2,775 research outputs found

    A Polynomial Translation of pi-calculus FCPs to Safe Petri Nets

    Full text link
    We develop a polynomial translation from finite control pi-calculus processes to safe low-level Petri nets. To our knowledge, this is the first such translation. It is natural in that there is a close correspondence between the control flows, enjoys a bisimulation result, and is suitable for practical model checking.Comment: To appear in special issue on best papers of CONCUR'12 of Logical Methods in Computer Scienc

    An efficient algorithm for the parallel solution of high-dimensional differential equations

    Full text link
    The study of high-dimensional differential equations is challenging and difficult due to the analytical and computational intractability. Here, we improve the speed of waveform relaxation (WR), a method to simulate high-dimensional differential-algebraic equations. This new method termed adaptive waveform relaxation (AWR) is tested on a communication network example. Further we propose different heuristics for computing graph partitions tailored to adaptive waveform relaxation. We find that AWR coupled with appropriate graph partitioning methods provides a speedup by a factor between 3 and 16

    Discovering duplicate tasks in transition systems for the simplification of process models

    Get PDF
    This work presents a set of methods to improve the understandability of process models. Traditionally, simplification methods trade off quality metrics, such as fitness or precision. Conversely, the methods proposed in this paper produce simplified models while preserving or even increasing fidelity metrics. The first problem addressed in the paper is the discovery of duplicate tasks. A new method is proposed that avoids overfitting by working on the transition system generated by the log. The method is able to discover duplicate tasks even in the presence of concurrency and choice. The second problem is the structural simplification of the model by identifying optional and repetitive tasks. The tasks are substituted by annotated events that allow the removal of silent tasks and reduce the complexity of the model. An important feature of the methods proposed in this paper is that they are independent from the actual miner used for process discovery.Peer ReviewedPostprint (author's final draft

    Modularity for Security-Sensitive Workflows

    Full text link
    An established trend in software engineering insists on using components (sometimes also called services or packages) to encapsulate a set of related functionalities or data. By defining interfaces specifying what functionalities they provide or use, components can be combined with others to form more complex components. In this way, IT systems can be designed by mostly re-using existing components and developing new ones to provide new functionalities. In this paper, we introduce a notion of component and a combination mechanism for an important class of software artifacts, called security-sensitive workflows. These are business processes in which execution constraints on the tasks are complemented with authorization constraints (e.g., Separation of Duty) and authorization policies (constraining which users can execute which tasks). We show how well-known workflow execution patterns can be simulated by our combination mechanism and how authorization constraints can also be imposed across components. Then, we demonstrate the usefulness of our notion of component by showing (i) the scalability of a technique for the synthesis of run-time monitors for security-sensitive workflows and (ii) the design of a plug-in for the re-use of workflows and related run-time monitors inside an editor for security-sensitive workflows

    Deriving Petri nets from finite transition systems

    Get PDF
    This paper presents a novel method to derive a Petri net from any specification model that can be mapped into a state-based representation with arcs labeled with symbols from an alphabet of events (a Transition System, TS). The method is based on the theory of regions for Elementary Transition Systems (ETS). Previous work has shown that, for any ETS, there exists a Petri Net with minimum transition count (one transition for each label) with a reachability graph isomorphic to the original Transition System. Our method extends and implements that theory by using the following three mechanisms that provide a framework for synthesis of safe Petri nets from arbitrary TSs. First, the requirement of isomorphism is relaxed to bisimulation of TSs, thus extending the class of synthesizable TSs to a new class called Excitation-Closed Transition Systems (ECTS). Second, for the first time, we propose a method of PN synthesis for an arbitrary TS based on mapping a TS event into a set of transition labels in a PN. Third, the notion of irredundant region set is exploited, to minimize the number of places in the net without affecting its behavior. The synthesis method can derive different classes of place-irredundant Petri Nets (e.g., pure, free choice, unique choice) from the same TS, depending on the constraints imposed on the synthesis algorithm. This method has been implemented and applied in different frameworks. The results obtained from the experiments have demonstrated the wide applicability of the method.Peer ReviewedPostprint (published version

    Discovering Process Model from Event Logs by Considering Overlapping Rules

    Get PDF
    Process Mining is a technique to automatically discover and analyze business processes from event logs. Discovering concurrent activities often uses process mining since there are many of them contained in business processes. Since researchers and practitioners are giving attention to the process discovery (one of process mining techniques), then the best result of  the  discovered process  models is  a  must. Nowadays, using process  execution  data in the  past, process  models with rules underlying decisions in processes can be enriched, called decision mining. Rules defined over process data specify choices between multiple activities. One out of multiple activities is allowed to be executed in existing decision mining methods or it is known as mutually-exclusive rules. Not only mutually-exclusive rules, but also fully deterministic because all factors which influence decisions are recorded. However, because of non-determinism or incomplete   information,   there   are   some   cases   that   are overlapping  in  process  model.  Moreover,  the  rules  which are generated  from  existing  method  are  not  suitable  with  the recorded data. In this paper, a discovery technique for process model with data by considering the overlapping rules from event logs is presented. Discovering overlapping rules uses decision tree learning techniques, which fit the recorded data better than the existing method. Process model discovery from event logs is generated using Modified Time-Based Heuristics Miner Algorithm. Last, online book store management process model is presented in High-level BPMN Process Model

    Petri net model decomposition - a model based approach supporting distributed execution

    Get PDF
    Dissertação apresentada para obtenção do Grau de Doutor em Engenharia Electrotécnica, Especialidade de Sistemas Digitais, pela Universidade Nova de Lisboa, Faculdade de Ciências e TecnologiaModel-based systems development has contributed to reducing the enormous difference between the continuous increase of systems complexity and the improvement of methods and methodologies available to support systems development. The choice of the modeling formalism is an important factor for success-fully increasing productivity. Petri nets proved to be a suitable candidate for being chosen as a system specification language due to their natural support of modeling processes with concurrency, synchronization and resource sharing, as well as the mechanisms of composition and decomposition. Also having a formal representation reinforces the choice, given that the use of verification tools is fundamental for complex systems development. This work proposes a method for partitioning Petri net models into concurrent sub-models, supporting their distributed implementation. The IOPT class (Input-Output Place Transition) is used as a reference class. It is extended by directed synchronous communication channels, enabling the com- munication between the generated sub-models. Three rules are proposed to perform the partition, and restrictions of the proposed partition method are identified. It is possible to directly compose models which result from the partitioning operation, through an operation of model addition. This allows the re-use of previously obtained models, as well as the easy modification of the intended system functionalities. The algorithms associated with the implementation of the partition operation are presented, as well as its rules and other procedures. The proposed methods are validated through several case studies emphasizing control components of automation systems
    corecore