25 research outputs found

    Registration of histology and magnetic resonance imaging of the brain

    Get PDF
    Combining histology and non-invasive imaging has been attracting the attention of the medical imaging community for a long time, due to its potential to correlate macroscopic information with the underlying microscopic properties of tissues. Histology is an invasive procedure that disrupts the spatial arrangement of the tissue components but enables visualisation and characterisation at a cellular level. In contrast, macroscopic imaging allows non-invasive acquisition of volumetric information but does not provide any microscopic details. Through the establishment of spatial correspondences obtained via image registration, it is possible to compare micro- and macroscopic information and to recover the original histological arrangement in three dimensions. In this thesis, I present: (i) a survey of the literature relative to methods for histology reconstruction with and without the help of 3D medical imaging; (ii) a graph-theoretic method for histology volume reconstruction from sets of 2D sections, without external information; (iii) a method for multimodal 2D linear registration between histology and MRI based on partial matching of shape-informative boundaries

    A multimodal computational pipeline for 3D histology of the human brain

    Get PDF
    ABSTRACT: Ex vivo imaging enables analysis of the human brain at a level of detail that is not possible in vivo with MRI. In particular, histology can be used to study brain tissue at the microscopic level, using a wide array of different stains that highlight different microanatomical features. Complementing MRI with histology has important applications in ex vivo atlas building and in modeling the link between microstructure and macroscopic MR signal. However, histology requires sectioning tissue, hence distorting its 3D structure, particularly in larger human samples. Here, we present an open-source computational pipeline to produce 3D consistent histology reconstructions of the human brain. The pipeline relies on a volumetric MRI scan that serves as undistorted reference, and on an intermediate imaging modality (blockface photography) that bridges the gap between MRI and histology. We present results on 3D histology reconstruction of whole human hemispheres from two donors

    A probabilistic atlas of the human thalamic nuclei combining ex vivo MRI and histology

    Get PDF
    The human thalamus is a brain structure that comprises numerous, highly specific nuclei. Since these nuclei are known to have different functions and to be connected to different areas of the cerebral cortex, it is of great interest for the neuroimaging community to study their volume, shape and connectivity in vivo with MRI. In this study, we present a probabilistic atlas of the thalamic nuclei built using ex vivo brain MRI scans and histological data, as well as the application of the atlas to in vivo MRI segmentation. The atlas was built using manual delineation of 26 thalamic nuclei on the serial histology of 12 whole thalami from six autopsy samples, combined with manual segmentations of the whole thalamus and surrounding structures (caudate, putamen, hippocampus, etc.) made on in vivo brain MR data from 39 subjects. The 3D structure of the histological data and corresponding manual segmentations was recovered using the ex vivo MRI as reference frame, and stacks of blockface photographs acquired during the sectioning as intermediate target. The atlas, which was encoded as an adaptive tetrahedral mesh, shows a good agreement with previous histological studies of the thalamus in terms of volumes of representative nuclei. When applied to segmentation of in vivo scans using Bayesian inference, the atlas shows excellent test-retest reliability, robustness to changes in input MRI contrast, and ability to detect differential thalamic effects in subjects with Alzheimer's disease. The probabilistic atlas and companion segmentation tool are publicly available as part of the neuroimaging package FreeSurfer.The authors would like to thank Professor Karla Miller (Oxford) for her help with the design of the ex vivo MRI acquisition; Ms. Mercedes I~niguez de Onzo~no and Mr. Francisco Romero (UCLM) for their careful technical laboratory help; and Mr. Gonzalo Artacho (UCLM) for his help with the digitization and curation of his organization of histological data. This project has received funding from the European Union's Horizon 2020 research and innovation program under the Marie Sklodowska- Curie grant agreement No 654911 (project “THALAMODEL”) and by the European Research Council (ERC) Starting Grant agreement No 677697 (“BUNGEE-TOOLS”). It was also funded by the Spanish Ministry of Economy and Competitiveness(MINECO TEC-2014-51882-P, RYC- 2014-15440, PSI2015-65696, and SEV-2015-0490), the Basque Government (PI2016-12), and UCLM Internal Research Groups grants. Support for this research was also provided in part by the National Institute of Biomedical Imaging and Bioengineering (P41EB015896, 1R01EB023281, R01EB006758, R21EB018907, R01EB019956), the National Institute on Aging (5R01AG008122, R01AG016495), the National Institute of Diabetes and Digestive and Kidney Diseases (1-R21-DK- 108277-01), the National Institute of Neurological Disorders and Stroke (R01NS0525851, R21NS072652, R01NS070963, R01NS083534, 5U01NS086625), and was made possible by the resources provided by Shared Instrumentation Grants 1S10RR023401, 1S10RR019307, and 1S- 10RR023043. Additional support was provided by the NIH Blueprint for Neuroscience Research (5U01-MH093765), part of the multiinstitutional Human Connectome Project. In addition, B.F. has a financial interest in CorticoMetrics, a company whose medical pursuits focus on brain imaging and measurement technologies. B.F.’s interests were reviewed and are managed by Massachusetts General Hospital and Partners HealthCare in accordance with their conflict of interest policies. Data collection and sharing for this project was funded by the Alzheimer's Disease Neuroimaging Initiative (National Institutes of Health Grant U01 AG024904) and DOD ADNI (DOD award number W81XWH-12-2-0012). ADNI is funded by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and through generous contributions from the following: AbbVie, Alzheimers Association; Alzheimers Drug Discovery Foundation; Araclon Biotech; BioClinica, Inc.; Biogen; Bristol-Myers Squibb Company; CereSpir, Inc.; Cogstate; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; EuroImmun; F. Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.; Fujirebio; GE Healthcare; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research & Development, LLC.; Johnson & Johnson Pharmaceutical Research & Development LLC.; Lumosity; Lundbeck; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; NeuroRx Research; Neurotrack Technologies; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Takeda Pharmaceutical Company; and Transition Therapeutics. The Canadian Institutes of Health Research is providing funds to support ADNI clinical sites in Canada. Private sector contributions are facilitated by the Foundation for the National Institutes of Health (www.fnih.org). The grantee organization is the Northern California Institute for Research and Education, and the study is coordinated by the Alzheimers Therapeutic Research Institute at the University of Southern California. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of Southern California

    A probabilistic atlas of the human thalamic nuclei combining ex vivo MRI and histology

    Get PDF
    The human thalamus is a brain structure that comprises numerous, highly specific nuclei. Since these nuclei are known to have different functions and to be connected to different areas of the cerebral cortex, it is of great interest for the neuroimaging community to study their volume, shape and connectivity in vivo with MRI. In this study, we present a probabilistic atlas of the thalamic nuclei built using ex vivo brain MRI scans and histological data, as well as the application of the atlas to in vivo MRI segmentation. The atlas was built using manual delineation of 26 thalamic nuclei on the serial histology of 12 whole thalami from six autopsy samples, combined with manual segmentations of the whole thalamus and surrounding structures (caudate, putamen, hippocampus, etc.) made on in vivo brain MR data from 39 subjects. The 3D structure of the histological data and corresponding manual segmentations was recovered using the ex vivo MRI as reference frame, and stacks of blockface photographs acquired during the sectioning as intermediate target. The atlas, which was encoded as an adaptive tetrahedral mesh, shows a good agreement with with previous histological studies of the thalamus in terms of volumes of representative nuclei. When applied to segmentation of in vivo scans using Bayesian inference, the atlas shows excellent test-retest reliability, robustness to changes in input MRI contrast, and ability to detect differential thalamic effects in subjects with Alzheimer's disease. The probabilistic atlas and companion segmentation tool are publicly available as part of the neuroimaging package FreeSurfer

    Joint registration and synthesis using a probabilistic model for alignment of MRI and histological sections

    Get PDF
    Nonlinear registration of 2D histological sections with corresponding slices of MRI data is a critical step of 3D histology reconstruction. This task is difficult due to the large differences in image contrast and resolution, as well as the complex nonrigid distortions produced when sectioning the sample and mounting it on the glass slide. It has been shown in brain MRI registration that better spatial alignment across modalities can be obtained by synthesizing one modality from the other and then using intra-modality registration metrics, rather than by using mutual information (MI) as metric. However, such an approach typically requires a database of aligned images from the two modalities, which is very difficult to obtain for histology/MRI. Here, we overcome this limitation with a probabilistic method that simultaneously solves for registration and synthesis directly on the target images, without any training data. In our model, the MRI slice is assumed to be a contrast-warped, spatially deformed version of the histological section. We use approximate Bayesian inference to iteratively refine the probabilistic estimate of the synthesis and the registration, while accounting for each other's uncertainty. Moreover, manually placed landmarks can be seamlessly integrated in the framework for increased performance. Experiments on a synthetic dataset show that, compared with MI, the proposed method makes it possible to use a much more flexible deformation model in the registration to improve its accuracy, without compromising robustness. Moreover, our framework also exploits information in manually placed landmarks more efficiently than MI, since landmarks inform both synthesis and registration - as opposed to registration alone. Finally, we show qualitative results on the public Allen atlas, in which the proposed method provides a clear improvement over MI based registration

    Experimental and Model-based Approaches to Directional Thalamic Deep Brain Stimulation

    Get PDF
    University of Minnesota Ph.D. dissertation. September 2016. Major: Biomedical Engineering. Advisor: Matthew Johnson. 1 computer file (PDF); xii, 181 pages.Deep brain stimulation (DBS) is an effective surgical procedure for the treatment of several brain disorders. However, the clinical successes of DBS hinges on several factors. Here, we describe the development of tools and methodologies in the context of thalamic DBS for essential tremor (ET) to address three key challenges: 1) accurate localization of nuclei and fiber pathways for stimulation, 2) model-based programming of high-density DBS electrode arrays (DBSA) and 3) in vivo assessment of computational DBS model predictions. We approached the first challenge through a multimodal imaging approach, utilizing high-field (7T) susceptibility-weighted imaging and diffusion-weighted imaging data. A nonlinear image deformation algorithm was used in conjunction with probabilistic fiber tractography to segment individual thalamic sub-nuclei and reconstruct their afferent fiber pathways. We addressed the second challenge by developing subject-specific computational model-based algorithms built on maximizing population activating function values within a target region using convex optimization principles. The algorithms converged within seconds and only required as many finite-element simulations as the number of electrodes on the DBSA being modeled. For the third challenge, we recorded (in two non-human primates) unit-spike data from neurons in the vicinity of chronically implanted thalamic DBSAs before, during and after high-frequency stimulation. A novel entropy-based method was developed to quantify the degree and significance of stimulation-induced changes in neuronal firing pattern. Results indicated that neurons modulated by thalamic DBS were distributed and not confined to the immediate proximity of the active electrode. For those that were modulated by DBS, their responses increasingly shifted from firing rate modulation to firing pattern modulation with increased stimulation amplitude. Additionally, strong low-pass filtering effect was observed where <4% of DBS pulses produced phase-locked spikes in cells exhibiting significant excitatory firing pattern modulation. Finally, we quantified the spatial distribution of neurons modulated by DBS by developing a novel spherical statistical framework for analysis. Together, these tools and methodologies are poised to improve our understanding of DBS mechanisms and improve the efficacy and efficiency of DBS therapy

    Quantitative MRI correlates of hippocampal and neocortical pathology in intractable temporal lobe epilepsy

    Get PDF
    Intractable or drug-resistant epilepsy occurs in over 30% of epilepsy patients, with many of these patients undergoing surgical excision of the affected brain region to achieve seizure control. Advances in MRI have the potential to improve surgical treatment of epilepsy through improved identification and delineation of lesions. However, validation is currently needed to investigate histopathological correlates of these new imaging techniques. The purpose of this work is to investigate histopathological correlates of quantitative relaxometry and DTI from hippocampal and neocortical specimens of intractable TLE patients. To achieve this goal I developed and evaluated a pipeline for histology to in-vivo MRI image registration, which finds dense spatial correspondence between both modalities. This protocol was divided in two steps whereby sparsely sectioned histology from temporal lobe specimens was first registered to the intermediate ex-vivo MRI which is then registered to the in-vivo MRI, completing a pipeline for histology to in-vivo MRI registration. When correlating relaxometry and DTI with neuronal density and morphology in the temporal lobe neocortex, I found T1 to be a predictor of neuronal density in the neocortical GM and demonstrated that employing multi-parametric MRI (combining T1 and FA together) provided a significantly better fit than each parameter alone in predicting density of neurons. This work was the first to relate in-vivo T1 and FA values to the proportion of neurons in GM. When investigating these quantitative multimodal parameters with histological features within the hippocampal subfields, I demonstrated that MD correlates with neuronal density and size, and can act as a marker for neuron integrity within the hippocampus. More importantly, this work was the first to highlight the potential of subfield relaxometry and diffusion parameters (mainly T2 and MD) as well as volumetry in predicting the extent of cell loss per subfield pre-operatively, with a precision so far unachievable. These results suggest that high-resolution quantitative MRI sequences could impact clinical practice for pre-operative evaluation and prediction of surgical outcomes of intractable epilepsy

    Serial sectioning PSOCT and 2PM for imaging post-mortem human brain and neurodegeneration

    Full text link
    The study of aging and neurodegenerative processes in the human brain necessitates a comprehensive understanding of its myeloarchitectonic, cytoarchitectonic, and vascular structures. While recent computational advances have enabled volumetric reconstruction of the human brain using stained slices, the standard histological processing methods have often led to tissue distortions and loss, making deformation-free reconstruction challenging. Therefore, the development of a multi-scale and volumetric imaging technique that can accurately measure multiple structures within the intact brain would be a significant technical breakthrough. In this work, we present the development of an integrated approach that combines serial sectioning Polarization Sensitive Optical Coherence Tomography (PSOCT) and Two Photon Microscopy (2PM) to provide label-free multi-contrast imaging of human brain tissue. Our method allows for the simultaneous visualization of scattering, birefringence, and autofluorescence properties of the post-mortem human brain. By utilizing high-throughput reconstruction of 4x4x2cm3 sample blocks and simple registration of PSOCT and 2PM images, we enable comprehensive analysis of myelin content, cellular information, and vascular structure. PSOCT provides mesoscopic images and enables quantitative measurement of those brain structures, while 2PM provide complementary microscopic validation and enrichment of cellular and capillary information. This combined approach reveals myelin density and structure maps of the whole brain block and supplies intricate vessel and capillary networks as well as lipofuscin-filled cell soma across cortical regions, providing insights into the myeloarchitectural, cellular and vascular changes associated with neurodegenerative diseases such as Alzheimer's disease (AD) and Chronic Traumatic Encephalopathy (CTE)
    corecore