22,349 research outputs found

    Motivational Social Visualizations for Personalized E-Learning

    Get PDF
    A large number of educational resources is now available on the Web to support both regular classroom learning and online learning. However, the abundance of available content produces at least two problems: how to help students find the most appropriate resources, and how to engage them into using these resources and benefiting from them. Personalized and social learning have been suggested as potential methods for addressing these problems. Our work presented in this paper attempts to combine the ideas of personalized and social learning. We introduce Progressor + , an innovative Web-based interface that helps students find the most relevant resources in a large collection of self-assessment questions and programming examples. We also present the results of a classroom study of the Progressor +  in an undergraduate class. The data revealed the motivational impact of the personalized social guidance provided by the system in the target context. The interface encouraged students to explore more educational resources and motivated them to do some work ahead of the course schedule. The increase in diversity of explored content resulted in improving students’ problem solving success. A deeper analysis of the social guidance mechanism revealed that it is based on the leading behavior of the strong students, who discovered the most relevant resources and created trails for weaker students to follow. The study results also demonstrate that students were more engaged with the system: they spent more time in working with self-assessment questions and annotated examples, attempted more questions, and achieved higher success rates in answering them

    Use-cases on evolution

    Get PDF
    This report presents a set of use cases for evolution and reactivity for data in the Web and Semantic Web. This set is organized around three different case study scenarios, each of them is related to one of the three different areas of application within Rewerse. Namely, the scenarios are: “The Rewerse Information System and Portal”, closely related to the work of A3 – Personalised Information Systems; “Organizing Travels”, that may be related to the work of A1 – Events, Time, and Locations; “Updates and evolution in bioinformatics data sources” related to the work of A2 – Towards a Bioinformatics Web

    Enhancing Undergraduate AI Courses through Machine Learning Projects

    Full text link
    It is generally recognized that an undergraduate introductory Artificial Intelligence course is challenging to teach. This is, in part, due to the diverse and seemingly disconnected core topics that are typically covered. The paper presents work funded by the National Science Foundation to address this problem and to enhance the student learning experience in the course. Our work involves the development of an adaptable framework for the presentation of core AI topics through a unifying theme of machine learning. A suite of hands-on semester-long projects are developed, each involving the design and implementation of a learning system that enhances a commonly-deployed application. The projects use machine learning as a unifying theme to tie together the core AI topics. In this paper, we will first provide an overview of our model and the projects being developed and will then present in some detail our experiences with one of the projects – Web User Profiling which we have used in our AI class

    Student-Centered Learning: Functional Requirements for Integrated Systems to Optimize Learning

    Get PDF
    The realities of the 21st-century learner require that schools and educators fundamentally change their practice. "Educators must produce college- and career-ready graduates that reflect the future these students will face. And, they must facilitate learning through means that align with the defining attributes of this generation of learners."Today, we know more than ever about how students learn, acknowledging that the process isn't the same for every student and doesn't remain the same for each individual, depending upon maturation and the content being learned. We know that students want to progress at a pace that allows them to master new concepts and skills, to access a variety of resources, to receive timely feedback on their progress, to demonstrate their knowledge in multiple ways and to get direction, support and feedback from—as well as collaborate with—experts, teachers, tutors and other students.The result is a growing demand for student-centered, transformative digital learning using competency education as an underpinning.iNACOL released this paper to illustrate the technical requirements and functionalities that learning management systems need to shift toward student-centered instructional models. This comprehensive framework will help districts and schools determine what systems to use and integrate as they being their journey toward student-centered learning, as well as how systems integration aligns with their organizational vision, educational goals and strategic plans.Educators can use this report to optimize student learning and promote innovation in their own student-centered learning environments. The report will help school leaders understand the complex technologies needed to optimize personalized learning and how to use data and analytics to improve practices, and can assist technology leaders in re-engineering systems to support the key nuances of student-centered learning

    Integrating Technology With Student-Centered Learning

    Get PDF
    Reviews research on technology's role in personalizing learning, its integration into curriculum-based and school- or district-wide initiatives, and the potential of emerging digital technologies to expand student-centered learning. Outlines implications

    NAVIGATION SUPPORT AND SOCIAL VISUALIZATION FOR PERSONALIZED E-LEARNING

    Get PDF
    A large number of educational resources is now made available on the Web to support both regular classroom learning and online learning. However, the abundance of available content produced at least two problems: how to help students to find the most appropriate resources and how to engage them into using these resources and benefit from them. Personalized and social learning have been suggested as potential ways to address these problems. This work attempts to combine the ideas of personalized and social learning by providing navigation support through an open social student modeling visualization. A series of classroom studies exploited the idea of the approach and revealed promising results, which demonstrated the personalized guidance and social visualization combined helped students to find the most relevant resources of parameterized self-assessment questions for Java programming. Thus, this dissertation extend the approach to a larger collection of learning objects for cross content navigation and verify its capability of supporting social visualization for personalized E-Learning. The study results confirm that working with the non-mandatory system, students enhanced the learning quality in increasing their motivation and engagement. They successfully achieved better learning results. Meanwhile, incorporating a mixed collection of content in the open social student modeling visualizations effectively led the students to work at the right level of questions. Both strong and weak student worked with the appropriate levels of questions for their readiness accordingly and yielded a consistent performance across all three levels of complexities. Additionally, providing a more realistic content collection on the navigation supported open social student modeling visualizations results in a uniform performance in the group. The classroom study revealed a clear pattern of social guidance, where the stronger students left the traces for weaker ones to follow. The subjective evaluation confirms the design of the interface in terms of the content organization. Students’ positive responses also compliment the objective system usage data

    Senior Computer Science Students’ Task and Revised Task Interpretation While Engaged in Programming Endeavor

    Get PDF
    Developing a computer program is not an easy task. Studies reported that a large number of computer science students decided to change their major due to the extreme challenge in learning programming. Fortunately, studies also reported that learning various self-regulation strategies may help students to continue studying computer science. This study is interested in assessing students’ self-regulation, in specific their task understanding and its revision during programming endeavors. Task understanding is specifically selected because it affects the entire programming endeavor. In this qualitative case study, two female and two male senior computer science students were voluntarily recruited as research participants. They were asked to think aloud while answering five programming problems. Before solving the problem, they had to explain their understanding of the task and after that answer some questions related to their problem-solving process. The participants’ problem-solving process were video and audio-recorded, transcribed, and analyzed. This study found that the participants’ were capable of tailoring their problem-solving approach to the task types, including when understanding the tasks. Given enough time, the participants can understand the problem correctly. When the task is complicated, the participants will gradually update their understanding during the problem-solving endeavor. Some situations may have prevented the participants from understanding the task correctly, including overconfidence, being overwhelmed, utilizing an inappropriate presentation technique, or drawing knowledge from irrelevant experience. Last, the participants tended to be inexperienced in managing unfavorable outcomes

    Integration of Forecasting, Scheduling, Machine Learning, and Efficiency Improvement Methods into the Sport Management Industry

    Get PDF
    Sport management is a complicated and economically impactful industry and involves many crucial decisions: such as which players to retain or release, how many concession vendors to add, how many fans to expect, what teams to schedule, and many others are made each offseason and changed frequently. The task of making such decisions effectively is difficult, but the process can be made easier using methods of industrial and systems engineering (ISE). Integrating methods such as forecasting, scheduling, machine learning, and efficiency improvement from ISE can be revolutionary in helping sports organizations and franchises be consistently successful. Research shows areas including player evaluation, analytics, fan attendance, stadium design, accurate scheduling, play prediction, player development, prevention of cheating, and others can be improved when ISE methods are used to target inefficient or wasteful areas

    The Development of Student Personal Education Plans into Portfolios through the Use of the Pathway Model

    Get PDF
    The purpose of this project was to create a Personalized Education Plan and portfolio system to support secondary students in quest for successful skill development and job employment upon graduation. The project was specifically designed for freshmen students and the teaching staff at Auburn High Schooi in Auburn, Washington

    Guiding and motivating students through open social student modeling: Lessons learned

    Get PDF
    Background/Context: A large number of educational resources are now made available on the web to support both regular classroom learning and online learning. The abundance of available content has produced at least two problems: how to help students find the most appropriate resources and how to engage them in using and benefiting from these resources. Personalized and social learning have been suggested as potential ways to address these problems. Our work attempts to integrate these directions of research by combining the ideas of adaptive navigation support and open student modeling with the ideas of social comparison and social visualization. We call our approach Open Social Student Modeling (OSSM). Objective/Research Questions: First, we review a sequence of our earlier projects focused on Open Social Student Modeling for one kind of learning content and formulate several key design principles that contribute to the success of OSSM. Second, we present our exploration of OSSM in a more challenging context of modeling student progress for two kinds of learning content in parallel. We aim to answer the following research questions: How do we design OSSM interfaces to support many kinds of learning content in parallel? Will current identified design principles (key features) confirm the power of the learning community through OSSM with multiple learning-resource collections? Will the OSSM visualization provide successful personalized guidance within a richer collection of educational resources? Research Design: We designed four classroom studies to assess the value of different options for OSSM visualization of one and multiple kinds of learning content in the context of programming-language learning. We examined the comparative success of different design options to distill successful design patterns and other important lessons for the future developers of OSSM for personalized and social e-learning. Findings/Results: The results confirmed the motivational impact of personalized social guidance provided by the OSSM system in the target context. The interface encouraged students to explore more topics and motivated them to work ahead of the course schedule. Both strong and weak students worked with the appropriate levels of questions for their readiness, which yielded consistent performance across different levels of complex problems. Additionally, providing more realistic content collection on the navigation-supported OSSM visualizations resulted in uniform performance for the group. Conclusions/Recommendation: A sequence of studies of several OSSM interfaces confirmed that a combination of adaptive navigational support, open student modeling, and social visualization in the form of the OSSM interface can reinforce the navigational and motivational values of these approaches. In several contexts, the OSSM interface demonstrated its ability to offer effective guidance in helping students to locate the most relevant content at the right time while increasing student motivation to work with diverse learning content
    • 

    corecore