956 research outputs found

    The Shortest Path to Happiness: Recommending Beautiful, Quiet, and Happy Routes in the City

    Full text link
    When providing directions to a place, web and mobile mapping services are all able to suggest the shortest route. The goal of this work is to automatically suggest routes that are not only short but also emotionally pleasant. To quantify the extent to which urban locations are pleasant, we use data from a crowd-sourcing platform that shows two street scenes in London (out of hundreds), and a user votes on which one looks more beautiful, quiet, and happy. We consider votes from more than 3.3K individuals and translate them into quantitative measures of location perceptions. We arrange those locations into a graph upon which we learn pleasant routes. Based on a quantitative validation, we find that, compared to the shortest routes, the recommended ones add just a few extra walking minutes and are indeed perceived to be more beautiful, quiet, and happy. To test the generality of our approach, we consider Flickr metadata of more than 3.7M pictures in London and 1.3M in Boston, compute proxies for the crowdsourced beauty dimension (the one for which we have collected the most votes), and evaluate those proxies with 30 participants in London and 54 in Boston. These participants have not only rated our recommendations but have also carefully motivated their choices, providing insights for future work.Comment: 11 pages, 7 figures, Proceedings of ACM Hypertext 201

    Trip Prediction by Leveraging Trip Histories from Neighboring Users

    Full text link
    We propose a novel approach for trip prediction by analyzing user's trip histories. We augment users' (self-) trip histories by adding 'similar' trips from other users, which could be informative and useful for predicting future trips for a given user. This also helps to cope with noisy or sparse trip histories, where the self-history by itself does not provide a reliable prediction of future trips. We show empirical evidence that by enriching the users' trip histories with additional trips, one can improve the prediction error by 15%-40%, evaluated on multiple subsets of the Nancy2012 dataset. This real-world dataset is collected from public transportation ticket validations in the city of Nancy, France. Our prediction tool is a central component of a trip simulator system designed to analyze the functionality of public transportation in the city of Nancy

    Multi-Dimensional-Personalization in mobile contexts

    Get PDF
    During the dot com era the word "personalisation” was a hot buzzword. With the fall of the dot com companies the topic has lost momentum. As the killer application for UMTS or the mobile internet has yet to be identified, the concept of Multi-Dimensional-Personalisation (MDP) could be a candidate. Using this approach, a recommendation of mobile advertisement or marketing (i.e., recommendations or notifications), online content, as well as offline events, can be offered to the user based on their known interests and current location. Instead of having to request or pull this information, the new service concept would proactively provide the information and services – with the consequence that the right information or service could therefore be offered at the right place, at the right time. The growing availability of "Location-based Services“ for mobile phones is a new target for the use of personalisation. "Location-based Services“ are information, for example, about restaurants, hotels or shopping malls with offers which are in close range / short distance to the user. The lack of acceptance for such services in the past is based on the fact that early implementations required the user to pull the information from the service provider. A more promising approach is to actively push information to the user. This information must be from interest to the user and has to reach the user at the right time and at the right place. This raises new requirements on personalisation which will go far beyond present requirements. It will reach out from personalisation based only on the interest of the user. Besides the interest, the enhanced personalisation has to cover the location and movement patterns, the usage and the past, present and future schedule of the user. This new personalisation paradigm has to protect the user’s privacy so that an approach supporting anonymous recommendations through an extended "Chinese Wall“ will be described

    A context aware recommender system for tourism with ambient intelligence

    Get PDF
    Recommender system (RS) holds a significant place in the area of the tourism sector. The major factor of trip planning is selecting relevant Points of Interest (PoI) from tourism domain. The RS system supposed to collect information from user behaviors, personality, preferences and other contextual information. This work is mainly focused on user’s personality, preferences and analyzing user psychological traits. The work is intended to improve the user profile modeling, exposing relationship between user personality and PoI categories and find the solution in constraint satisfaction programming (CSP). It is proposed the architecture according to ambient intelligence perspective to allow the best possible tourist place to the end-user. The key development of this RS is representing the model in CSP and optimizing the problem. We implemented our system in Minizinc solver with domain restrictions represented by user preferences. The CSP allowed user preferences to guide the system toward finding the optimal solutions; RESUMO O sistema de recomendação (RS) detém um lugar significativo na área do sector do turismo. O principal fator do planeamento de viagens é selecionar pontos de interesse relevantes (PoI) do domínio do turismo. O sistema de recomendação (SR) deve recolher informações de comportamentos, personalidade, preferências e outras informações contextuais do utilizador. Este trabalho centra-se principalmente na personalidade, preferências do utilizador e na análise de traços fisiológicos do utilizador. O trabalho tem como objetivo melhorar a modelação do perfil do utilizador, expondo a relação entre a personalidade deste e as categorias dos POI, assim como encontrar uma solução com programação por restrições (CSP). Propõe-se a arquitetura de acordo com a perspetiva do ambiente inteligente para conseguir o melhor lugar turístico possível para o utilizador final. A principal contribuição deste SR é representar o modelo como CSP e tratá-lo como problema de otimização. Implementámos o nosso sistema com o solucionador em Minizinc com restrições de domínio representadas pelas preferências dos utilizadores. O CSP permitiu que as preferências dos utilizadores guiassem o sistema para encontrar as soluções ideais

    Processing, analysis and recommendation of location data

    Get PDF

    A dynamic and scalable user-centric route planning algorithm based on Polychromatic Sets theory

    Get PDF
    Existing navigation services provide route options based on a single metric without considering user's preference. This results in the planned route not meeting the actual needs of users. In this paper, a personalized route planning algorithm is proposed, which can provide users with a route that meets their requirements. Based on the multiple properties of the road, the Polychromatic Sets (PS) theory is introduced into route planning. Firstly, a road properties description scheme based on the PS theory was proposed. By using this scheme, users' travel preferences can be quantified, and then personalized property combination schemes can be constructed according to these properties. Secondly, the idea of setting priority for road segments was utilized. Based on a user's travel preference, all the property combination schemes can be prioritized at relevant levels. Finally, based on the priority level, an efficient path planning scheme was proposed, in which priority is given to the highest road segments in the target direction. In addition, the system can constantly obtain real-time road information through mobile terminals, update road properties, and provide other users with more accurate road information and navigation services, so as to avoid crowded road segments without excessively increasing time consumption. Experiment results show that our algorithm can realize personalized route planning services without significantly increasing the travel time and distance. In addition, source code of the algorithm has been uploaded on GitHub for this algorithm to be used by other researchers

    When and where do you want to hide? Recommendation of location privacy preferences with local differential privacy

    Full text link
    In recent years, it has become easy to obtain location information quite precisely. However, the acquisition of such information has risks such as individual identification and leakage of sensitive information, so it is necessary to protect the privacy of location information. For this purpose, people should know their location privacy preferences, that is, whether or not he/she can release location information at each place and time. However, it is not easy for each user to make such decisions and it is troublesome to set the privacy preference at each time. Therefore, we propose a method to recommend location privacy preferences for decision making. Comparing to existing method, our method can improve the accuracy of recommendation by using matrix factorization and preserve privacy strictly by local differential privacy, whereas the existing method does not achieve formal privacy guarantee. In addition, we found the best granularity of a location privacy preference, that is, how to express the information in location privacy protection. To evaluate and verify the utility of our method, we have integrated two existing datasets to create a rich information in term of user number. From the results of the evaluation using this dataset, we confirmed that our method can predict location privacy preferences accurately and that it provides a suitable method to define the location privacy preference
    • …
    corecore