111,635 research outputs found

    Ubiquitous Computing Architecture, Applications and Challenges

    Get PDF
    Pervasive computing is emerging field of Information Technology. Use of pervasive computing in human life is increasing. To improve quality of human life we can use pervasive computing. This paper discusses basic idea of pervasive computing, the application of pervasive computing in human life and challenges in front of its implementation

    Human-computer interaction in ubiquitous computing environments

    Full text link
    Purpose &ndash; The purpose of this paper is to explore characteristics of human-computer interaction when the human body and its movements become input for interaction and interface control in pervasive computing settings. Design/methodology/approach &ndash; The paper quantifies the performance of human movement based on Fitt\u27s Law and discusses some of the human factors and technical considerations that arise in trying to use human body movements as an input medium. Findings &ndash; The paper finds that new interaction technologies utilising human movements may provide more flexible, naturalistic interfaces and support the ubiquitous or pervasive computing paradigm. Practical implications &ndash; In pervasive computing environments the challenge is to create intuitive and user-friendly interfaces. Application domains that may utilize human body movements as input are surveyed here and the paper addresses issues such as culture, privacy, security and ethics raised by movement of a user\u27s body-based interaction styles. Originality/value &ndash; The paper describes the utilization of human body movements as input for interaction and interface control in pervasive computing settings. <br /

    Security and Privacy Implications of Pervasive Memory Augmentation

    Get PDF
    Pervasive computing is beginning to offer the potential to rethink and redefine how technology can support human memory augmentation. For example, the emergence of widespread pervasive sensing, personal recording technologies, and systems for the quantified self are creating an environment in which it's possible to capture fine-grained traces of many aspects of human activity. Contemporary psychology theories suggest that these traces can then be used to manipulate our ability to recall - to both reinforce and attenuate human memories. Here, the authors consider the privacy and security implications of using pervasive computing to augment human memory. They describe a number of scenarios, outline the key architectural building blocks, and identify entirely new types of security and privacy threats-namely, those related to data security (experience provenance), data management (establishing new paradigms for digital memory ownership), data integrity (memory attenuation and recall-induced forgetting), and bystander privacy. Together, these threats present compelling research challenges for the pervasive computing research community. This article is part of a special issue on privacy and security

    Wearable and mobile devices

    Get PDF
    Information and Communication Technologies, known as ICT, have undergone dramatic changes in the last 25 years. The 1980s was the decade of the Personal Computer (PC), which brought computing into the home and, in an educational setting, into the classroom. The 1990s gave us the World Wide Web (the Web), building on the infrastructure of the Internet, which has revolutionized the availability and delivery of information. In the midst of this information revolution, we are now confronted with a third wave of novel technologies (i.e., mobile and wearable computing), where computing devices already are becoming small enough so that we can carry them around at all times, and, in addition, they have the ability to interact with devices embedded in the environment. The development of wearable technology is perhaps a logical product of the convergence between the miniaturization of microchips (nanotechnology) and an increasing interest in pervasive computing, where mobility is the main objective. The miniaturization of computers is largely due to the decreasing size of semiconductors and switches; molecular manufacturing will allow for “not only molecular-scale switches but also nanoscale motors, pumps, pipes, machinery that could mimic skin” (Page, 2003, p. 2). This shift in the size of computers has obvious implications for the human-computer interaction introducing the next generation of interfaces. Neil Gershenfeld, the director of the Media Lab’s Physics and Media Group, argues, “The world is becoming the interface. Computers as distinguishable devices will disappear as the objects themselves become the means we use to interact with both the physical and the virtual worlds” (Page, 2003, p. 3). Ultimately, this will lead to a move away from desktop user interfaces and toward mobile interfaces and pervasive computing

    6th international workshop on pervasive eye tracking and mobile eye-based interaction

    Get PDF
    Previous work on eye tracking and eye-based human-computer interfaces mainly concentrated on making use of the eyes in traditional desktop settings. With the recent growth of interest in wearable computers, such as smartwatches, smart eyewears and low-cost mobile eye trackers, eye-based interaction techniques for mobile computing are becoming increasingly important. PETMEI 2016 focuses on the pervasive eye tracking paradigm as a trailblazer for mobile eye-based interaction to take eye tracking out into the wild, to mobile and pervasive settings. We want to stimulate and explore the creativity of these communities with respect to the implications, key research challenges, and new applications for pervasive eye tracking in ubiquitous computing. The long-term goal is to create a strong interdisciplinary research community linking these fields together and to establish the workshop as the premier forum for research on pervasive eye tracking

    Human Factor Issues in Building Middleware for Pervasive Computing.

    Get PDF

    Proposal of a clean slate network architecture for ubiquitous services provisioning

    Get PDF
    The Pervasive Computing field is almost always addressed from application, middleware, sensing or Human Computer Interaction perspective. Thus, solutions are usually designed at application level or involve developing new hardware. Although current layered network architectures (mainly TCP/IP stack) have enabled internetworking of lots of different devices and services, they are neither well-suited nor optimized for pervasive computing applications. Hence, we firmly believe that we should have an underlying network architecture providing the flexible, context-aware and adaptable communication infrastructure required to ease the development of ubiquitous services and applications. Herein, we propose a clean slate network architecture to deploy ubiquitous services in a Pervasive and Ubiquitous Computing environment. The architecture is designed to avoid hierarchical layering, so we propose a serviceoriented approach for a flow-oriented context-aware network architecture where communications are composed on the fly (using reusable components) according to the needs and requirements of the consumed service.Postprint (published version

    HCI Model with Learning Mechanism for Cooperative Design in Pervasive Computing Environment

    Get PDF
    This paper presents a human-computer interaction model with a three layers learning mechanism in a pervasive environment. We begin with a discussion around a number of important issues related to human-computer interaction followed by a description of the architecture for a multi-agent cooperative design system for pervasive computing environment. We present our proposed three- layer HCI model and introduce the group formation algorithm, which is predicated on a dynamic sharing niche technology. Finally, we explore the cooperative reinforcement learning and fusion algorithms; the paper closes with concluding observations and a summary of the principal work and contributions of this paper
    • …
    corecore