |
〉 � |
〉 = |−〉 .
Hence, by Proposition 3.19 ii we have that each correlation triple involving two

states in {|
〉, |=〉} and one state in {|+〉, |−〉} must have an odd number of occur-

rences of elements in {|−〉, |=〉}, and hence those with an even number of elements

in {|−〉, |=〉} are forbidden triples. Assume that Ψ admits a realist representation

(Ξ, μ). To distinguish between the three factors in A⊗A⊗A we will denote them

by A1, A2, A3 respectively. Using the notation of Definition 6.1, we have for o+/−

the observable with eigenstates {|+〉, |−〉} that

μ
({

ξ ∈ Ξ
∣∣∣ x1 = ξ(o

+/−
1 ), x2 = ξ(o

+/−
2 ), x3 = ξ(o

+/−
3 )

})
= 0

whenever the number of |−〉’s in (x1, x2, x3) is odd by Proposition 6.3. Hence

μ
(
Δ

(1,2,3)
odd :=

{
ξ ∈ Ξ

∣∣∣ odd |−〉’s in
(
ξ(o

+/−
1 ), ξ(o

+/−
2 ), ξ(o

+/−
3 )

)})
= 0 .

and so for Δ
(1,2,3)
even = Ξ \Δ(1,2,3)

odd we have μ(Δ
(1,2,3)
even ) = 1. Similarly, for

Δ
(1)
odd :=

{
ξ ∈ Ξ

∣∣∣ odd |−〉’s & |=〉’s in
(
ξ(o

+/−
1 ), ξ(o

�/=
2 ), ξ(o

�/=
3 )

)}

Δ
(2)
odd :=

{
ξ ∈ Ξ

∣∣∣ odd |−〉’s & |=〉’s in
(
ξ(o

�/=
1 ), ξ(o

+/−
2 ), ξ(o

�/=
3 )

)}

Δ
(3)
odd :=

{
ξ ∈ Ξ

∣∣∣ odd |−〉’s & |=〉’s in
(
ξ(o

�/=
1 ), ξ(o

�/=
2 ), ξ(o

+/−
3 )

)}

we have μ(Δ
(1)
odd) = μ(Δ

(2)
odd) = μ(Δ

(3)
odd) = 1 so μ(Δ

(1)
odd ∩Δ

(2)
odd ∩Δ

(3)
odd) = 1. It follows

that there must be an odd number of |−〉’s and |=〉’s in(
ξ(o

+/−
1 ), ξ(o

�/=
2 ), ξ(o

�/=
3 ), ξ(o

�/=
1 ), ξ(o

+/−
2 ), ξ(o

�/=
3 ), ξ(o

�/=
1 ), ξ(o

�/=
2 ), ξ(o

+/−
3 )

)
.

But due to the double occurrences of ξ(o
�/=
1 ), ξ(o

�/=
2 ), ξ(o

�/=
3 ), this means an odd

number of |−〉’s in
(
ξ(o

+/−
1 ), ξ(o

+/−
2 ), ξ(o

+/−
3 )

)
so Δ

(1)
odd∩Δ

(2)
odd∩Δ

(3)
odd ⊆ Δ

(1,2,3)
odd and

hence 1 = μ(Δ
(1)
odd ∩Δ

(2)
odd ∩Δ

(3)
odd) ≤ μ(Δ

(1,2,3)
odd ) = 0, hence a contradiction. �

7 Conclusions and further work

We have described a categorical framework which is sufficiently flexible to accom-

modate both stabiliser QM, and Spekkens’s toy theory (not to mention full QM!),

and which helps to cast light on the essential difference between the two. Struc-

turally this difference is in the phase group: Z4 in the case of Stab and Z2 × Z2

in the case of Spek. Physically the difference between the theories is that one is

non-local whilst the other is local. We went on to show that it is the presence of the

Z4 phase group that makes stabiliser QM non-local. In fact, this structure suffices

to show that full QM is non-local.
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We have furthermore defined a special class of toy theories, in which all ‘qubit’

observables are mutually unbiased, which can all be modelled in the categorical

framework. We have shown that the GHZ-correlations in these theories have phase

groups Z4 and Z2 × Z2.

We could extend the definition of a MUQT beyond ‘qubits’, by allowing our ba-

sic system to have more observables, and its observables to have more eigenstates,

while still insisting that the observables are all mutually unbiased. We would then

have a more general mutually unbiased theory or MUT. The result that the GHZ

correlations in such a theory are completely determined by the phase group, estab-

lished in Corollary 5.12, would still hold.

For example, in the case of qutrits, there are four mutually unbiased observables,

each with three eigenstates. Phase groups in this case would have nine elements.

There are two nine-element groups, Z9 and Z3 × Z3. There is a well-defined way

to extend stabiliser QM to higher dimensional systems and recently a ‘trit’ version

of Spekkens’s toy theory was proposed [26]. In this case the two theories coincide

and their phase group is Z3 × Z3. The toy theory is local by construction, and,

as it turns out, so is the stabilizer formalism for qutrits. So is there a theory with

phase group Z9, and what kind of theory is it? Solving questions of this kind is one

avenue for future research. Several other avenues suggest themselves, including:

• An obvious line of work beyond this is to consider ‘higher-dimensional’ MUTs,

beyond qubits and qutrits. The locality/non-locality properties of such theories

will still be parametrised by Abelian groups. What sorts of locality/non-locality

do we find? There is a well-defined way to extend stabiliser theory to any finite

dimensional system. What is the phase group in each case? Can Spekkens’s toy

theory be extended beyond trits? What would its phase group be?

• We have shown that the phase group is important in determining whether theories

are local or exhibit quantum non-local correlations. In fact, theories have been

proposed whose non-locality goes beyond that of quantum mechanics [5]. Can

these be accommodated within our framework? Some such theories are ‘qubit-

like’ in that they have two-valued observables. It would seem that mutually

unbiased qubit theories are unable to exhibit super-quantum correlations, since

with Z4 and Z2 ×Z2 we have exhausted the possibilities. Perhaps measurements

on observables which are not mutually unbiased are required to display the super-

quantum correlations.

• We have shown in Section 6 that there is an abstract argument that a Z4 MUQT

must be non-local. Could we construct a purely abstract argument that Z2 × Z2

MUQTs must be local?

Z2 × Z2
�� ����

?

��Spek �� �� local

Could we develop a classification of groups, depending on whether they encode

locality, quantum non-locality, or possibly super-quantum non-locality?
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