4,093 research outputs found

    CHORUS Deliverable 2.2: Second report - identification of multi-disciplinary key issues for gap analysis toward EU multimedia search engines roadmap

    Get PDF
    After addressing the state-of-the-art during the first year of Chorus and establishing the existing landscape in multimedia search engines, we have identified and analyzed gaps within European research effort during our second year. In this period we focused on three directions, notably technological issues, user-centred issues and use-cases and socio- economic and legal aspects. These were assessed by two central studies: firstly, a concerted vision of functional breakdown of generic multimedia search engine, and secondly, a representative use-cases descriptions with the related discussion on requirement for technological challenges. Both studies have been carried out in cooperation and consultation with the community at large through EC concertation meetings (multimedia search engines cluster), several meetings with our Think-Tank, presentations in international conferences, and surveys addressed to EU projects coordinators as well as National initiatives coordinators. Based on the obtained feedback we identified two types of gaps, namely core technological gaps that involve research challenges, and “enablers”, which are not necessarily technical research challenges, but have impact on innovation progress. New socio-economic trends are presented as well as emerging legal challenges

    LookBook: pioneering Inclusive beauty with artificial intelligence and machine learning algorithms

    Get PDF
    Technology's imperfections and biases inherited from historical norms are crucial to acknowledge. Rapid perpetuation and amplification of these biases necessitate transparency and proactive measures to mitigate their impact. The online visual culture reinforces Eurocentric beauty ideals through prioritized algorithms and augmented reality filters, distorting reality and perpetuating unrealistic standards of beauty. Narrow beauty standards in technology pose a significant challenge to overcome. Algorithms personalize content, creating "filter bubbles" that reinforce these ideals and limit exposure to diverse representations of beauty. This cycle compels individuals to conform, hindering the embrace of their unique features and alternative definitions of beauty. LookBook counters prevalent narrow beauty standards in technology. It promotes inclusivity and representation through self-expression, community engagement, and diverse visibility. LookBook comprises three core sections: Dash, Books, and Community. In Dash, users curate their experience through personalization algorithms. Books allow users to collect curated content for inspiration and creativity, while Community fosters connections with like-minded individuals. Through LookBook, users create a reality aligned with their unique vision. They control consumed content, nurturing individualism through preferences and creativity. This personalization empowers individuals to break free from narrow beauty standards and embrace their distinctiveness. LookBook stands out with its algorithmic training and data representation. It offers transparency on how personalization algorithms operate and ensures a balanced and diverse representation of physicalities and ethnicities. By addressing biases and embracing a wide range of identities, LookBook sparks a conversation for a technology landscape that amplifies all voices, fostering an environment celebrating diversity and prioritizing inclusivity

    Context Mining with Machine Learning Approach: Understanding, Sensing, Categorizing, and Analyzing Context Parameters

    Get PDF
    Context is a vital concept in various fields, such as linguistics, psychology, and computer science. It refers to the background, environment, or situation in which an event, action, or idea occurs or exists. Categorization of context involves grouping contexts into different types or classes based on shared characteristics. Physical context, social context, cultural context, temporal context, and cognitive context are a few categories under which context can be divided. Each type of context plays a significant role in shaping our understanding and interpretation of events or actions. Understanding and categorizing context is essential for many applications, such as natural language processing, human-computer interaction, and communication studies, as it provides valuable information for interpretation, prediction, and decision-making. In this paper, we will provide an overview of the concept of context and its categorization, highlighting the importance of context in various fields and applications. We will discuss each type of context and provide examples of how they are used in different fields. Finally, we will conclude by emphasizing the significance of understanding and categorizing context for interpretation, prediction, and decision-making

    Towards automated knowledge-based mapping between individual conceptualisations to empower personalisation of Geospatial Semantic Web

    No full text
    Geospatial domain is characterised by vagueness, especially in the semantic disambiguation of the concepts in the domain, which makes defining universally accepted geo- ontology an onerous task. This is compounded by the lack of appropriate methods and techniques where the individual semantic conceptualisations can be captured and compared to each other. With multiple user conceptualisations, efforts towards a reliable Geospatial Semantic Web, therefore, require personalisation where user diversity can be incorporated. The work presented in this paper is part of our ongoing research on applying commonsense reasoning to elicit and maintain models that represent users' conceptualisations. Such user models will enable taking into account the users' perspective of the real world and will empower personalisation algorithms for the Semantic Web. Intelligent information processing over the Semantic Web can be achieved if different conceptualisations can be integrated in a semantic environment and mismatches between different conceptualisations can be outlined. In this paper, a formal approach for detecting mismatches between a user's and an expert's conceptual model is outlined. The formalisation is used as the basis to develop algorithms to compare models defined in OWL. The algorithms are illustrated in a geographical domain using concepts from the SPACE ontology developed as part of the SWEET suite of ontologies for the Semantic Web by NASA, and are evaluated by comparing test cases of possible user misconceptions

    A Network Resource Allocation Recommendation Method with An Improved Similarity Measure

    Full text link
    Recommender systems have been acknowledged as efficacious tools for managing information overload. Nevertheless, conventional algorithms adopted in such systems primarily emphasize precise recommendations and, consequently, overlook other vital aspects like the coverage, diversity, and novelty of items. This approach results in less exposure for long-tail items. In this paper, to personalize the recommendations and allocate recommendation resources more purposively, a method named PIM+RA is proposed. This method utilizes a bipartite network that incorporates self-connecting edges and weights. Furthermore, an improved Pearson correlation coefficient is employed for better redistribution. The evaluation of PIM+RA demonstrates a significant enhancement not only in accuracy but also in coverage, diversity, and novelty of the recommendation. It leads to a better balance in recommendation frequency by providing effective exposure to long-tail items, while allowing customized parameters to adjust the recommendation list bias

    Using Semantic-Based User Profile Modeling for Context-Aware Personalised Place Recommendations

    Get PDF
    Place Recommendation Systems (PRS's) are used to recommend places to visit to World Wide Web users. Existing PRS's are still limited by several problems, some of which are the problem of recommending similar set of places to different users (Lack of Personalization) and no diversity in the set of recommended items (Content Overspecialization). One of the main objectives in the PRS's or Contextual suggestion systems is to fill the semantic gap among the queries and suggestions and going beyond keywords matching. To address these issues, in this study we attempt to build a personalized context-aware place recommender system using semantic-based user profile modeling to address the limitations of current user profile building techniques and to improve the retrieval performance of personalized place recommender system. This approach consists of building a place ontology based on the Open Directory Project (ODP), a hierarchical ontology scheme for organizing websites. We model a semantic user profile from the place concepts extracted from place ontology and weighted according to their semantic relatedness to user interests. The semantic user profile is then exploited to devise a personalized recommendation by re-ranking process of initial search results for improving retrieval performance. We evaluate this approach on dataset obtained using Google Paces API. Results show that our proposed approach significantly improves the retrieval performance compare to classic keyword-based place recommendation model

    An Ontology- Content-based Filtering Method

    Get PDF
    Traditional content-based filtering methods usually utilize text extraction and classification techniques for building user profiles as well as for representations of contents, i.e. item profiles. These methods have some disadvantages e.g. mismatch between user profile terms and item profile terms, leading to low performance. Some of the disadvantages can be overcome by incorporating a common ontology which enables representing both the users' and the items' profiles with concepts taken from the same vocabulary. We propose a new content-based method for filtering and ranking the relevancy of items for users, which utilizes a hierarchical ontology. The method measures the similarity of the user's profile to the items' profiles, considering the existing of mutual concepts in the two profiles, as well as the existence of "related" concepts, according to their position in the ontology. The proposed filtering algorithm computes the similarity between the users' profiles and the items' profiles, and rank-orders the relevant items according to their relevancy to each user. The method is being implemented in ePaper, a personalized electronic newspaper project, utilizing a hierarchical ontology designed specifically for classification of News items. It can, however, be utilized in other domains and extended to other ontologies
    • 

    corecore