3,315 research outputs found

    Are You Still With Me? Continuous Engagement Assessment From a Robot's Point of View

    Get PDF
    Continuously measuring the engagement of users with a robot in a Human-Robot Interaction (HRI) setting paves the way toward in-situ reinforcement learning, improve metrics of interaction quality, and can guide interaction design and behavior optimization. However, engagement is often considered very multi-faceted and difficult to capture in a workable and generic computational model that can serve as an overall measure of engagement. Building upon the intuitive ways humans successfully can assess situation for a degree of engagement when they see it, we propose a novel regression model (utilizing CNN and LSTM networks) enabling robots to compute a single scalar engagement during interactions with humans from standard video streams, obtained from the point of view of an interacting robot. The model is based on a long-term dataset from an autonomous tour guide robot deployed in a public museum, with continuous annotation of a numeric engagement assessment by three independent coders. We show that this model not only can predict engagement very well in our own application domain but show its successful transfer to an entirely different dataset (with different tasks, environment, camera, robot and people). The trained model and the software is available to the HRI community, at https://github.com/LCAS/engagement_detector, as a tool to measure engagement in a variety of settings

    Maximizing User Engagement In Short Marketing Campaigns Within An Online Living Lab: A Reinforcement Learning Perspective

    Get PDF
    ABSTRACT MAXIMIZING USER ENGAGEMENT IN SHORT MARKETING CAMPAIGNS WITHIN AN ONLINE LIVING LAB: A REINFORCEMENT LEARNING PERSPECTIVE by ANIEKAN MICHAEL INI-ABASI August 2021 Advisor: Dr. Ratna Babu Chinnam Major: Industrial & Systems Engineering Degree: Doctor of Philosophy User engagement has emerged as the engine driving online business growth. Many firms have pay incentives tied to engagement and growth metrics. These corporations are turning to recommender systems as the tool of choice in the business of maximizing engagement. LinkedIn reported a 40% higher email response with the introduction of a new recommender system. At Amazon 35% of sales originate from recommendations, while Netflix reports that ‘75% of what people watch is from some sort of recommendation,’ with an estimated business value of 1billionperyear.Whiletheleadingcompanieshavebeenquitesuccessfulatharnessingthepowerofrecommenderstoboostuserengagementacrossthedigitalecosystem,smallandmediumbusinesses(SMB)arestrugglingwithdecliningengagementacrossmanychannelsascompetitionforuserattentionintensifies.TheSMBsoftenlackthetechnicalexpertiseandbigdatainfrastructurenecessarytooperationalizerecommendersystems.Thepurposeofthisstudyistoexplorethemethodsofbuildingalearningagentthatcanbeusedtopersonalizeapersuasiverequesttomaximizeuserengagementinadata−efficientsetting.Weframethetaskasasequentialdecision−makingproblem,modelledasMDP,andsolvedusingageneralizedreinforcementlearning(RL)algorithm.Weleverageanapproachthateliminatesoratleastgreatlyreducestheneedformassiveamountsoftrainingdata,thusmovingawayfromapurelydata−drivenapproach.Byincorporatingdomainknowledgefromtheliteratureonpersuasionintothemessagecomposition,weareabletotraintheRLagentinasampleefficientandoperantmanner.Inourmethodology,theRLagentnominatesacandidatefromacatalogofpersuasionprinciplestodrivehigheruserresponseandengagement.ToenabletheeffectiveuseofRLinourspecificsetting,wefirstbuildareducedstatespacerepresentationbycompressingthedatausinganexponentialmovingaveragescheme.AregularizedDQNagentisdeployedtolearnanoptimalpolicy,whichisthenappliedinrecommendingone(oracombination)ofsixuniversalprinciplesmostlikelytotriggerresponsesfromusersduringthenextmessagecycle.Inthisstudy,emailmessagingisusedasthevehicletodeliverpersuasionprinciplestotheuser.Atatimeofdecliningclick−throughrateswithmarketingemails,businessexecutivescontinuetoshowheightenedinterestintheemailchannelowingtohigher−than−usualreturnoninvestmentof1 billion per year. While the leading companies have been quite successful at harnessing the power of recommenders to boost user engagement across the digital ecosystem, small and medium businesses (SMB) are struggling with declining engagement across many channels as competition for user attention intensifies. The SMBs often lack the technical expertise and big data infrastructure necessary to operationalize recommender systems. The purpose of this study is to explore the methods of building a learning agent that can be used to personalize a persuasive request to maximize user engagement in a data-efficient setting. We frame the task as a sequential decision-making problem, modelled as MDP, and solved using a generalized reinforcement learning (RL) algorithm. We leverage an approach that eliminates or at least greatly reduces the need for massive amounts of training data, thus moving away from a purely data-driven approach. By incorporating domain knowledge from the literature on persuasion into the message composition, we are able to train the RL agent in a sample efficient and operant manner. In our methodology, the RL agent nominates a candidate from a catalog of persuasion principles to drive higher user response and engagement. To enable the effective use of RL in our specific setting, we first build a reduced state space representation by compressing the data using an exponential moving average scheme. A regularized DQN agent is deployed to learn an optimal policy, which is then applied in recommending one (or a combination) of six universal principles most likely to trigger responses from users during the next message cycle. In this study, email messaging is used as the vehicle to deliver persuasion principles to the user. At a time of declining click-through rates with marketing emails, business executives continue to show heightened interest in the email channel owing to higher-than-usual return on investment of 42 for every dollar spent when compared to other marketing channels such as social media. Coupled with the state space transformation, our novel regularized Deep Q-learning (DQN) agent was able to train and perform well based on a few observed users’ responses. First, we explored the average positive effect of using persuasion-based messages in a live email marketing campaign, without deploying a learning algorithm to recommend the influence principles. The selection of persuasion tactics was done heuristically, using only domain knowledge. Our results suggest that embedding certain principles of persuasion in campaign emails can significantly increase user engagement for an online business (and have a positive impact on revenues) without putting pressure on marketing or advertising budgets. During the study, the store had a customer retention rate of 76% and sales grew by a half-million dollars from the three field trials combined. The key assumption was that users are predisposed to respond to certain persuasion principles and learning the right principles to incorporate in the message header or body copy would lead to higher response and engagement. With the hypothesis validated, we set forth to build a DQN agent to recommend candidate actions from a catalog of persuasion principles most likely to drive higher engagement in the next messaging cycle. A simulation and a real live campaign are implemented to verify the proposed methodology. The results demonstrate the agent’s superior performance compared to a human expert and a control baseline by a significant margin (~ up to 300%). As the quest for effective methods and tools to maximize user engagement intensifies, our methodology could help to boost user engagement for struggling SMBs without prohibitive increase in costs, by enabling the targeting of messages (with the right persuasion principle) to the right user

    Logging Stress and Anxiety Using a Gamified Mobile-based EMA Application, and Emotion Recognition Using a Personalized Machine Learning Approach

    Get PDF
    According to American Psychological Association (APA) more than 9 in 10 (94 percent) adults believe that stress can contribute to the development of major health problems, such as heart disease, depression, and obesity. Due to the subjective nature of stress, and anxiety, it has been demanding to measure these psychological issues accurately by only relying on objective means. In recent years, researchers have increasingly utilized computer vision techniques and machine learning algorithms to develop scalable and accessible solutions for remote mental health monitoring via web and mobile applications. To further enhance accuracy in the field of digital health and precision diagnostics, there is a need for personalized machine-learning approaches that focus on recognizing mental states based on individual characteristics, rather than relying solely on general-purpose solutions. This thesis focuses on conducting experiments aimed at recognizing and assessing levels of stress and anxiety in participants. In the initial phase of the study, a mobile application with broad applicability (compatible with both Android and iPhone platforms) is introduced (we called it STAND). This application serves the purpose of Ecological Momentary Assessment (EMA). Participants receive daily notifications through this smartphone-based app, which redirects them to a screen consisting of three components. These components include a question that prompts participants to indicate their current levels of stress and anxiety, a rating scale ranging from 1 to 10 for quantifying their response, and the ability to capture a selfie. The responses to the stress and anxiety questions, along with the corresponding selfie photographs, are then analyzed on an individual basis. This analysis focuses on exploring the relationships between self-reported stress and anxiety levels and potential facial expressions indicative of stress and anxiety, eye features such as pupil size variation and eye closure, and specific action units (AUs) observed in the frames over time. In addition to its primary functions, the mobile app also gathers sensor data, including accelerometer and gyroscope readings, on a daily basis. This data holds potential for further analysis related to stress and anxiety. Furthermore, apart from capturing selfie photographs, participants have the option to upload video recordings of themselves while engaging in two neuropsychological games. These recorded videos are then subjected to analysis in order to extract pertinent features that can be utilized for binary classification of stress and anxiety (i.e., stress and anxiety recognition). The participants that will be selected for this phase are students aged between 18 and 38, who have received recent clinical diagnoses indicating specific stress and anxiety levels. In order to enhance user engagement in the intervention, gamified elements - an emerging trend to influence user behavior and lifestyle - has been utilized. Incorporating gamified elements into non-game contexts (e.g., health-related) has gained overwhelming popularity during the last few years which has made the interventions more delightful, engaging, and motivating. In the subsequent phase of this research, we conducted an AI experiment employing a personalized machine learning approach to perform emotion recognition on an established dataset called Emognition. This experiment served as a simulation of the future analysis that will be conducted as part of a more comprehensive study focusing on stress and anxiety recognition. The outcomes of the emotion recognition experiment in this study highlight the effectiveness of personalized machine learning techniques and bear significance for the development of future diagnostic endeavors. For training purposes, we selected three models, namely KNN, Random Forest, and MLP. The preliminary performance accuracy results for the experiment were 93%, 95%, and 87% respectively for these models

    Deep Reinforcement Learning for Robotic Approaching Behavior Influenced by User Activity and Disengagement

    Get PDF
    A robot intended to monitor human behavior must account for the user's reactions to minimize his/her perceived discomfort. The possibility of learning user interaction preferences and changing the robot's behavior accordingly may positively impact the perceived quality of the interaction with the robot. The robot should approach the user without causing any discomfort or interference. In this work, we contribute and implement a novel Reinforcement Learning (RL) approach for robot navigation toward a human user. Our implementation is a proof-of-concept that uses data gathered from real-world experiments to show that our algorithm works on the kind of data that it would run on in a realistic scenario. To the best of our knowledge, our work is one of the first attempts to provide an adaptive navigation algorithm that uses RL to account for non-deterministic phenomena

    Automatic Context-Driven Inference of Engagement in HMI: A Survey

    Full text link
    An integral part of seamless human-human communication is engagement, the process by which two or more participants establish, maintain, and end their perceived connection. Therefore, to develop successful human-centered human-machine interaction applications, automatic engagement inference is one of the tasks required to achieve engaging interactions between humans and machines, and to make machines attuned to their users, hence enhancing user satisfaction and technology acceptance. Several factors contribute to engagement state inference, which include the interaction context and interactants' behaviours and identity. Indeed, engagement is a multi-faceted and multi-modal construct that requires high accuracy in the analysis and interpretation of contextual, verbal and non-verbal cues. Thus, the development of an automated and intelligent system that accomplishes this task has been proven to be challenging so far. This paper presents a comprehensive survey on previous work in engagement inference for human-machine interaction, entailing interdisciplinary definition, engagement components and factors, publicly available datasets, ground truth assessment, and most commonly used features and methods, serving as a guide for the development of future human-machine interaction interfaces with reliable context-aware engagement inference capability. An in-depth review across embodied and disembodied interaction modes, and an emphasis on the interaction context of which engagement perception modules are integrated sets apart the presented survey from existing surveys

    CIRS: Bursting Filter Bubbles by Counterfactual Interactive Recommender System

    Full text link
    While personalization increases the utility of recommender systems, it also brings the issue of filter bubbles. E.g., if the system keeps exposing and recommending the items that the user is interested in, it may also make the user feel bored and less satisfied. Existing work studies filter bubbles in static recommendation, where the effect of overexposure is hard to capture. In contrast, we believe it is more meaningful to study the issue in interactive recommendation and optimize long-term user satisfaction. Nevertheless, it is unrealistic to train the model online due to the high cost. As such, we have to leverage offline training data and disentangle the causal effect on user satisfaction. To achieve this goal, we propose a counterfactual interactive recommender system (CIRS) that augments offline reinforcement learning (offline RL) with causal inference. The basic idea is to first learn a causal user model on historical data to capture the overexposure effect of items on user satisfaction. It then uses the learned causal user model to help the planning of the RL policy. To conduct evaluation offline, we innovatively create an authentic RL environment (KuaiEnv) based on a real-world fully observed user rating dataset. The experiments show the effectiveness of CIRS in bursting filter bubbles and achieving long-term success in interactive recommendation. The implementation of CIRS is available via https://github.com/chongminggao/CIRS-codes.Comment: 11 pages, 9 figure

    Personalized face and gesture analysis using hierarchical neural networks

    Full text link
    The video-based computational analyses of human face and gesture signals encompass a myriad of challenging research problems involving computer vision, machine learning and human computer interaction. In this thesis, we focus on the following challenges: a) the classification of hand and body gestures along with the temporal localization of their occurrence in a continuous stream, b) the recognition of facial expressivity levels in people with Parkinson's Disease using multimodal feature representations, c) the prediction of student learning outcomes in intelligent tutoring systems using affect signals, and d) the personalization of machine learning models, which can adapt to subject and group-specific nuances in facial and gestural behavior. Specifically, we first conduct a quantitative comparison of two approaches to the problem of segmenting and classifying gestures on two benchmark gesture datasets: a method that simultaneously segments and classifies gestures versus a cascaded method that performs the tasks sequentially. Second, we introduce a framework that computationally predicts an accurate score for facial expressivity and validate it on a dataset of interview videos of people with Parkinson's disease. Third, based on a unique dataset of videos of students interacting with MathSpring, an intelligent tutoring system, collected by our collaborative research team, we build models to predict learning outcomes from their facial affect signals. Finally, we propose a novel solution to a relatively unexplored area in automatic face and gesture analysis research: personalization of models to individuals and groups. We develop hierarchical Bayesian neural networks to overcome the challenges posed by group or subject-specific variations in face and gesture signals. We successfully validate our formulation on the problems of personalized subject-specific gesture classification, context-specific facial expressivity recognition and student-specific learning outcome prediction. We demonstrate the flexibility of our hierarchical framework by validating the utility of both fully connected and recurrent neural architectures
    • …
    corecore