
Utah State University Utah State University

DigitalCommons@USU DigitalCommons@USU

All Graduate Theses and Dissertations Graduate Studies

8-2018

Senior Computer Science Students’ Task and Revised Task Senior Computer Science Students’ Task and Revised Task

Interpretation While Engaged in Programming Endeavor Interpretation While Engaged in Programming Endeavor

Andreas Febrian
Utah State University

Follow this and additional works at: https://digitalcommons.usu.edu/etd

 Part of the Engineering Education Commons

Recommended Citation Recommended Citation
Febrian, Andreas, "Senior Computer Science Students’ Task and Revised Task Interpretation While
Engaged in Programming Endeavor" (2018). All Graduate Theses and Dissertations. 7219.
https://digitalcommons.usu.edu/etd/7219

This Dissertation is brought to you for free and open
access by the Graduate Studies at
DigitalCommons@USU. It has been accepted for
inclusion in All Graduate Theses and Dissertations by an
authorized administrator of DigitalCommons@USU. For
more information, please contact
digitalcommons@usu.edu.

https://digitalcommons.usu.edu/
https://digitalcommons.usu.edu/etd
https://digitalcommons.usu.edu/gradstudies
https://digitalcommons.usu.edu/etd?utm_source=digitalcommons.usu.edu%2Fetd%2F7219&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1191?utm_source=digitalcommons.usu.edu%2Fetd%2F7219&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/etd/7219?utm_source=digitalcommons.usu.edu%2Fetd%2F7219&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/

SENIOR COMPUTER SCIENCE STUDENTS’ TASK AND REVISED

TASK INTERPRETATION WHILE ENGAGED

IN PROGRAMMING ENDEAVOR

by

Andreas Febrian

A proposal submitted in partial fulfillment
of the requirements for the degree

of

DOCTOR OF PHILOSOPHY

in

Engineering Education

Approved:

______________________ ____________________
Oenardi Lawanto, Ph.D. Kurt Becker, Ph.D.
Major Professor Committee Member

______________________ ____________________
Ning Fang, Ph.D. Wade Goodridge, Ph.D.
Committee Member Committee Member

______________________ ____________________
Haito Wang, Ph.D. Mark R. McLellan, Ph.D.
Committee Member Vice President for Research and

Dean of the School of Graduate Studies

UTAH STATE UNIVERSITY
Logan, Utah

2018

 ii

Copyright © Andreas Febrian 2018

All Rights Reserved

iii

ABSTRACT

Senior Computer Science Students’ Task and Revised

Task Interpretation while Engaged

In Programming Endeavor

by

Andreas Febrian, Doctor of Philosophy

Utah State University, 2018

Major Professor: Oenardi Lawanto, PhD

Department: Engineering Education

Self-regulated learning is a situated and iterative goal-directed learning process

that has a positive influence on students’ academic success, problem-solving, and design

quality. The heart of self-regulation is task interpretation, which determines students’

selection of goals, objectives, criteria for success, and required cognitive strategies. Thus,

task interpretation affects the entire problem-solving endeavor. Developing a computer

program is a problem-solving process that requires employing various cognitive skills

and considers the interplays of varying levels and types of abstractions; its complexity is

one of the primary dropout reasons in computer science. Fortunately, learning various

self-regulation strategies may help students to persist in computer science. This study

aims to assess students’ explicit and implicit task interpretation, their revisions, and

factors that influence their revisions during a computer programming endeavor.

This study used qualitative case study design with two units of analysis, which

were designing an object-oriented system and an algorithm. Two female and two male

 iv

senior computer science students were voluntarily recruited as cases. Each participant

was asked to answer five programming problems while thinking aloud. In addition, they

completed an initial task interpretation survey and answered post-problem solving

interview questions for each problem. The participants’ problem-solving endeavor were

video- and audio-recorded, transcribed, and qualitatively coded by two experts. The

average Kappa score was 1.00 suggesting a perfect agreement among coders.

The analysis suggests that the participants were capable of tailoring their

problem-solving approach to the problems’ characteristics, including when interpreting

the tasks. All participants were also competent in interpreting the explicit and implicit

aspects of the task and would refine their interpretation during the problem-solving

endeavor, especially when the task contains an extensive amount of detail. Further, their

competency deteriorated when the participants were overconfident, overwhelmed,

utilizing an inappropriate presentation technique, or drawing knowledge from irrelevant

experienced. Having an incorrect explicit task interpretation may result in an inaccurate

implicit task understanding or even an unsuccessful problem-solving endeavor. Last, the

participants tended to assume positively about their problem-solving approach and

neglected managing unfavorable outcomes.

(295 pages)

v

PUBLIC ABSTRACT

Senior Computer Science Students’ Task and Revised

Task Interpretation while Engaged

In Programming Endeavor

Andreas Febrian

Developing a computer program is not an easy task. Studies reported that a large

number of computer science students decided to change their major due to the extreme

challenge in learning programming. Fortunately, studies also reported that learning

various self-regulation strategies may help students to continue studying computer

science. This study is interested in assessing students’ self-regulation, in specific their

task understanding and its revision during programming endeavors. Task understanding

is specifically selected because it affects the entire programming endeavor.

In this qualitative case study, two female and two male senior computer science

students were voluntarily recruited as research participants. They were asked to think

aloud while answering five programming problems. Before solving the problem, they had

to explain their understanding of the task and after that answer some questions related to

their problem-solving process. The participants’ problem-solving process were video-

and audio-recorded, transcribed, and analyzed.

This study found that the participants’ were capable of tailoring their problem-

solving approach to the task types, including when understanding the tasks. Given

enough time, the participants can understand the problem correctly. When the task is

vi

complicated, the participants will gradually update their understanding during the

problem-solving endeavor. Some situations may have prevented the participants from

understanding the task correctly, including overconfidence, being overwhelmed, utilizing

an inappropriate presentation technique, or drawing knowledge from irrelevant

experience. Last, the participants tended to be inexperienced in managing unfavorable

outcomes.

(295 pages)

vii

ACKNOWLEDGMENTS

All praises belong to Allah, The Most Merciful and The Most Gracious.

This dissertation study was a long and complex process that could not be possible

without the support from many people, directly or indirectly. I wish to acknowledge and

appreciate them.

To Dr. Oenardi Lawanto for his mentoring in various aspect of this study and self-

regulation theory. I have gained an invaluable experience that helps me to grow to be a

better researcher and learner. To my committee members, Drs. Kurt Becker, Ning Fang,

Wade Goodridge, and Haito Wang for their support and wisdom on this study and

broaden my perspective on engineering education research. To Dr. Idalis Villanueva, Dr.

Angela Minichiello, and Laura Gelles for their crucial insights in qualitative research

method.

To Alicia Melvin, Kamyn Peterson-Rucker, Matthew Eric D'Angelo, and

Rosamaria Diaz who have helped me researching computational thinking and pilot

testing this dissertation instruments. To my qualitative coders who have spent time and

effort in interpreting the participants’ transcriptions. To the pilot study and research

participants for their cooperation and precious comments in improving this study

reliability and impact. To Herika Hayurani and Nova Eka Diana for their valuable inputs

on the research instruments.

To Shane Guymon for his willingness to be one of my discussion partners and

critical suggestions on my writing style and grammar. To Sarah Lopez and Theresa Green

for their suggestions on my writing. To Susan Hammond, Shane Bullock, and Cora Price

viii

for their technical assistance. To Benjamin Call for lending me his research books. To

Melissa Scheaffer, Duke Madson, Melanie Faustino Hansen, and Emma for their

suggestions and help in reviewing the participants’ task interpretation report.

To my family, especially for my mother and wife for their thought, prayers,

support, and patience during my doctoral study. Last, but not least, to my friends on

campus and the Logan Islamic Center, especially for Ozkan Fidan and Ahsanul Kibria for

their companionship and support during this long doctoral study.

 Andreas Febrian

 ix

CONTENTS

Page

ABSTRACT .. iii

PUBLIC ABSTRACT ...v

ACKNOWLEDGMENTS ... vii

LIST OF TABLES ... xii

LIST OF FIGURES .. xiii

I. INTRODUCTION ..1

Background of Study ..1

Research Questions ..3

Research Design Overview ..3

Significance of the Study ...4

Assumptions of the Study ..5

Limitation of the Study ..6

Definition of Key Terms ..7

Dissertation Outline ..9

II. LITERATURE REVIEW ...10

Introduction ..10

Biases and Corrective Methods ..11

Computer Science Education ...13

Task Interpretation and Monitoring in Self-Regulated Learning21

Self-Regulation during Programming and Object-Oriented Design28

Summary ..29

III. PILOT STUDY ...30

Introduction ..30

The 2016 Research Experience for Undergraduates ..31

Participant Recruitment ..32

The Qualitative Instrument ...33

Data Collection ...36

Data Analysis ...38

Member Checking ..40

Summary ..40

 x

IV. RESEARCH DESIGN ..42

Introduction ..42

Research Questions ..42

The Researcher’s Positionality ...43

Research Methodology ...45

Research Method ..51

Institutional Review Board Application ...52

Research Participants ...52

Qualitative Instruments ..55

Data Collection Procedure..60

Data Analysis Method ..63

V. THE PARTICIPANTS AND FINDINGS ..70

Introduction ..70

The Participants ..70

Qualitative Coding Results ...78

Participants’ Self-Regulation in Solving the Third Problem81

Participants’ Self-Regulation in Solving the Fifth Problem106

Addressing the Research Questions ...122

VI. DISCUSSION, CONCLUSION, IMPLICATION, AND RECOMMENDATION .129

Introduction ..129

Discussion and Conclusion ..129

Research and Educational Implications ...134

Recommendation for Future Studies ..140

REFERENCES ..143

APPENDICES ...175

Appendix A. The 2016 REU Project Description ..176

Appendix B. The 2016 REU Project Schedule ..178

Appendix C. The 2016 REU Recruitment Publication ..183

Appendix D. The 2016 REU Demographics Survey ...185

Appendix E. The 2016 REU Introduction Script ...191

Appendix F. The 2016 REU Personalized SRL Report ...193

Appendix G. Online Application Form ..205

Appendix H. Online Application Screening Flowchart ...211

Appendix L. Demographics Survey ...213

Appendix J. Problem-Space Map ...217

Appendix K. Programming Problem Characteristics ...232

Appendix L. Programming Problem ..235

Appendix M. Programming Problem Solution ..243

 xi

Appendix N. Research Schedule ..254

Appendix O. IRB Approval ...256

Appendix P. Personalized Task Interpretation Reports ...258

CURRICULUM VITAE ..271

 xii

LIST OF TABLES

Table Page Page

 2-1 Possible Biases in this Literature Review ..12

 2-2 The Nine Computing Principles ..15

 2-3 Definition of All Strategic Actions in Butler and Cartier’s SRL Model24

 3-1 Summary of the Participants’ Demographics ..31

 3-2 Major Changes made in the Qualitative Instrument ..37

 3-3 Thinking Aloud Prompts ..38

 4-1 Number of Participants based on Gender and Academic Performance 53

 4-2 Open-Ended Questions for Explicit and Implicit Task Interpretation 59

 4-3 Interview Questions ...60

 5-1 Segment Example for Each Strategic Action Code ...79

 xiii

LIST OF FIGURES

Figure Page

 2-1 Relevant concepts in this literature review ..13

 2-2 Butler and Cartier’s self-regulated learning ..23

 2-3 Hadwin’s task interpretation model ..26

 4-1 The data collection routine ..63

 5-1 Jake’s approach for the third problem ...84

 5-2 Rusty’s approach for the third problem ..92

 5-3 Anne’s approach for the third problem ...97

 5-4 LStew’s approach for the third problem ...104

 5-5 Jake’s approach for the fifth problem ...108

 5-6 Rusty’s approach for the fifth problem ...112

 5-7 Anne’s approach for the fifth problem ..117

 5-8 LStew’s approach for the fifth problem ..121

CHAPTER I

INTRODUCTION

Background of Study

It is one of the digital age’s visions to support people’s daily activities seamlessly

through embedded computing and information technologies (Weisser, 1991). Motivated

scientists, engineers, and designers are eagerly finding a way to shorten the gap between

the real and digital worlds. It is a long, challenging road, but they have made progress by

means of smart-devices, and by integrating advanced computational abilities into existing

familiar devices. The idea is to allow these devices to perform their core functions and,

on top of that, several computational- and sensor-based operations. This approach is an

idea that attracts various companies, national and international, big and small, to develop

and deliver their signature smart-devices to the market (Apple Inc., n.d.; Google Inc.,

n.d.-c; Huawei Technologies Co., n.d.; Mercedes-Benz USA, n.d.; Samsung, n.d.;

Smarthome, n.d.).

Astounding as it is, the invention of smart-devices only serves as a gateway to

reduce the gap between the real and digital worlds. Some researchers believe that these

devices need to assume more active roles in people’s daily lives, such as providing in-

context assistance (Bughin, Chui, & Manyika, 2010; Froehlich, Chen, Smith, & Potter,

2006; Trinh, Chung, & Kim, 2012). On the other hand, computers are still extensively

used everywhere for handling both simple and complex tasks (Bundy, 2007). Some of

these applications have integrated artificial intelligence (Geffner, 2014) which allows

several job automation (Bui, 2015). Consequently, technology-integrated solutions have

become common and set the standard for the next generation of professionals (i.e., having

 2

some basic computer science (CS) skills) (Hambrusch, Hoffmann, Korb, Haugan, &

Hosking, 2009; Henderson, 2009).

The CS skills are essential in the future, including for researchers, scientists, and

business professionals. Unfortunately, student retention is still a significant problem in

computer science (Ambrosio, Almeida, Franco, Martins, & Georges, 2012; Beaubouef &

Mason, 2005; Howles, 2007; Kori et al., 2015; Wing, 2006). Most students are dropping

out due to the immense challenges faced when learning programming (Anderson &

Skwarecki, 1989; Guzdial et al., 2015; Howles, 2007; Kori et al., 2015). Although CS is

not entirely about programming, it is still a part of and the most critical CS core skill

(Denning et al., 1989; The Joint Task Force on Computing Curricula, 2013).

Programming is the most efficient way to learn CS concepts and principles (Gal-Ezer &

Harel, 1998; Lye & Koh, 2014; Wing, 2006, 2008). Exposing students to various self-

regulation skills could help ease the learning process (Leiviskä & Siponen, 2013) and, at

the same time, improve their programming performance (Bergin, Reilly, & Traynor,

2005; Kumar et al., 2005).

CS skills are problem-solving strategies (Glass, 2006), and lack of employing

these and self-regulation skills during a problem-solving attempt might lead to failure

(Schoenfeld, 1983). Falkner et al., (2014) reported that CS students are unable to align

their problem-solving goals with the assessment criteria, which suggests inaccurate task

interpretation efforts. Fortunately, students’ task understanding evolved throughout the

learning endeavor (Rivera-Reyes, 2015). In other words, students monitor their task

understanding and approach throughout the learning enterprise (Isomöttönen & Tirronen,

 3

2013). Therefore, understanding students’ task interpretation and its revision are crucial

for helping students to cope with programming challenges better. After all, every self-

regulation activity starts with a task interpretation (Butler & Cartier, 2005).

Research Questions

The purpose of this study was to investigate CS students’ task interpretation

during programming. More specifically, this study aimed to assess students’ explicit and

implicit task interpretation and their revision during the problem-solving process. These

three research questions were used to guide the study:

1. What was the students’ initial task interpretation (i.e., the explicit and implicit

aspects) of the given problems?

2. How did their original understanding change during the problem-solving

endeavor?

3. What were the influencing factors for any revisions of their initial task

understanding?

Research Design Overview

The within-site embedded qualitative multiple case study research approach was

employed, which meant that this study recruited participants (i.e., multiple cases) at the

researcher’s institution (i.e., within-site) (Creswell, 2012), where each case consisted of

two analysis units (i.e., embedded) (Yin, 2009). The research activities included IRB

application, participant recruitment, data collection, preliminary analysis, member

checking 1, data analysis, member checking 2, and reporting. All were completed in two

semesters. Four senior computer science students at USU were recruited for this study

 4

using convenience and purposeful sampling method. Each participant represented high-

and low-performance male and female students. During the three-hour data collection

period, each participant solved five programming problems while thinking aloud, filled

out open-ended surveys, and answered interview questions; all were audio- and video-

recorded. The researcher used a problem-space map during the observation (Johnson,

2008) to minimize observation faulty and uncaptured participants’ thought processes,

which developed based on the pilot study data. The analysis included organizing,

transcribing, coding, analyzing, and triangulating the findings and interpretations of the

collected data. In the end, each participant received a $40 Amazon gift card and a

personalized SRL report as tokens of appreciation. Chapter IV presents the research

design and justification in detail.

The Significance of the Study

Educational researchers have found a positive relationship between students’

problem-solving approach and self-regulation activities (Schoenfeld, 1983).

Consequently, enhancing students’ self-regulation skills can improve the success rate and

quality of their attempt in finding the most appropriate solution for a given problem. A

similar expectation is also true in computer science education (CSE), especially in

programming problem-solving which is also a form of problem-solving approach (Glass,

2006). Numerous researchers believe students’ task interpretation determine their self-

regulation activities (Butler & Winne, 1995; Lawanto, Goodridge, & Santoso, 2011).

Therefore, understanding students’ task interpretation during programming problem

solving could benefit all stakeholders: the students, instructors, educational institutions,

 5

and CSE field. For the students, the findings of this study could help them understand the

complexity of their thinking process during the programming endeavor. By deepening

their appreciation of their thinking process, students could strive to become better self-

regulated learners. For the instructors, this study could aid them in developing discipline-

specific interventions and instructional approaches that could enhance students’ self-

regulation skills. The educational institutions will gain indirect impact through the

improvement of students’ self-regulation with an increase of retention rate. Last, this

study contributes to the limited CSE literature on self-regulation during a programming

venture, especially in the literature on the revision of students’ task interpretation. The

proposed method and research findings could aid other researchers who would like to

further this investigation.

Assumptions of the Study

In conducting this study, the researcher used five assumptions. First, the

participants could read and communicate in English as expected from a typical US CS

senior student. Second, the participants could employ the knowledge gained from the

mandatory CS courses (e.g., Introduction to CS, Algorithm, and Data Structure courses)

to solve programming problems. Third, the participants gave their best effort in solving

all software design problems during the data collection. In addition to this assumption,

the researcher provided anonymity, confidentiality, challenging problems, and

personalized SRL reports for all participants to motivate them to give their best attempt.

Fourth, the video transcription process was conducted with minimum error. Fifth, the

utilization of two qualitative coders with minimum 0.81 Kappa score improved the

 6

coding reliabilities. Viera & Garrett (2005) claim that a 0.81 or higher Kappa score can

be interpreted as an almost perfect agreement between coders.

Limitations of the Study

In this study, two male and two female senior CS students from the USU CS

Department were recruited. All participants were asked to answer five programming

problems in three hours. The analysis was focused on two problems, which were related

to designing an object-oriented system and an algorithm. In other words, this study did

not assess students self-regulation for all types of problems and programming paradigms.

Self-regulation is agent-dependent, which means students might approach the same

problem differently. Additionally, all participants were from the CS department at Utah

State University (USU). Therefore, it is inappropriate to assume that all CS students

always employ the task interpretation strategies found in this study, for all type of

problems and in all difficulty levels. Further, due to the small number of applicants, the

lowest participants’ GPA was still above 3.00 on a 4-point scale, and thus might not fully

represent the low-performance CS students. Task interpretation is only one of the factors

that influence students’ performance. This study omitted the other factors, such as

students’ motivation and self-efficacy. In term of research method, the thinking aloud

might help the participants to self-regulate themselves better (Chi, De Leeuw, Chiu, &

Lavancher, 1994) and influence the research results. Unfortunately, there is no known

approach to overcome it. Therefore, readers need to be careful in interpreting findings

and drawing conclusions from this study.

 7

Definition of Key Terms

Self-Regulated Learning (SRL): A situated and iterative goal-directed learning

process that involves complex and dynamics activities (Butler & Cartier, 2005; Butler,

Schnellert, & MacNeil, 2015; Butler & Winne, 1995).

Task interpretation (TI): Students’ understanding of the relationship between the

task and the required cognitive processes to complete it. (Butler, 1998).

The explicit aspect of task interpretation: “Information that is overtly presented in

task descriptions and discussions” (p.2) which includes the task goal(s), requirements,

constraints, and standard to be followed (Hadwin, Oshige, Miller, & Wild, 2009).

The implicit aspect of task interpretation: “Information [that] students might be

expected to extrapolate beyond the assignment description” (p.2) which includes relevant

concepts, knowledge, and cognitive processes (Hadwin et al., 2009).

Monitoring and fix-up: Students’ activities of self-monitor progress (monitoring)

and adjust goals, plans, or strategies based on self-perceptions of progress or feedback

(adjusting approaches to learning) (Butler & Cartier, 2005).

Computer Science (CS): “The systematic study of algorithmic processes that

describe and transform information: their theory, analysis, design, efficiency,

implementation, and application” (Denning et al., 1989, p.12).

Computer Science Education (CSE): Any educational activities that enable

learners to apply computing principles to any problems (Senske, 2011).

A problem or a task: A question or an issue that need to be examined and solved

(Jonassen, 2010) which varies in terms of structuredness (i.e., from well- to ill-

 8

structured), complexity (i.e., static to dynamic), and situatedness (i.e., social aspect of the

problem) (Jonassen, 2000).

A design problem: A complex and ill-structured problem which has ambiguous

goal specifications, multiple solutions, and the need to incorporate knowledge from

various disciplines and domains (Jonassen, 2000) to meet particular needs and constraints

(Engineering Accreditation Commission, 2003).

A software design problem: Any design problems in the computer science context

where the problem, thought process, and the solution can be represented and carried out

effectively by an information-processing agent (Grover & Pea, 2013) through utilization

of various fundamental computing concepts (Wing, 2006). It is inherent in the computing

discipline that the solution to a software design problem should be correct, accurate, and

efficient (Denning et al., 1989).

Problem-solving: “A goal-oriented sequence of cognitive operations” (Anderson,

1980, p.257) to adapt to internal or external demands (Heppner & Krauskopf, 1987).

A programming paradigm: Any approaches that allow programmers to organize

computer programming codes so they could focus on solving the problems instead of

tinkering with the hardware details (Lee, 2014).

The imperative programming paradigm: An approach to organize computer

programming codes where the program is decomposed into several manageable pieces in

the forms of sub-programs or sub-routines (Lee, 2014).

Object-oriented programming paradigm: An enhancement of imperative

programming paradigm which allows not only the sub-routine organization but also the

 9

structuring of a computer program by defining classes of objects that have specific

properties and functions (Lee, 2014).

Dissertation Outline

This dissertation is organized into six chapters. Chapter I introduces the

background, motivations, purpose, research design, assumptions, and limitations of the

study. In Chapter II, relevant literature is elucidated to establish a solid basis for the

study. The constructs and contexts included in the chapters are self-regulated learning

with particular focus on task interpretation, CS, CSE, and software design problem-

solving. Chapter III is dedicated to discuss the prior pilot study during the 2016 Research

Experience for Undergraduate (REU) program. In this chapter, the lessons learned from

the pilot study are reported including the plan to incorporate them into the dissertation

study. Chapter IV presents the research methodology and design. In this chapter, the data

collection and analysis methods are explicated with its justification. In Chapter V, the

participants and findings are discussed to answer the research questions. Chapter VI

presents the conclusion of the study, its implication, and recommendation for future

studies.

 10

CHAPTER II

LITERATURE REVIEW

Introduction

The purpose of this literature review is to establish a firm foundation for this

dissertation research by elucidating the relevant concepts, contexts, and studies based on

available literature. In more specific, the objectives of this chapter are to:

1. Describe computer science as a discipline, computer science education, and

programming and object-oriented design.

2. Describe the self-regulated learning (SRL) framework with an emphasis on

task interpretation, monitoring, and their assessment methods.

3. Describe students’ SRL during programming and object-oriented design.

This chapter consists of six sections, which are the introduction, biases and

corrective methods, computer science education, task interpretation and monitoring

strategies in self-regulated learning, self-regulation during programming and object-

oriented design, and summary. The introduction section explicates the purpose and

objectives of this literature review. The biases and corrective methods section describes

potential biases and methods to minimize them. The computer science (CS) and its

education section describes the research context, which includes the discipline of

computer science, computer science education, and programming and object-oriented

design. Since it is essential to understand the contexts surrounding a self-regulation

activity (Butler et al., 2015; Cartier & Butler, 2004), understanding CS as a discipline is a

significant step towards understanding students’ self-regulation during the software

 11

design endeavor (i.e., the programming and object-oriented design). The self-regulated

learning section elucidates the self-regulation framework, task interpretation and

monitoring, and assessment methods. The section after that discusses the CS students’

self-regulation during programming and object-oriented design. Last, a summary of this

chapter is provided.

Biases and Corrective Methods

Biases occur when people use heuristics approaches to solve a complex problem

(Cleaves, 1987), including when synthesizing literature for research purpose (Hamp-

Lyons & Mathias, 1994; Petticrew & Roberts, 2006). Petticrew & Roberts (2006) stated

that literature reviews tend to outline “highly unrepresentative samples of studies in an

unsystematic and uncritical fashion” (p.5), which usually caused by the author’s leniency

to favors information and studies that coherent with the author’s beliefs and experiences

(Cleaves, 1987). There are six type of possible biases in this literature review, which are

anchoring, availability, representativeness, internal coherence, selection, and information

biases. Table 2-1 presents the definition of these biases based on Cleaves (1987).

Following Cleaves (1987)’s suggestions, three behavioral methods were

employed to lower these biases, which were focusing, decomposition, and logic

challenge. Focusing means “structuring both the task and the interviewing environment

so that specific biases are identified and corrected as they become symptomatic”

(Cleaves, 1987, p.164). The results of this approach are the purpose and objectives of this

chapter. The decomposition means breaking down relevant concepts into sub-concepts

and their relations to make it more manageable when identifying and synthesizing

 12

relevant literature (Cleaves, 1987). The concept map presented in Figure 2-1 is the result

of employing this corrective method. Last, the logic challenge means exhorting the

researcher to provide a justifiable reason for including or excluding some concepts or

literature (Cleaves, 1987). The researcher employed this method by discussing the study

and its justification with peers (i.e., other graduate or engineering education students) and

experts (i.e., engineering education professors or a librarian).

Six scholarly databases were used to find relevant academic publications, which

are EBSCO, Science Direct, ACM, IEEE Xplore, ERIC, and Google Scholar. The goal of

a literature search is to identify original publications, which is the documents “that was

written by the individuals who actually conducted the research study or who formulated

the theory or opinions that are described in the document” (Gall, Gall, & Borg, 2007,

Table 2-1.

Possible Biases in this Literature Review

Bias Description
Anchoring A tendency to start a discussion from the most natural starting point

according to the author’s perspective.

Availability A tendency to treat available and accessible information as the
truth, which also means if the author could not find the information,
then it does not exist.

Representativeness A tendency to assess an event or risk’s probabilities based on its
resemblance to the author’s experiences, rather than using statistical
means.

Internal coherence A tendency to favor information that is consistent with the author’s
beliefs.

Selection A tendency to limit the information based on what the researcher
has experienced or expects to occur.

Information A tendency to give more weight to concrete information which
consistent with the researcher’s beliefs.

 13

p.98). There are three central topics, which are the computer science, computer science

education, and self-regulated learning. In finding the relevant publications, the researcher

used these keywords: self-regulated learning, metacognition, and self-regulation, task

interpretation, task value, task demand, cognitive strategies, computer science education,

computer science, programming design, and programming. Further, the researcher also

used the combination of above keywords for narrowing the search results. Last, the

researcher also explored publications that cited the selected literature using the “cited-in”

feature in Google Scholar.

Computer Science Education

This section discusses computer science as a discipline, computer science

education (CSE), and the programming and object-oriented design. Being aware of CS as

Figure 2-1. Relevant concepts in this literature review.

 14

a discipline is a major step towards understanding computer science education and the

complexity of a programming endeavor (Gal-Ezer & Harel, 1998).

Computer Science

Computer science is a discipline which systematically studies “algorithmic

processes that describe and transform information: their theory, analysis, design,

efficiency, implementation, and application” (Denning et al., 1989, p.12). Since it was

born in the early 1940s, this discipline affects and gets affected by the rapid ever-

changing technologies. This discipline encourages the development of innovative

technologies, and in return, these technologies contribute to the new body of knowledge

in CS. Nevertheless, its core concepts remain intact, which is the integration of

mathematics, science, and engineering applied knowledge (Denning et al., 1989).

Computer scientists use the theory of mathematics to develop notations and conceptual

frameworks to represent virtual objects’ behaviors and the relationships among them

(Denning, 2003). They use science to explore system and architecture models and test

whether the models could accurately predict the new behaviors (Denning, 2003).

Computer scientists use engineering knowledge to develop “computer systems that

support work in given organizations or application domains” (Denning, 2003, p.409).

There are numerous existing and ongoing debates about computer science as a

discipline (Clark, 2003). One of the discussion topics is regarding computing principles,

which is also commonly known as computational thinking. Wing, (2008) defines

computational thinking as “an approach to solving problems, designing systems and

understanding human behavior that draws on concepts fundamental to computing”

 15

(p.3717). According to Grover & Pea (2013), most academicians agreed on nine

computing principles. Table 2-2 presents the definition of each computing principle. The

nine computing principles are about ideas and conceptualization, not programming and

artifacts (Wing, 2006). The discipline of CS is not only concerned with human-made

information processes but also their cognitive enterprise (Denning, 2003).

It is clear that the digital computer and computer programming play a significant

role in this discipline (Denning, 2003). However, it is inappropriate to equate CS with

Table 2-2.

The Nine Computing Principles

Principle Definition
abstraction and

pattern generation
Identifying, populating, and organizing characteristics from an
entity into a set of essential characteristics (TechTarget, n.d.;
Wing, 2008).

systematic
processing of

information

A step-by-step agent-dependent instruction for processing a set of
inputs into desired unambiguous output, which is also known as
algorithm (Denning, 2003; Wing, 2008).

symbol systems and
representations

Develop a model to store and express the characteristics and
behaviors of an entity in an efficient way (Denning, 2003).

algorithmic notion
of flow control

No precise definition found.

structured problem
decomposition

Subdividing a computational problem into a simpler, more
manageable sub-problems (Lee, 2014)

iterative, recursive,
and parallel thinking

Identifying, populating, and organizing a set of behaviors that can
repeatedly be performed or at the same time (Computer Hope,
n.d.).

conditional logic Identify a set of criteria to allow or disregard the execution of an
instruction set (Computer Hope, n.d.).

efficiency and
performance

constraint

Identifying potential efficiency and performance issues, and
developing a method to enhance them (Denning et al., 1989)

debugging and
systematic error

detection

Evaluate and improve the program’s accuracy, consistency,
performance, and efficiency under various conditions (Denning,
2004; Denning & Freeman, 2009).

 16

programming (Denning et al., 1989). The Joint Task Force on Computing Curricula

(2013) in their 2013 CS curriculum guideline for undergraduate program identify 18

bodies of knowledge of computer science, where some of them do not solely focus on

programming, for example, Discrete Structures, Human-Computer Interaction, Operating

Systems, and Social Issues and Professional Practice.

As an academic discipline, computer science is a hard and applied discipline

(Clark, 2003). It is a hard discipline because CS has a body of knowledge that all

computer scientists subscribe to, which is the 18 bodies of knowledge. The CS is an

applied discipline because it is “pragmatic and concerned with the creation of products

and techniques” (Clark, 2003, p.75). The computer scientists always find a way to offer

innovations for automating routine works and supporting the professionals in various

domains (Denning, 2004; Denning et al., 1989). It is important to note that academy and

industry do not necessarily have the same view about CS as a discipline (Clark, 2003). In

this document, the researcher only focused on the academic perspective of CS.

Computer Science Education

In this computing-based era, CS skills are as fundamental as reading, writing, and

arithmetic (Miller et al., 2013). It is important to note that computer science skills do not

refer to the ability to use a computer and its applications (Gal-Ezer & Harel, 1998), such

as a document processor, a spreadsheet developer, and an Internet browser; CS skills and

computer literacy are not the same. Computer science skills refer to the ability to use the

nine computing principles (Grover & Pea, 2013; Wing, 2006, 2008). Consequently, the

ultimate goal of CSE is enabling learners to apply these principles to any problems

 17

(Senske, 2011) by elucidating the relationship between computer applications and

computer systems (i.e., hardware and operating systems) (Denning, 2003).

It is vital for CS educators to understand the nature of CS as a discipline and its

relationship with other disciplines (Gal-Ezer & Harel, 1998), and CS-related instructional

arts (Guzdial, 2008). They need to know extensive CS knowledge and skills, and have the

ability to “convey this knowledge to others correctly and reliably, to teach the said skills,

to provide perspective, and to infuse students with interest, curiosity, and enthusiasm”

(Gal-Ezer & Harel, 1998, p.77). They must train CS professionals who are skilled,

responsible, and exercise the ethics and standard practices set by the professional

societies, such as the Association for Computing Machinery (ACM), and Institute of

Electrical and Electronics Engineers (IEEE) (Denning, 2001, 2003).

Cross-disciplinary research is not foreign in CSE, especially for assessing

students and instructors’ perspective to enhance teaching and learning methods

(Berglund, Daniels, & Pears, 2006; Diethelm, Hubwieser, & Klaus, 2012). In this study,

the researcher only focused on the students’ perspective and cognitive behavior related to

programming. The role of programming is important in the CSE. Most people agree that

knowing how to program is essential for studying CS concepts and principles (Gal-Ezer

& Harel, 1998; Lye & Koh, 2014; Wing, 2006, 2008). Studies have found that students’

first experience with computer programming in college influences their persistence in this

discipline (Beaubouef & Mason, 2005; Kinnunen & Malmi, 2006; Kori et al., 2015).

Numerous CS institutions reported a dropout rate of 30% to 50% (Beaubouef & Mason,

2005; Howles, 2007; Kori et al., 2015), including USU CS department (Office of

 18

Analysis, Assessment, and Accreditation, Utah State University, 2016). Studies found

that one of the major dropout reasons is the immense challenges in learning computer

programming during students’ first year (Anderson & Skwarecki, 1989; Guzdial et al.,

2015; Howles, 2007; Kori et al., 2015). Leiviskä & Siponen (2013) believe that teaching

self-regulation skills to students as early as possible might tackle this problem.

According to Gal-Ezer & Harel (1998), some programming concepts are hard to

teach to and be absorbed by the students, such as control structure (i.e., conditionals

logic, repetitions, and recursion) and the idea that a program is rigid “yet is supposed to

deal with many different inputs of varying sizes” (p.83). Unfortunately, many first-year

CS students enter the program due to their interest in using computer applications and

playing games, which has little use in their study (e.g., programming) (Clark, 2003;

Howles, 2007). The limited experiences with programming make students feel an

excessive burden to understand and applied various CS concepts correctly, which then

may drive them to cheat and plagiarize (Denning, 2004; Howles, 2007). Naturally, many

CS educators tried to tackle this problem, either by enhancing instructional practices

(e.g., through active learning) or developing computer-based instructional tools (Adams,

2007; Barak, Harward, Kocur, & Lerman, 2007; Briggs, 2005; Carnegie Mellon

University, n.d.; Gonzalez, 2006; Krauss, 2008; MIT Media Lab, n.d.; Resnick et al.,

2009; Ruthmann, Heines, Greher, Laidler, & Saulters, 2010; Whittington, 2004; L.

Williams, Wiebe, Yang, Ferzli, & Miller, 2010).

Brennan & Resnick (2012) organizes the challenges in learning to program into

three categories, which are concept, practice, and perspective. Understanding various CS

 19

concepts become harder if the learners do not have an effective cognitive model of a

computer (Ben-Ari, 1998). Without it, learners tend to construct their own rules, which

are not part of the programming language (Lischner, 2001), for example assuming the

variable initial assignment as a constant. Learners’ misunderstanding usually worsens by

their attempt to memorize, rather than to put more effort comprehending, the concepts

(Whittington, 2004). Regarding the computing practice, Lischner (2001) reported that

many first-year students struggle to study outside of the classroom during their transition

from high school to college, which suggests many first-year students do not spend

adequate time learning to program independently. On the other hand, intensive

interaction with a computer discourages the students who prefer social or reflective

learning style (Ben-Ari, 1998). Related to perspective, with the emergence of various

computer-assisted educational tools, some students might think their competency in using

these tools is reflecting their programming expertise, which is not the case (Wing, 2008).

Programming and Object-oriented Design

 “A person does not really understand something until he can teach it to a

computer [i.e., write a program]” – Knuth

A computer program is “an abstract symbol manipulator which can be turned into

a concrete one by supplying a computer to it” (Dijkstra, 1989, p.1401). Computer

programming is a process of developing computer programs using any programming

language and tools (Lee, 2014). Therefore, a programming activity concerns with the

“interplay between mechanized and human symbol manipulation” (Dijkstra, 1989,

p.1401). Programming involves translating a statement or way of thinking in the natural

 20

language into a corresponding entity in another language (Renumol, Janakiram, &

Jayaprakash, 2010). In other words, programming is a problem-solving activity. There

are various programming languages at each level (i.e., machine, intermediate, and higher-

order levels), each has its unique strengths and limitations (Denning, 2003). For the

higher-order level, for example, Java™ and C/C++ programming languages are available

to use. Out of the three levels, machine programming language is the most difficult to

understand (Eden, 2007). Consequently, computer scientists should develop their skill to

select the best programming language for solving a specific problem since it may affect

the program’s performance (The Joint Task Force on Computing Curricula, 2013).

Further, a computer scientist must pay attention to the algorithm’s correctness and

efficiency (Gal-Ezer & Harel, 1998). Having an ability to write a computer program does

not necessarily make someone a computer scientist or a programmer (Clark, 2003).

Programming languages help programmers to organize their code, so they can

focus on solving the problem (Lee, 2014). This organizational framework is also known

as the programming paradigm (Dictionary.com, n.d.; Lee, 2014). There are various

programming paradigms, and some of them share common concepts and ways of

thinking (Toal, n.d.). Two of the commonly used paradigms are imperative and object-

oriented paradigms. In the imperative paradigm, programmers need to explicitly describe

the required steps (i.e., algorithm) that the computer needs to follow to get the desired

solution (Computer Hope, n.d.). This paradigm allows programmers to decompose a

complex problem into smaller sub-problems and express the solution of each sub-

problem in a subprogram or procedure (Lee, 2014). The object-oriented programming

 21

(OOP) paradigm is an extension of the imperative paradigm, which allows programmers

to organize their code into classes of objects and procedures (Lee, 2014). The

programmers need to consider the relationship and accessibility among objects. The

program structure, mechanics, data representation, and algorithm are equally important

(Denning, 2003). The solution for the third and fifth problems in Appendix M is an

example of an OOP and imperative programming respectively.

Despite the level of complexity and structure differences, most programming

problems have multiple solutions, for example, the fourth problem in Appendix L and

Appendix M. To solve such problem, the learners need to understand the contexts

surrounding the problem, identify goals and constraints, produce artifacts, and restructure

the problem. The programmer must consider the solution’s simplicity, accuracy,

efficiency, usability, software and hardware reliability, robustness, evolvability (i.e., easy

to modify and scale), and security (Clark, 2003; Denning, 2003, 2004). In other words,

programming is a design endeavor (Jonassen, 2000, 2010).

Task Interpretation and Monitoring in Self-Regulated Learning

All effective learner deliberately utilizes judgmental and adaptive SRL strategies

(Butler & Winne, 1995). Consequently, students who are capable of self-regulating

themselves tend to achieve academic success (Butler & Cartier, 2005; Coutinho, 2007)

and produce a quality design product (Lawanto, Butler, Cartier, Santoso, Goodridge, et

al., 2013). Furthermore, SRL has a positive influence towards the problem-solving

endeavor (Lawanto, 2010; Lawanto & Johnson, 2009; Pintrich, 2002). Inadequate self-

regulation engagements may result in a fruitless problem-solving attempt (Schoenfeld,

 22

1983). Therefore, understanding students’ self-regulated learning is an important research

endeavor. In this section, SRL framework, task interpretation strategies, monitoring

strategies, and SRL assessment methods are discussed.

Self-Regulated Learning

Self-regulated learning is a situated and iterative goal-directed learning process

that involves complex and dynamic activities (Butler & Cartier, 2005; Butler et al., 2015;

Butler & Winne, 1995). It is important to understand the complex process of learning to

appreciate SRL as a learning process framework. The Oxford University Press (2008)

dictionary defines learning as an endeavor to gain skills or knowledge in a specific

activity or subject. The proponents of behaviorism, cognitivism, and constructivism view

learning differently (Ackermann, 1996; Bransford, Brown, & Cocking, 1999; Bruner,

1966; Ertmer & Newby, 2013; Mayer, 1996; Ormrod, 2007; Skinner, 1988). Learning is

also affected by culture (Cobb, 1994), emotions (Artino & Stephens, 2007; Forgas, 2000;

Lenox, Woratschek, & Davis, 2008; Peixoto, Mata, Monteiro, Sanches, & Pekrun, 2015;

Pekrun & Perry, 2014; Sinatra, Broughton, & Lombardi, 2014), and motivations.

(Pintrich, 2003; Ryan & Deci, 2000; Vansteenkiste, Lens, Elliot, Soenens, & Mouratidis,

2014; Wigfield & Eccles, 2000). The SRL tries to capture these influencing factors in a

single framework (Butler & Cartier, 2005; Zimmerman, Heart, & Mellins, 1989).

This study defines learning as recursive cognitive processes of understanding

stimulus (e.g., contents, situations, or problems) to select the most suitable responses, that

is affected by one’s motivation, belief, and past experiences. This study views learners as

 23

“goal-directed agents who actively seek information” (Bransford et al., 1999, p. 10) and

construct their own knowledge (i.e., facts, ideas, and beliefs) (Ben-Ari, 1998).

There are at least five SRL models that have been introduced since 1996 by

researchers, such as Zimmerman, Winne, Hadwin, Pintrich, Butler, and Cartier (Santoso,

2013). This study uses Butler & Cartier’s model (BCM) for two reasons. First, BCM

emphasizes the importance of contexts (i.e., facts and conditions) surrounding the self-

regulation activities (Butler & Winne, 1995). The emphasis on contexts makes BCM

applicable in any learning situation, such as medical and reading (Brydges & Butler,

2012; Butler & Cartier, 2004a, 2005; Butler, Cartier, Schnellert, Gagnon, & Giammarino,

2011; Cartier & Butler, 2004). Second, the BCM has been used to frame students’ self-

regulation while engaged in learning to program using an interactive learning tool

Figure 2-2. Butler and Cartier’s self-regulated learning model.

 24

(Santoso, 2013), and in engineering design process (Febrian, Lawanto, & Cromwell,

2015; Lawanto, 2010; Lawanto, Butler, Cartier, Santoso, Goodridge, et al., 2013;

Lawanto, Butler, Cartier, Santoso, & Goodridge, 2013).

As illustrated in Figure 2-2, the BCM describes SRL as the interaction between

the programming and object-oriented design environment, the learners, and learner’s

engagement with the environment. In this study, the learning environment comprises of

programming and object-oriented design tasks, available resources, available supports,

assessment mechanisms, and external feedbacks (e.g., from the instructors or peers). The

learners refer to their experiences, strengths, challenges, metacognition, knowledge, and

beliefs. The learners’ engagement with the environment involves their iterative cycle of

strategic action (or a self-regulating process), emotions, and motivations. The self-

regulating process encompasses task interpretation, planning, enacting strategies,

Table 2-3.

Definition of All Strategic Actions in Butler and Cartier’s SRL Model

Strategic Action Definition
Task interpretation

(TI)
Students’ understanding about relationships between task
characteristics and associated processing demand (Butler, 1998).

Planning strategies
(PS)

Selecting appropriate cognitive and metacognitive strategies for
completing any tasks (Butler & Cartier, 2005).

Enacting strategies
(ES)

Students’ cognitive activities employed as they engage in their
work executing the design tasks, as planned, monitored, and
adjusted through metacognitive activity (Lawanto, Butler, Cartier,
Santoso, Goodridge, et al., 2013).

Monitoring (M) Students’ activities of self-monitor progress, goals, plans, or
strategies (adjusting approaches to learning) (Butler & Cartier,
2005).

Adjusting (A) Students’ activities of adjusting goals, plans, or strategies based on
self-perceptions of progress or feedback (Butler & Cartier, 2005).
This activity is always precedes by monitoring.

 25

monitoring, and adjustment activities; see Table 2-3 for definition. These five strategic

actions are dynamically interacting with each other in each learning episode. This study

focused on students’ task interpretation and monitoring strategies.

Task Interpretation and Monitoring

Task interpretation refers to students’ understanding of the relationship between

the task and required cognitive processes to complete it (Butler, 1998). It is the “critical

first step in SRL” (Butler & Cartier, 2005, p.3) because it determines students’ selection

of goals, objectives, criteria for success, and required cognitive strategies. Butler &

Cartier (2004b) argues that students’ metacognitive knowledge about the task, including

the typical task purpose, structure, and problem-solving approach, influences the quality

of their task interpretation. According to Hadwin (2006), task interpretation includes

socio-contextual, explicit, and implicit aspects; see Figure 2-3 for the model. The socio-

contextual aspect refers to learners’ awareness about the discipline-related knowledge,

values, skills, and expertise (Hadwin et al., 2009). The socio-contextual awareness guides

learners to select effective domain-specific strategies and be experts in their field (Butler

& Winne, 1995; Hadwin et al., 2009). The explicit aspect of task interpretation refers to

the “information that is overtly presented in task descriptions and discussions” (p.2)

which includes the task goal(s), requirements, constraints, and instructions or standards to

be followed (Hadwin et al., 2009). The implicit aspect of task interpretation refers to the

“information students might be expected to extrapolate beyond the assignment

description” (p.2) which includes relevant concepts, knowledge, and cognitive processes

(Hadwin et al., 2009). Since understanding a task is the first step of a self-regulation

 26

activity, learners’ misinterpretation in one of the task interpretation aspect might inspire

them to select and employ inappropriate strategies for completing the task (Butler, 1995).

Rivera-Reyes (2015) reported that students have a better task understanding of

laboratory activities after they had completed the task. This finding suggests that

throughout their engagement, students monitor and update their understanding of the

given task. Monitoring activity refers to students’ self-assessment of their self-regulating

process and progress towards achieving the goals (Butler & Cartier, 2005). Students who

do not have relevant knowledge and skills on the task at hand will not be able to

accurately and efficiently self-monitor their thought process (Isomöttönen & Tirronen,

2013). When students perceive an obstacle during their learning endeavor (e.g., missing

information or lengthy process), they will self-evaluate their progress and reassess their

success probability if they continue their effort, adjust their strategies, or both (Carver &

Scheier, 1990). It is possible that learners use inappropriate parameters when self-

evaluating their learning endeavor, which then drives them to select and employ the

wrong strategies (Butler & Winne, 1995). Monitoring failure might also occur when the

learners were overwhelmed with the task at hand (Butler & Winne, 1995).

Figure 2-3. Hadwin’s task interpretation model.

 27

Assessing Students’ Self-Regulation

Research on students’ self-regulation focuses on assessing students’ awareness

and regulatory responses in an academic environment (Pintrich, 2004; Zimmerman et al.,

1989). According to Alexander et al., (2009), in any knowledge acquisition efforts,

learners always consider four dimensions of learning. They are (1) the subject to learn;

(2) the best place to learn about the subject; (3) the people who can help the learners

mastering the subject; and (4) the most appropriate time to learn about the subject.

Therefore, understanding the contexts surrounding a learning endeavor is essential.

Self-regulation is dynamic, multi-directional, and complex in nature (Butler et al.,

2011). It might occur at anywhere and anytime (Alexander et al., 2009). Therefore, it is

crucial to design a study that could capture students’ knowledge development and

cognitive strategies in each learning episode (Butler & Cartier, 2005; Winne & Perry,

2000) and utilize multiple assessment tools (Dinsmore, Alexander, & Loughlin, 2008).

The common types of SRL assessment tools are a self-report survey, journal, observation,

thinking aloud, and interview (Dinsmore et al., 2008). Butler & Cartier (2005) advise that

although self-report instruments provide insights into students’ learning engagement, they

are not the best methods for assessing learners’ actual behaviors. Related to the thinking

aloud method, Jones & Idol (2013) noticed that learners might have a challenging time

verbalizing their thought process due to their inability accessing relevant information, the

lack of knowledge, and lack of awareness of their thinking complexity. It is also possible

that learners have mastered the required skills to solve the problem which prevents them

 28

from communicating their thought process verbally (Johnson, 2008). Additionally, self-

explanation might help the learners to self-regulate themselves better (Chi et al., 1994).

Self-Regulation during Programming and Object-Oriented Design

The majority of CS students are visual, sequential, sensing, and reflective learners

(Alharbi, Henskens, & Hannaford, 2012). They like to utilize visual representations,

acquire knowledge in a linear fashion, deal with facts and details, and monitor their

learning progress periodically (Felder & Soloman, n.d.). Students who have high intrinsic

motivations and task value (i.e., an appreciation towards the task relevancy) are more

likely to use more SRL strategies and performed better in programming (Bergin et al.,

2005). Additionally, Kumar et al. (2005) reported that students’ SRL engagement

positively influence their programming performance. Furthermore, students who employ

discipline-specific SRL strategies are more successful in programming compared to their

counterparts (Falkner et al., 2014).

Computer scientists engage in various strategies when developing, understanding,

and debugging a program (Shaft, 1995). Havenga (2015) reported that students use the

nouns and verbs in the task description as cues to understand the problem. Falkner et al.,

(2014) reported that students used various computing principles during a programming

venture, and they believe that the structured problem decomposition is a critical CS skill

but hard to master. Interestingly, some students are incapable of aligning their problem-

solving goals with the assessment criteria (Falkner et al., 2014). This finding suggests

that students were unable to employ various task interpretation strategies accurately

during the programming endeavor.

 29

In object-oriented programming, Havenga (2015) reported that students tend to

have “fragmented knowledge and misconceptions of the object-oriented approach”

(p.142) and insufficient implementation skills. Interestingly, they find that instead of

focusing on acquiring the necessary knowledge first, students tend to continue engaging

in programming activity and get frustrated. This report suggests that students were unable

to utilize self-regulation skills during the object-oriented programming process fully.

Although CSE research is not uncommon (Berglund et al., 2006), the number of

literature on CS students’ self-regulation while engaged in programming is limited.

Summary

Although the demand for CS Professional is increasing (Hambrusch et al., 2009;

Lacey & Wright, 2009), a large number of first-year students are dropping out due to the

immense challenges in learning programming (Anderson & Skwarecki, 1989; Guzdial et

al., 2015; Howles, 2007; Kori et al., 2015). Most of these challenges are related to CS

concepts, practices, and perspectives (Brennan & Resnick, 2012). Exposing students with

various self-regulation skills could help ease their learning process (Leiviskä & Siponen,

2013) and improve their programming performance (Bergin et al., 2005; Kumar et al.,

2005). Falkner et al., (2014) reported that CS students are unable to align their problem-

solving goals with the assessment criteria, which suggests inaccurate task interpretation

efforts. Fortunately, students’ task understanding evolved throughout the learning

endeavor (Rivera-Reyes, 2015). In other words, students monitor their task understanding

and approach throughout the learning enterprise (Isomöttönen & Tirronen, 2013).

 30

CHAPTER III

PILOT STUDY

Introduction

“Do not take the risk. Pilot test first.” - De Vaus (2013, p.48).

The term pilot study means a “small scale version, or trial run, done in preparation

for the major study” (Polit, Beck, & Hungler, 2001, p.467), which is aimed to “answer a

methodological question(s) and to guide the development of the research plan” (Prescott

& Soeken, 1989, p.60). Although the pilot study is highly encouraged in quantitative

research (De Vaus, 2013), it is also beneficial for qualitative research (Kim, 2011). A

pilot study can unravel potential problems in the research design, so it can increase the

chance to make the primary study successful (van Teijlingen & Hundley, 1998).

The purpose of this pilot study is to train the researcher in as many elements of

the research processes as possible. Specifically, the objectives of this pilot study are to

develop and assess: (1) the success rate of the proposed recruitment approach; (2) issues

of the proposed qualitative instrument; (3) the appropriateness of the data collection

protocol (4) issues of the data analysis method; and (5) the suitability and applicability of

the member checking approach.

The researcher utilized the 2016 Research Experience for Undergraduates (REU)

program funded by the National Science Foundation (NSF) in the Department of

Engineering Education at Utah State University (USU) to conduct the pilot study. Two

REU students were assigned to work on this project under Dr. Lawanto’s and the

researcher’s supervision. In this chapter, the researcher describes the 2016 REU program,

 31

and then the approach and lessons learned regarding the participant recruitment method,

qualitative instrument, data collection method, data analysis method, and member

checking method. At the end, a summary of this chapter is provided.

The 2016 Research Experience for Undergraduates

This REU site program is sponsored by the National Science Foundation to

expose undergraduate students from all over the U.S. to engineering education research

during the summer (Engineering Education Department Utah State University, 2016).

Interested undergraduate students were expected to fill out an application form. In 2016,

eight students were selected from 49 applicants to work in four different engineering

education research projects, and two students were assigned to work on a specific project.

Since most students did not have prior experience in engineering education research, the

primary supervisors’ role was providing mentorship to help them navigate through the

research process successfully.

Table 3-1.

Summary of the Participants’ Demographics

Category DanielO Depend George

Gender Male Male Male

Age 19 23 36

Ethnic Hispanic Asian-Pacific
Islander

Caucasian

Academic Level Sophomore Senior Sophomore

GPA 3.36 3.61 2.82

Introduction to CS Grade A- A A

Programming hours 300 400 100

 32

The goal of this REU project was to describe computer science (CS) students’

self-regulation while engaged in programming. This ten-week research project was a

qualitative case study that involves working in participant recruitment, data collection,

data transcription, SRL coding, strategies coding, member checking, and reporting;

Appendix B presents the research schedule. The research participants were three

undergraduate CS students at USU, and their demographics were presented in Table 3-1.

Before the data collection, each participant signed the REU IRB consent and selected

alias to protect their identity. At the end of the project, each participant received a

personalized self-regulation report and a $25 Amazon gift card.

Participant Recruitment

The participant recruitment method in this study was convenient and purposeful

because all participants were from USU CS department and not all of them could become

research participants. To be recruited, the candidates had to have basic programming

knowledge, which proven by completing the Introduction to Computer Science course

with C- or better, and be willing to dedicate three hours for participating in various

research activities (i.e., data collection and member checking).

There were only two courses offered by the CS department during summer 2016,

the Introduction to CS and internship courses. Unfortunately, students who enrolled in

both courses were not suitable research participants. The Introduction to CS course

students were freshmen who did not know how to code correctly, and the internship

course students were expected to come to the office during the working hours. Therefore,

the best way to contact the potential participants was using the CS department’s

 33

broadcasting email system. The procedure to use this system was straightforward. The

researcher only needed to send the recruitment information and asked the CS department

officer to forward it to all CS students. The recruitment publication contained the project

description, contact information, compensation, and participation requirements (see

Appendix C). After three days, some students asked about course requirements. There

were nine students applied, and the first four suitable applicants were selected. Then, all

participants were asked to fill out a demographics survey (see Appendix D).

Unfortunately, only three participants showed up during the data collection.

Lesson Learned

The email recruitment method was an effective approach to recruit USU CS

students. Therefore, it must be utilized for the dissertation study. The recruitment

publication must be improved by adding course and knowledge requirements.

The Qualitative Instrument

The qualitative research instrument consists of five programming questions. The

researcher selected and modified five programming problems from available online and

offline resources, which are Coding Bat (http://codingbat.com/), Universitas YARSI, and

the Head First Design Pattern book by Freeman, Bates, Sierra, & Robson (2004). Coding

Bat is an online programming practice environment for Java™ and Python programming

languages. This online application was designed and developed by Nick Parlante, a CS

teaching faculty at Stanford, as an instructional tool for homework, self-study practice

resources, lab exercises, and live lecture examples (Parlante, n.d.). Three problems from

Coding Bat were selected and reformatted for the paper-and-pencil problem-solving

http://codingbat.com/

 34

approach. Herika Hayurani provided sixteen programming problems. She is a faculty

member in the Information Technology College at Universitas YARSI who specializes in

delivering programming-related courses. One question, the last standing man, was

selected because it allows computer scientists to provide multiple solutions using the

imperative or object-oriented programming paradigms. One problem was developed

based on the Head First Design Pattern book to enable computer scientists exhibiting

their object-oriented design skills.

The programming problems were then tested to two other REU students and three

research participants; all were video and audio recorded. All testers agreed that the

problems were challenging and intriguing. We observed that some testers experienced

difficulty when solving the third (i.e., Monopoly in the Middle-Ages) and fifth (i.e., The

Table 3-2.

Major Changes made in the Qualitative Instrument

No. Problem Title Major Changes Made
1 Locating the Errors • Changed the title numbering format.

• Changed the title from “Awareness of Trivia” to
“Locating the Errors.”

• Changed the term “logic errors” to “errors.”
• Added an introduction story.

2 Outputs Prediction • Changed the title numbering format.
• Decreased the numbers of test case from seven to four.
• Added an introduction story.

3 Monopoly in the
Middle-Ages

• Changed the title numbering format.
• Removed the last problem constraint because it can be

inferred from the introduction story.

4 Algorithm Generation • Changed the title numbering format.
• Added an introduction story.

5 The Last Standing Man • Changed the title numbering format.
• Clarified the problem algorithm.

 35

Last Standing Man) problems, and another tester commented on the unusual problem-

numbering mechanism. The tester who was unable to answer the fifth question gave up

after fifteen minutes and explained that he usually works on a challenging problem for

few days to give himself a chance to see the problem from a different point of view. The

pilot testing revealed that the qualitative instrument suffered from unbalanced problem

length, clarity, grammar, and numbering issues. Revisions were conducted to address

these issues, which are summarized in Table 3-2. The final qualitative instrument is

available in Appendix L.

Some testers’ difficulties in solving the third and fifth problems encouraged the

assessment of problems’ characteristics and difficulty levels. The problem characteristics

refer to the problem structure, complexity, and required knowledge and cognitive skills

(based on the Bloom’s Taxonomy) to answer it. When assessing the problem

characteristics, Jonassen (2000) and Gronlund, Gronlund, & Waugh (2013) were used as

references. Appendix K presents all problems’ characteristics. On the other hand, eleven

people were asked to rate the problems’ difficulty from 1 to 10, where 1 means a very

easy problem and 10 means a very hard problem. The difficulty range was arbitrarily

selected. These people were CS professionals, instructors, undergraduate teaching

assistants, and undergraduate students. All problems’ difficulties are in the range of 2.30

to 6.88 on a 10-point scale. Based on this assessment result (see Appendix K), these

problems are suitable for CS senior students and can be solved within two and a half

hours. Therefore, the difficulties that experienced by some of the testers were not due to

 36

the problems characteristics and difficulty levels, but might be caused by participants’

lack of self-regulation strategies.

Lesson Learned

During the pilot test, the qualitative instrument was developed and improved.

Justifying the problem suitability is not easy, and requires in-depth analysis of the

problems (Carruthers & Stege, 2013), such as assessing the problems’ characteristics and

difficulty levels. This pilot test showed that the qualitative instrument was suitable for the

dissertation study.

Data Collection

The student investigators collected data from three participants. The data

collection process includes providing a brief description of the research project, signing

the IRB consent, providing general instruction, demonstrating thinking aloud, helping

participants to practice thinking aloud, addressing issues with participants’ thinking

aloud, and observing participants’ problem-solving endeavor while thinking aloud. Each

data collection process was expected to finish within two and half hours, and audio- and

video-recorded. Appendix E presents the scripts used for describing the research project

and demonstrating the thinking aloud method. The participants practiced thinking aloud

using the first and second problems. Throughout the data collection, the student

investigators used one of the prompts in Table 3-3 to remind the participants to think

aloud. They developed these prompts based on literature and videos related to the verbal

protocol (see Appendix B for their detailed research activities). We observed these

 37

prompts were effective as non-leading reminders. All participants completed the data

collection process in less than two and half hours.

During the data collection, the participants were provided with blank papers, a

pen, a pencil, two chocolates, a water bottle, and a can of soda. The chocolates and drinks

were provided in case they need to lower their anxiety with foods. We noticed that some

participants like to use the pen, while others like to use the pencil. Some of them like to

make marks on the problems, while others like to keep them intact. Some participants

also like to use many papers while thinking.

The data collection is a crucial process in research. A simple technical problem

could affect the accurateness and completeness of the research, and it might occur

anytime to anyone, before, during, and after the data collection process. During the pilot

study, two voice recorders were used as back up, and all collected data was uploaded

immediately to the network storages (i.e., research NAS and Box). The voice recorders

were useful because it enabled us to triangulate one of the participants’ missing

statement. The student investigators’ negative attitudes, such as seeming uninterested or

 Table 3-3.

Thinking Aloud Prompts

Prompts
What are you thinking?

Tell me what you are thinking.

What is your strategy or plan?

Please remember that we need you to say what you are thinking.

Why are you doing that?

 38

sounding condescending towards the participants, could also negatively affect the

participants’ behaviors.

Lesson Learned

This pilot study verified the effectiveness of the developed prompts, and that all

questions can be answered in two and half hours. It also demonstrated the importance of

maintaining the research equipment regularly, providing options to the participants,

having a secondary recording, backup research data to network storages, and being aware

of our body languages. Therefore, thinking aloud reminder prompts will be used, and best

practices will be exercised in the dissertation study. Additionally, the researcher

recognized that other qualitative instruments need to be developed including the problem-

space map for tracking, initial task understanding open-ended survey for assessing

participants’ initial task interpretation, and post-problem-solving interview for assessing

the changes in participants’ task understanding and their justification.

Data Analysis

During the data collection, participants’ notes, answers, and problem-solving

endeavors were collected in the form of papers, video files, and audio files. The video

files were transcribed, and then segmented and coded based on the BCM strategic action

(see Table 2-3). After that, the student investigators interpreted the purpose each self-

regulation activity. It was not an easy task because each student investigator has a

different perspective. Additionally, sometimes the transcription could not capture the

contexts surrounding the self-regulation activity, which required them to triangulate it

 39

with the recorded videos and collected participants’ notes and answers. For example,

when solving Monopoly in the Middle-Ages problem, George said:

“All right, so space… so then the board is going to be a thirty not space but a

thirty value array, array of spaces, and space needs to include, so it is going to

have a Boolean value for… whether it is owned or not.”

The above excerpt could belong to either the task interpretation, planning, or enacting

strategy. From the recorded video, it was clear that the George was adding information to

Board and Space classes when he said that, which provided the missing context (i.e.,

adding information) and made enacting strategy as the most accurate code.

Lesson Learned

There are two valuable lessons learned. First, it is essential to understand the

contexts surrounding a self-regulatory activity by triangulation. Second, a specific data

analysis method for the dissertation study needs to be designed. Based on the first lesson

learned, it is essential to consult with the recorded video when discussing coding

differences in the dissertation study. Also, further transcriptions should incorporate some

contexts by describing participants’ activities, writing the first letter of related concepts in

capital letter, and using a dash (“-“) to indicate a quick focus change on participants’

cognition. For example:

All right, [writing it down] so Space-so then the Board is going to be a thirty-not

Space, but a thirty value Array-Array of Spaces, and Space needs to include-so it

is going to have a Boolean value for-whether it is owned or not.

 40

Member Checking

The purpose of member checking is to verify the credibility and accuracy of the

researcher’s interpretation from the participants’ point of view (Creswell, 2012). In this

pilot study, the participants were asked to review and give recommendations to improve

the personalized SRL reports (see Appendix F). All participants agreed with their

personalized report and suggested to add a brief description of the problems that they

solved, a short comparison of their performance to others, and recommendations to

improve their problem-solving skills based on research.

Lesson Learned

Asking the participants to read and comment on the personalized SRL reports is a

good approach for assessing their perspective on the research results and interpretation.

All provided suggestions will be incorporated into the dissertation study’s personalized

SRL report.

Summary

This pilot study was conducted as one of the 2016 REU research projects, in

which goal was to describe computer science students’ self-regulation while engaged in

programming. Two undergraduate student investigators were assigned to this project, and

they involved in the data collection, data transcription, SRL segmentation and coding,

strategies coding, member checking, and reporting. Three USU computer science

students were recruited as research participants. Each participant completed all research

activities and received a personalized SRL report and a $25 Amazon gift card.

 41

In relation to the dissertation study, the researcher learned that the email

recruitment method was an effective approach to recruit CS students, and the recruitment

information must include course and knowledge requirements. After three revisions

during the REU project, the qualitative instrument is finalized. The problem-space maps

and data analysis method needs to be developed. Last, the personalized report for

member checking needs to be enhanced by adding a brief description of the problems, a

short comparison of the participant’s performance to others, and suggestions to improve

the participant’s problem-solving skills based on research.

 42

CHAPTER IV

RESEARCH DESIGN

Introduction

This chapter starts by reviewing the research questions which drove the

dissertation study. After that, the researcher’s positionality in this study is described and

then followed by the discussion of the chosen methodology to answer these research

questions. The chapter then continues by explicating the institutional review board

application, research method, research participants, qualitative instrument, data collection

procedure, and data analysis method.

Research Questions

Educational research on students’ self-regulation is necessary because studies

found that self-regulated learning (SRL) positively influences students’ academic

achievement (Butler & Cartier, 2005; Coutinho, 2007) and design quality (Lawanto,

Butler, Cartier, Santoso, Goodridge, et al., 2013). Additionally, teaching self-regulation

skills as early as possible might increase students’ persistence in the computer science

(CS) department (Alexander et al., 2009). Student retention is one of the fundamental

problems in computer science (Ambrosio et al., 2012; Beaubouef & Mason, 2005;

Howles, 2007; Kori et al., 2015) and becomes more crucial since the demand for CS

professionals is growing (Lacey & Wright, 2009). Most students drop out between the

first and second year due to the immense challenges while learning computer

programming (Anderson & Skwarecki, 1989; Beaubouef & Mason, 2005; Guzdial et al.,

2015; Howles, 2007; Kori et al., 2015). Discovering such fact is discouraging because

 43

knowing how to program is essential for studying computer science concepts and

principles (Gal-Ezer & Harel, 1998). Therefore, understanding students’ self-regulation is

crucial for helping students to better cope with programming challenges. This research

results will inform CS instructors and students’ expectation on the nature of programming

enterprises and help them to be more aware of their thinking process during the problem-

solving endeavor. Three research questions were used to guide this investigation of

undergraduate computer science students’ explicit and implicit task interpretation, their

revision, and monitoring strategies during programming. These questions were:

1. What was the students’ initial task interpretation (i.e., the explicit and implicit

aspects) of the given problems?

2. How did their original understanding change during the problem-solving

endeavor?

3. What were the influencing factors for any revisions of their initial task

understanding?

The Researcher’s Positionality

The researcher was a Doctoral student in engineering education with a Bachelor

and a Master of Computer Science degrees. While pursuing the those degrees, the

researcher participated in various activities, for examples as a teaching assistant for

several different courses, an academic student-mentor, an instructor in many workshops,

and a team member in various research projects. The researcher also had one and half

years of experience as a faculty member in the College of Information Technology. One

of the researcher’s responsibility was to teach programming courses for first- and last-

 44

year students. These prior knowledge and experiences have equipped the researcher with

the necessary skills to conduct this study and shaped the researcher’s beliefs that

informed this study. This section aims to illuminate those beliefs and their effect on this

dissertation research.

Ontology

Ontology refers to the nature of reality and its characteristics (Creswell, 2012). In

this study, the researcher subscribes to the social constructivism (or interpretivism) and

positivism and partially subscribes to behaviorism. In social constructivism, people

develop personal meanings of their experience to understand the world they live in

(Creswell, 2012). It is the researchers goal to gather and disclose the participants’ views

of the situation as much as possible, and then interpret the meaning of those views

(Creswell, 2012). The researcher also subscribes to postpositivism, which means people’s

behaviors are logical cause-and-effect actions that can be determined based on existing

theories (Creswell, 2012). Last, the researcher partially subscribes to behaviorism, which

means that the researcher believes that fully functional humans inherently can become

anything that they want (Ertmer & Newby, 2013; Ormrod, 2007)

Epistemology

Epistemology addresses the questions of what can be considered as knowledge

and how it can be gathered and interpreted (Creswell, 2012). In this study, the

participants were the source of knowledge, which include their demographics,

experiences, observable actions, thought processes, justifications, perceptions, answers,

and notes. Additionally, the researcher’s observation memos about the participants were

 45

also considered as a source of knowledge because it captured some aspect of the

participants. The methods to gather and interpret the data are discussed in other sections.

Axiology

Axiology refers to the values that the researcher bring into the study (Creswell,

2012). Some of those values are listed in this subsection, the others are mentioned in

various places in this document. First, the researcher believes that fully functional

humans inherently have the ability to become anything that they want (Ertmer & Newby,

2013; Ormrod, 2007). In other words, everyone has an equal potential to become a

computer scientist. Second, accuracy, reliability, and effectiveness are essential aspects of

an algorithm. Third, extensibility and reusability are crucial elements in any object-

oriented design. Fourth, an action is influenced by the contexts surrounding that

particular action. Fifth, sometimes people use various terminologies to refer to the same

object or instance.

Research Methodology

The purpose of this section is to explicate the justification for selecting the

research questions and methodology (Burton, 2002). Between the research questions and

approaches, there is a dialog that influences and refines each other, such that the research

questions might limit the appropriate research methodologies and vice versa (Case &

Light, 2011). There is limited partial knowledge in the literature about CS students’ self-

regulation and the quantitative instruments to measure it. Bergin, Reilly, & Traynor

(2005) used MSLQ (or Motivated Strategies for Learning Questionnaire) for assessing

the role of students’ self-regulation in programming. However, this instrument is not

 46

suitable for answering the research questions because it cannot assess the task

understanding transformation and its justification. Therefore, the qualitative research

method was employed. To be more specific, the researcher used the within-site embedded

qualitative multiple case study research approach.

Qualitative Case Study

The qualitative case study research method is a qualitative approach for exploring

a real-life, contemporary bounded system(s) or case(s) over time by collecting multiple

detailed and in-depth data (Creswell, 2012). The bounded systems in this study were

senior computer science students at USU and their programming endeavor. The case

study approach was suitable because this research was an exploratory study. Further,

Butler & Cartier (2018) recommends using case study research design to assessing and

learning about students’ self-regulated learning. Additionally, this method recommends

to collect and analyze multiple detailed and in-depth data, which are consistent with

Dinsmore, Alexander, & Loughlin (2008)’s suggestion for researching self-regulation.

The Multiple Cases

The cases are selected to best understand the issue of interest (Creswell, 2012). In

this study, the issue was the CS senior students’ task understanding and their revision.

Therefore, knowledge must be drawn from them. This study focused on senior CS

students because most students need more than two semesters to learn programming

(Tew, McCracken, & Guzdial, 2005) and more time is required for mastering the skills to

manage time and resources wisely during programming endeavor (Beaubouef & Mason,

 47

2005). Through the course works, the senior students are expected to develop minimum

programming and managerial skills for working in the industry.

Four senior students were selected as cases. Unlike grounded theory research, a

case study usually involves five or less participants (Creswell, 2012). In selecting the

prospective students, Creswell (2012) suggests getting as much diversity as possible. In

this study, students were grouped by academic performance (i.e., GPA) and gender, and

one student was selected from each group combination. The grouping by academic

performance was based on findings that a competent self-regulated student tends to have

an excellent academic achievement (Butler & Cartier, 2005; Coutinho, 2007). The

grouping by gender was based on findings that during a learning and problem-solving

endeavor, male and female students think, perceive, and self-regulate themselves

differently (Irani, 2004; Lawanto, Cromwell, & Febrian, 2016; Madigan, Goodfellow, &

Stone, 2007; Pivkina, Pontelli, Jensen, & Haebe, 2009).

Participant Recruitment: Within-Site

All cases were recruited from the USU CS department. By definition, this study is

a within-site multiple case study research (Creswell, 2012). From another perspective,

this study used the convenient sampling method because the USU CS students were

readily and easily accessible population (Teddlie & Yu, 2007). However, this study was

also using the purposeful sampling method because there were selection criteria used to

ensure diverse participants (Creswell, 2012; Teddlie & Yu, 2007).

 48

Multiple Data Points

Following Dinsmore, Alexander, & Loughlin (2008) and Creswell (2012)’s

recommendations, multiple types of data were collected. In this study, the researcher

utilized the thinking aloud method, problem-space maps, open-ended survey, and

interview to generate the required data for answering the research questions. During the

data collection, the participants answered five programming problems while thinking

aloud and were audio- and video-recorded. Two types of data were collected from each

problem: primary and secondary data. The primary data refers to all data points that can

be used to answer the research questions, which include survey responses, problem-

solving recorded audios and videos, and interview response. The secondary data refers to

all data points that can be used to triangulate and refine the research findings and

interpretations, which include the participants’ answers to the programming problems,

their notes, and the researcher’s memos. The method to analyze the primary and

secondary data is presented in the data analysis section.

The Programming Problems. All five programming problems (see Appendix L)

either use the object-oriented or imperative programming paradigm, which are the

paradigms of the 2016 top ten programming languages (Cass, 2016). Since most higher

educational institutions have a tendency to use one of the popular programming

languages as the centerpiece of their introduction to programming language (Denning,

2004), most CS students are familiar with these paradigms. All programming problems

were developed and tested during the pilot study (see Chapter III for details). All

questions’ difficulty was rated by CS professionals, instructors, undergraduate teaching

 49

assistants, and undergraduate students between 2.30 to 6.88 on 10-point scale which

could be interpreted as easy to above medium difficulty and can be answered by most

senior CS students at USU within three hours (see Chapter III for more information).

Thinking Aloud Method. Thinking aloud is a commonly accepted method to

assess people’s thinking process (Bainbridge & Sanderson, 2005). However, it is not a

perfect method. First, thinking aloud could influence the results of this study because it

might help the participants to self-regulate themselves better (Chi et al., 1994), and since

there is no known approach to overcome it, this becomes the limitation of the study.

Second, during the problem-solving endeavor, the participants might process multiple

sets of information in a brief moment and forget to report them (Bainbridge & Sanderson,

2005). Third, the participants might not explicitly mention the relevant knowledge and

thinking process that they used during problem-solving if not asked explicitly by the

problem (Bainbridge & Sanderson, 2005). Fourth, the participants’ tacit knowledge and

skills might make them fail to report some of their cognitive activities during the

programming endeavor accurately (Bainbridge & Sanderson, 2005; Johnson, 2008). Such

condition is probable in this study because, throughout their educational experience, CS

students might develop some tacit knowledge and skills related to programming. The

tacit expertise enables people to execute certain activities automatically and is usually

developed through extensive practices (Johnson, 2008). Nevertheless, this method is the

only available method of investigation that looks to students’ awareness on their thought

processes as they engage in various cognitive activities to solve given problems.

 50

Problem-Space Map. To handle the second, third, and fourth limitations of the

thinking aloud method, Johnson (2008) proposed to utilize a problem-space map, which

is a diagram that describes all relevant issues in a problem and their relationships.

Problem-space refers to all relevant issues encountered during the process of solving a

problem (AlleyDog.com, n.d.). The researcher used the problem-space map to track

participants’ task understanding prior, and the revision of their task understanding during

the problem-solving endeavor.

Open-Ended Survey. The survey goal was to assess participants’ initial explicit

and implicit task interpretation. Consequently, the participants were asked to fill this

survey after reading but before solving the problem.

Interview. To handle the second, third, and fourth limitations of the thinking

aloud method, especially the issues related to design justification, the researcher

conducted a semi-structured interview at the end of each problem-solving endeavor.

Additionally, this interview served to assess the revision of participants’ task

interpretation and their justification for those changes.

Embedded Data Analysis

In this study, there were two units of analysis in each case, which were designing

an object-oriented system (i.e., the third problem) and an algorithm (i.e., the fifth

problem). The object-oriented system problem could only be answered using object-

oriented programming paradigm. The algorithm problem could be answered using any

programming paradigm. In terms of abstraction, the algorithm problem asked the

participants to develop a function or a black box with a particular behavior. The object-

 51

oriented problem asked the participants to develop multiple, integrated functions or black

boxes. Thus, both problems required the participants to use different concepts and work

on a different abstraction level. Additionally, the first, second, and fourth questions were

easier problems compared to the third and fifth questions, and might not be able to

showcase the participants’ self-regulation skill. Since there were two units of analysis,

this dissertation research used an embedded multiple case study design (Yin, 2009). The

analysis process included organizing, transcribing, coding, and triangulating the findings

and interpretations. All will be discussed in the data analysis section.

Reporting Results

Following Yin (2009) and Creswell (2012)’s recommendation, this study report

would include the description of contexts, cases, findings of each analysis unit, and

general findings of participants’ task interpretation and its revision.

Research Method

This study employed the within-site embedded qualitative multiple case study

research approach. This means that this study recruited participants (i.e., multiple cases)

from the researcher’s institution (i.e., within-site) (Creswell, 2012), where each case

consists of two analysis units (Yin, 2009). The research activities included IRB

application, participant recruitment, data collection, preliminary analysis, member

checking 1, data analysis, member checking 2, and reporting. All were completed in two

semesters. Appendix N presents the research schedule in detail.

 52

Institutional Review Board Application

The goal of the Institutional Review Board (IRB) is to protect human participants’

rights and welfare during the research process (Utah State University Office of Research

and Graduate Studies, n.d.). Consequently, it is mandatory for the researcher to complete

a human research protection training and acquire IRB’s approval prior conducting this

dissertation study. The researcher has completed and retook the Collaborative

Institutional Training Initiative (CITI) on January 21, 2014, and December 2, 2016,

respectively, and received a three-year curriculum completion report at the end of each

training. Also, the researcher acquired IRB’s approval on August 29, 2017, under the

protocol number 8659. The IRB approval letter is available in Appendix O.

During the data collection, a signed letter of consent was collected from each

participant to provide a legal binding document between both parties (i.e., the participants

and the researcher). Additionally, this study only accepted adults (i.e., at least 18 years

old according to UT law) as research participants to ensure the consent legality.

Research Participants

This section describes the method for recruiting and selecting research

participants. Four senior computer science students at USU were recruited for this

research, which was an ideal number of participants in a case study (Creswell, 2012). As

illustrated in Table 4-1, one participant was selected to represent high- and low-

performance male and female students.

 53

There were four criteria to become a research participant in this study. First, the

candidate must be USU CS senior students. Second, the candidate must be an adult

according to State of Utah’s law (i.e., at least 18 years old) to ensure that his or her

consent is legal (Institutional Review Board, 2011). Third, the candidate must have at

least 2.30 GPA on a 4-point scale, which is a requirement for graduating from the USU

CS undergraduate program (Utah State University, n.d.). By enacting this criterion, the

researcher tried to ensure that all participants had the required skills to function as future

CS professionals. Fourth, the candidate must have completed the Introduction to CS

course (CS 1400) with C- or better, which is also a requirement for graduating from the

USU CS undergraduate program (Utah State University, n.d.). Each selected candidate

received a $40 Amazon gift card and a personalized SRL report at the end of the study.

Participant Recruitment Method

The goal of this process was disseminating recruitment publication to all USU CS

senior students. Three methods were used to spread the recruitment publication. The first

method was an email-dissemination approach. This method has been proven effective

during the pilot study (see Chapter III for a detailed discussion). The researcher asked the

person in charge of the CS department’s broadcasting email system to forward the

Table 4-1.

Number of Participants based on Gender and Academic Performance

 Gender
Gender Male Female

GPA High Low High Low

Number of Participants 1 1 1 1

 54

recruitment publication to all CS senior students. The second method was by displaying

recruitment announcement on the notice boards at Taggart Student Center, Old Main, and

Engineering. These buildings were selected because the CS students use these buildings

often for dining or classes. The third method was by communicating and recruiting the

potential candidates face-to-face. All publication materials included “the name and

address of the investigator and/or research facility; the condition under study and/or the

purpose of the research; a summary of the criteria that will be used to determine

eligibility for the study; a brief list of participation benefits, if any; the time or other

commitment required of the participants; and the location of the research and the person

or office to contact for further information” (Institutional Review Board, 2011, p.22).

All interested students filled an online application form, which available in

Appendix G or at https://usu.co1.qualtrics.com/SE/?SID=SV_1M7vl0kUiumpcZD (this

link is not searchable by the search engines). This form was adopted from the pilot study

demographic survey (see Appendix D). In the first page, the application asked for the

applicant’s consent to participate in this study. Additionally, this application form

automatically turned down applicants who do not meet the required criteria. See

Appendix H for the automatic online application screening flowchart. The criteria for

becoming a participant were willingness to participate in this study, being an adult, being

a senior CS student at USU, having a minimum GPA of 2.30 on a 4-point scale, and

earning a C- or better for the introduction to computer science course (i.e., CS1400). The

last two requirements were derived from the USU CS bachelor degree requirement (Utah

State University, n.d.).

https://usu.co1.qualtrics.com/SE/?SID=SV_1M7vl0kUiumpcZD

 55

Participant Selection Method

A list of applicants was available through the online application form. Due to the

automatic exclusion mechanism in the application form, the candidates were adults,

senior USU CS students who had GPA between 2.30 to 4.00 and received C- or better for

the CS1400 course. The selection method was straightforward. First, all applicants were

grouped based on their gender, male or female. Then, the candidates in each cluster were

ascendingly sorted based on their GPA. The first and the last applicants in each group

were selected as research participants (i.e., the students with highest and lowest GPA).

The researcher informed the selected applicants by email, set up the date and time for

data collection, and asked them to fill the demographics survey (see Appendix I). The

researcher reused most questions in pilot study demographics survey (see Appendix D) to

develop the demographics form for this study. If one of the participants decided to

discontinue their involvement in this study, the next applicant would be selected from the

sorted list.

Qualitative Instruments

This section discusses all qualitative instruments, which are the programming

questions, problem space maps, open-ended survey, and interview.

Programming Problems

There were five programming problems. All were either related to the imperative

or object-oriented programming paradigm. In the first question, Locating the Error, the

participants must identify two programming mistakes in a code snippet. In the second

question, Output Prediction, the students must predict an algorithm outputs for given

 56

input variations. The research used these two problems to familiarize the participants

with the thinking aloud method and the data collection routine. In the third question, the

Monopoly in the Middle-Ages, the participants must design a base for a game system

using the object-oriented programming paradigm. In the fourth question, Algorithm

Generation, the students must implement an algorithm with predetermined behaviors. In

the fifth question, the Last Standing Man, the participants must also implement an

algorithm with specific behaviors. However, the last question was more complex

compared to the previous question. The fourth question contained three issues and three

variables and was marked 3.00 out of 10.00 difficulty level. The fifth question contained

at least five issues and 4 to 40 variables and was marked 6.56 out of 10.00 difficulty

level. Please refer to Qualitative Instrument section in Chapter III and Appendix K for the

detailed discussion on the problem difficulty. The third and last questions were the

central problems in this study, which means the data analysis would be focused on

illuminating the participants’ task interpretation and its revision while engaged in these

two problems. The fourth question served as a break question, which was to give the

participant a time to calm down before answering the last question.

Problem-Space Maps

The researcher used problem-space maps to track participants’ task understanding

prior, and its revision during, the problem-solving endeavor. The problem-space map

illustrates all relevant issues or tasks of a problem and their relationships in the form of a

diagram. However, the researcher utilized a text-based problem-space map instead of

diagram due to the sophisticated nature of design problem-solving process. For example,

 57

the problem-space map of the third question contains 51 tasks and 16 possible creative

improvements. Representing 67 possible cognitive activities in a form of a diagram was

possible but the chart would be enormous and hard to use compared to in a form of plain

texts. Appendix I presents the problem-space maps of all problems. Although these

problem-space maps were developed and refined based on the pilot study data, these

maps were still incomplete due to large solution variations.

In developing and refining the maps, all pilot study participants’ transcribed

responses were used. The first step was to code the transcriptions based on the issues

(i.e., identifying variables and functions, and determining variable accessibility). This

step required the researcher to engage in an open-coding activity. The second step was to

group and integrate the identified issues to the maps. The issues grouping was driven by

the nine computing principles (see Table 2-2) and BCM’s strategic action (see Table 2-3).

The last step was to verify the problem-space maps by validating the maps with the

transcriptions, in such a way that the maps were capable of capturing all pilot study

participants’ thought process.

The researcher developed problem-space maps of all problems for two reasons.

First, as a means to gain a deeper understanding of, and enhance the problem-space maps.

Second, as a means to improve the researcher’s sensitivity to, and mental preparation for

tracking participants’ thought process throughout the data collection session.

Initial Task Interpretation Survey

The purpose of this instrument is to assess participants’ initial explicit and

implicit task interpretation. The explicit task interpretation refers to the “information that

 58

is overtly presented in task descriptions and discussions” (p.2) which includes the task

goal(s), requirements, constraints, and instructions or standards to be followed (Hadwin

et al., 2009). The implicit aspect of task interpretation refers to the “information [that]

students might be expected to extrapolate beyond the assignment description” (p.2) which

includes relevant concepts, knowledge, and cognitive processes (Hadwin et al., 2009).

Based on these definitions, and Rivera-Reyes (2015)’s and Lawanto, Minichiello, Uziak,

& Febrian (2018)’s works, six open-ended questions were developed.

Prior the data collection, the open-ended survey was verified, in such whether the

open-ended survey and interview questions could performed their purpose, which were

assessing the participants’ initial task interpretation and its revision respectively. Two

experts were involved, which were a university computer science instructor and an

information technologist. They were asked to answer the third or fifth programming

problem by following the data collection protocol (see the Data Collection Procedure

subsection for the detailed information about this). In short, after reading the problem,

they were asked to answer these six questions, the programming question, and then the

interview questions. In the end, suggestions for aligning their responses with the

researcher’s expectations were discussed and incorporated into the questions. Also, one

of the open-ended questions was removed, which was “What are the standards that need

to be followed to answer this problem?” as suggested by the experts since it was unclear

what was the ‘standards’ in that question referring to. Table 4-2 presents the final open-

ended questions for assessing participants’ initial explicit and implicit task interpretation.

 59

Post Problem-Solving Interview

Rivera-Reyes (2015) reported that students have a better task understanding of

laboratory activities after they had completed the task. In other words, students’ task

interpretation transformed during their laboratory engagement. Similarly, CS students’

task interpretation might also transform during the programming endeavor. One of the

interview session goals is to assess the transformation of participants’ task interpretation

and their justification for those changes. Additionally, since the participants might

process various information in a brief moment during the problem-solving endeavor, they

may forget to report those processes (Bainbridge & Sanderson, 2005). Therefore, this

interview also serves to capture unreported thought processes, especially that are related

to design justifications.

The interview format is semi-structured, which means a set of open-ended

questions can be used during the interview with a chance to explore a particular issue

further (Whiting, 2008). Table 4-3 presents the interview questions and precondition for

asking them. All questions have been verified concurrently with and using the same

Table 4-2.

Open-Ended Questions for Explicit and Implicit Task Interpretation

No Aspect Question
1 Explicit What is the primary goal of this problem?

2 Explicit &
Implicit

In relation to the program that you will design, what are the
requirements and constraints that you need to consider?

3 Implicit What are the programming concepts related to this problem?

4 Implicit What are your previous experiences related to this problem?

5 Implicit In relation to the program that you will design, what are the steps
(e.g., tasks) that you need to take?

 60

verification method for the Initial Task Interpretation Survey (see the previous

subsection, Initial Task Interpretation Survey). The purpose of the first, second, and third

questions is to assess participants’ awareness and perspective about the transformation of

their task understanding. The purpose of the fourth question is to confirm whether the

participants have an implicit task understanding related to a certain activity or not. If the

participant did not have an implicit task understanding, the fifth question would assess

the participants’ justification for having a new or transformed task interpretation.

Data Collection Procedure

The data collection process consists of a brief information session, practice

sessions, and problem-solving sessions. It took about three to four hours to complete each

data collection process, and all were video- and audio-recorded. This section explicates

the environment, thinking aloud method, brief information session, practice session,

problem-solving session, and collected data.

Table 4-3.

Interview Questions

No Condition Question
1 None. Do you think your task understanding

changes during the problem-solving process?

2 If participant answered “yes” for
question #1.

What are those changes?

3 Repeat and modify this question based
on participant answer for questions #2.

Why did you change [something]?

4 Repeat and modify this question based
on the observation results.

I noticed you did [something]. Did you think
about doing that from the beginning?

5 If the participant answered “no” for
question #4.

Why did you do [something]?

 61

Environment

Self-regulated learning activities can only happen because students are interacting

with the learning environment (Bandura, 1977; Dinsmore et al., 2008). Therefore,

knowing the problem-solving environment is essential to understanding students’ self-

regulation.

In this study, the participants’ data were collected in one of the conference rooms

of a research-dedicated building. The room shape was similar to a box with two glass

doors opposing each other and a picture-window on the side of each door. Inside, there

was an oval table in the middle and surrounded by chairs, a big TV monitor mounted on

the wall, and a cabinet on one of the corners. The room was well illuminated, and the

lights were controlled automatically by a sensor. Unfortunately, due to lack of movement

from the researcher and participants, and nonexistent override control, the lights were

frequently turned off automatically during the data collection and slightly disturbed the

participants’ problem-solving endeavor. Since all other available known rooms had a

similar power-sensor setting, the researcher opted using this room throughout the data

collection because its capabilities to minimize distractions from the passersby. During

each data collection session, the participant was seated on a chair that could help him or

her ignoring passerby. The researcher only handled one participant in each session, and

gave one question at a time. The participants were provided with a pen, a pencil, 12-color

highlighter, twenty sheets of white paper, two chocolate bars, two water bottles, and a can

of soda. On the table, a recording camera was placed in front of the participants, and a

voice recorder was placed on each side of the participants.

 62

Thinking Aloud

In this study, the participants must solve five programming problems while

thinking aloud. Although, it is a commonly accepted method to assess people’s thinking

process (Bainbridge & Sanderson, 2005), sometimes the participants might forget to

think aloud. In such situation, the researcher used one of the pilot study prompts to

remind them (see Table 3-3 for prompts details).

Brief Information Session

The goal of the brief information session was to inform the participants about the

study purpose, participants’ research activities (i.e., participate in the data collection and

member checking sessions), data recording, benefits for taking part in the study (i.e., a

$40 Amazon gift card and a personalized SRL report), and the thinking aloud method.

The researcher used the pilot study method and problem (see Appendix E) to inform the

participants about the thinking aloud method. Additionally, the participants were asked to

read and sign the IRB consent.

Practice Session

The goal of this session was to familiarize the participants with thinking aloud

and the data collection routine by completing and reflecting on the first and second

programming problems. As illustrated in Figure 4-1, the data collection routine was

reading the problem description, answering the initial task understanding survey, solve

the programming problem while thinking aloud, and participate in an interview after

solving the problem. When answering the initial task interpretation survey, the

participants’ were prohibited rereading the problem description to avoid them in revising

 63

their task understanding. After finished solving a problem, the researcher answered the

participants’ questions and addressed their deficiencies if any.

Problem-Solving Session

The goal of this session was to collect participants’ thought processes while

engaged in the third, fourth, and fifth programming problems. During this session, the

participants followed the data collection routine in Figure 4-1 for each problem.

Collected Data

The researcher collected six types of data for each question from each participant,

which are the participants’ survey responses, video and audio recording of their problem-

solving endeavor, answers and notes, and interview responses. Additionally, the

researcher also generated memos about the participants’ behaviors.

Data Analysis Method

This section discusses the detailed data analysis process, which includes

organizing, transcribing, coding, analyzing, and triangulating the findings and

interpretations of collected data. Additionally, the researcher generated memos related to

the analysis and interpretation. In qualitative research, developing memos is an integral

part of the analysis process because it helps researchers to gather ideas and develop

theories about the data (Creswell, 2012).

Figure 4-1. The data collection routine.

 64

Data Organization

The collected data were classified and stored based on the case (i.e., participant)

and then by the problem. In each problem, there were two types of data, which were the

primary and secondary data. The primary data refers to all data points that can be used to

answer the research questions, which include survey responses, problem-solving recorded

audios and videos, and interview responses. The secondary data refers to all data points

that can be used to triangulate and refine the findings and interpretations, which include

answers, notes, and the researcher’s memos.

Preliminary Analysis and Member Checking 1

The goal of the preliminary analysis and member checking is to identify and

clarify participants’ ambiguous and unclear activities and self-reports. Creswell (2012)

argues member checking is important to improve credibility of findings and interpretation

from the participants’ point of view. The preliminary analysis consisted of three steps.

First, developing descriptions of each participant’ ambiguous and unclear activities and

self-reports. Second, asking each participant for clarification via email (i.e., member

checking). Third, incorporating participants’ clarifications as transcription memos.

Transcribing and Coding

This process was only applicable to the problem-solving recorded audios and

videos. The goal of transcribing is to reduce the data complexity (i.e., from multimedia to

text) so it will be easier to be coded and analyzed (Lapadat & Lindsay, 1999). The audio

and video files were transcribed verbatim to capture every spoken word, including the

false starts and stutters (Tigerfish, n.d.). Additionally, following lesson learned from the

 65

pilot study (see Chapter III), the researcher described contexts surrounding participants’

activities, wrote the first letter of related concepts in capital, and used a dash (“-”) to

indicate a quick focus change on participants’ cognition.

The transcriptions then were independently segmented and coded based on BCM

strategic action (see Table 2-3) by three coders, which were the researcher, an

information technologist, and a Ph.D. candidate in engineering education. The

information technologist was responsible for the third problem (i.e., Monopoly in the

Middle-Ages) because he was familiar with the object-oriented paradigm and had

experience in developing an Android game. The Android is an open operating system for

small devices, such as phone, that based on Java™ and object-oriented programming

(Google Inc., n.d.-b, n.d.-a). The Ph.D. candidate was responsible for the fifth problem

(i.e., The Last Standing Man) because he was familiar with the imperative programming

paradigm. Additionally, since the Ph.D. candidate has Master and Bachelor in

engineering, he has a strong mathematical skill, which was necessary for understanding

the participants’ approach to solving the fifth problem. A qualitative analysis software,

the MaxQDA version 11 and 12 (see http://www.maxqda.com/), was used during the

coding process, and a practice session with each coder was held prior the independent

coding.

The qualitative coding is an interpretive activity, not a precise science (Saldana,

2008). It is a step to organize and understand the collected data (Basit, 2003). Naturally,

all coders returned with different results in some parts of the text. These differences were

resolved through discussions, and the inter-coder agreement in the form of Kappa score

http://www.maxqda.com/

 66

was calculated. Kappa score is one of the common method to calculate inter-coder

agreement (Viera & Garrett, 2005). By employing two coders in each problem and

having a Kappa score between 0.81 to 0.99, the researcher could ensure the coding

reliability (Viera & Garrett, 2005). Reflecting on the pilot study experience, it was

important to not solely depend on the transcriptions during the qualitative coding because

it could not capture all the relevant contexts of the participants’ cognitive activities.

Therefore, verification through videos was necessary during the inter-coder discussion.

Using the final codes, the researcher identified the participants’ self-regulation activities

and determined the task interpretations associated with the identified self-regulation

activities.

Analysis

The goal of the analysis was to answer the research questions. To be more

specific, the analysis aimed to identify participants’ initial understanding, their

transformed task interpretation, and factors influencing the task revisions. The researcher

only analyzed the collected data related to the central programming problems, which

were the third and fifth programming questions. Both problems required the participants

to use different concepts and work on a different abstraction level.

Identifying Participants’ Initial Interpretation. In this analysis, the researcher

used the participants’ survey responses, participants’ interview responses, and the

researcher’s memos. The survey responses contained the participants’ explicit and

implicit task interpretation. The interview responses contained the participants’

perception of their task revision and unreported thought processes. The goal of this

 67

analysis was to develop a list of participants’ initial task interpretation. This analysis

consisted of four steps. The first step was to prepare a list to record the participant’s

explicit and implicit task interpretation. The second step was to move the participant’s

survey response to the list. The third step was using the participant’s interview response

to identify initial task interpretation and put it on the list. The fourth was using the

researcher’s memos to determine entries related to the participant’s initial task

interpretation and put it on the list. Since there were four participants, this step was

repeated four times. After that, the list of participants’ initial task interpretation was

completed.

Identifying Participants’ Task Interpretation Revisions. In this analysis, the

researcher used the participants’ interview responses, final codes, and the researcher’s

memos. The goal of this analysis was to develop a list of the participants’ task

interpretation revision and their relationship with the initial task understanding. This

analysis consisted of five steps. The first step was to prepare a list for recording the

participant’s transformed task interpretation and its relationship with the initial task

understanding. The second step was using the participant’s interview responses to

identify transformed task interpretation and put it on the list. The third step was using the

final codes to identify activities that could not be associated with the identified task

interpretation, and put it on the list. The fourth step was using the researcher’s memo to

determine entries that identify the participant’s task interpretation revision and put it on

the list. The fifth step was to identify the relationship between identified transformed and

 68

initial task interpretation. Since there were four participants, this step was repeated four

times. After that, the list of participants’ transformed task interpretation was completed.

Identifying Influencing Factors in Participants’ Task Revisions. In this

analysis, the researcher used participants’ interview responses, final codes, and the

researcher’s memos. The goals were to enhance the list of the participants’ task

interpretation and revision by adding the activities that justify those revisions and develop

themes for those activities. This analysis consisted of four steps. The first step was to

open the list of the participant’s transformed task interpretation and its relationship. The

second step was using the participant’s interview responses to identify the participants’

justifications related to the transformed task understanding and put it on the list. The third

step was using the final codes to identify monitoring activities related to the transformed

task interpretation and put it on the list. The fourth step was using the researcher’s memos

to determine entries that identify task interpretation revision-related activities and put it

on the list. Since there were four participants, this step was repeated four times. At this

point, the list of task interpretation revision-related activities was completed. The next

step was to segment and code those activities by employing open coding and then

followed by developing categories and themes based on the codes.

Member Checking 2

The purpose of member checking is to validate the credibility of findings and

interpretation from the participants’ point of view (Creswell, 2012). For the second

member checking, the researcher developed a personalized SRL report based on the

analysis results. The report included a brief description of the problems, participant’s task

 69

interpretation, the participant’s task revision, a comparison of the participant’s

performance to others, and suggestions to improve the participant’s self-regulation skills.

Each participant was asked to comment on the report and their identified self-regulation

strategies. The researcher included those comments in the dissertation report. If one of

the participants disagreed with the report and the researcher agreed with him or her, then

the researcher adjusted the report. If not, then the researcher only reported it as comments

from the participants.

 70

CHAPTER V

THE PARTICIPANTS AND FINDINGS

Introduction

This chapter starts by describing the research participants and recruitment

challenges. After that, the qualitative coding result is described, followed by brief

depictions of the participants’ approaches to solving the third and fifth problems (i.e., the

units of analysis). Last, the chapter discussion continues with answering the research

questions.

The Participants

The participants were essential elements of this study because they were the

sources of knowledge that enabled the researcher to answer the research questions. Four

participants were recruited, and they provided digital consent in the application form and

also signed the letters of consent at the beginning of data collection session. Please refer

to Chapter IV for details on participant recruitment and selection method. The higher-

and lower-performing participants in each group (i.e., male and female) were Jake and

Rusty, and Anne and LStew, respectively. Each participant had a GPA above 3.00 on a 4-

point scale and received a $40 gift card and a personalized self-regulation report (see

Appendix P for more details). This section focuses on describing recruitment challenges

and the participants.

Recruitment Challenge

Facing challenges when recruiting research participants is a common issue in any

research involving human participation (Gul & Ali, 2010; Koo & Skinner, 2005; Leonard

 71

et al., 2003), including this study. There were only eight males and one female students

who applied as research participants in Fall 2017. Please note that the online application

form only yielded participants who matched with the study criteria (please see Chapter

IV and Appendix H for details). The researcher then selected one male applicant with the

highest GPA, another male with the lowest GPA, and the only available female applicant.

In Spring 2018, the researcher disseminated a recruitment announcement for a female

participant, one female student responded and was selected as the final participant. The

limited number of applicants prevented the researcher from selecting wider GPA range.

The Office of Analysis, Assessment, and Accreditation (2017), Utah State

University (USU) reported that 624 people were registered as full or part-time

undergraduate CS students in Fall 2017. Out of those, 201 students were seniors, which

consisted of 177 (88%) males and 24 (12%) females. According to Cora Price, the second

staff assistant of USU CS department, some senior students had jobs or only registered in

online courses. Further, Price explained that some of them only registered as active

students but did not take any courses due to various reasons, such as serving on a

religious mission.

Jake

Jake was a 25-year old Caucasian male with 3.96 GPA on a 4-point scale and was

familiar with imperative, object-oriented, and logic programming paradigms. He passed

Introduction to Computer Science 1 (CS 1400) course with an A and completed Calculus

I, Calculus II, Discrete Mathematics, Linear Algebra, Introduction to Computer Science

2, Methods in Computer Science, Algorithms and Data Structures, Introduction to Event

 72

Driven Programming and GUI's, Introduction to Software Engineering, Advanced

Algorithms, Operating Systems and Concurrency, and Developing Dynamic, Database-

Driven, Web Applications courses with a C- or better. These courses indicated that Jake

had more than the necessary knowledge to answer all programming problems in this

study. Jake also mentioned that he had served as a teaching assistant for CS 1400. During

the data collection, he correctly answered all practice (i.e., the first and second) and break

(i.e., the fourth) questions.

Jake had an intense interest (i.e., ten out of ten) in computer programming and

had spent around 5800 hours in developing those skills. Jake also mentioned that

Biochemistry affected his programming abilities; he stated, “I feel that Biochemistry

courses have given me a unique perspective on programming. There are many

correlations between protein and sensory regulations and software input/output that have

helped me grasp and apply new principles quickly.” In Biochemistry, one needs to

understand a molecule’s structure, function, and behaviors (Biochemical Society, n.d.). In

a sense, trying to understand a molecule is similar to comprehending a computer

program, a class, or a function. Through Biochemistry, Jake developed a correct model of

a typical programming design, which then helped him to understand various computing

principles easily. Ben-Ari (1998) argues that trying to understand various CS concepts

will become easier when one has correct and effective cognitive models associated with

those concepts.

 73

Rusty

Rusty was a 23-year old Caucasian male with 3.10 GPA on a 4-point scale and

was familiar with imperative, object-oriented, logic, and visual programming paradigms.

He passed Introduction to Computer Science 1 course with an A and completed Calculus

I, Calculus II, Discrete Mathematics, Linear Algebra, Introduction to Computer Science

2, Algorithms and Data Structures, Introduction to Event Driven Programming and

GUI's, Introduction to Software Engineering, Operating Systems and Concurrency, and

Developing Dynamic, Database-Driven, Web Applications courses with a C- or better.

These courses indicated that Rusty had more than the necessary knowledge to answer all

programming problems in this study. Rusty also mentioned that he had served as a

teaching assistant for CS 1400. During the data collection, he correctly answered all

practice (i.e., the first and second) and break (i.e., the fourth) questions.

Rusty had an intense interest (i.e., ten out of ten) in computer programming and

had spent 4160 hours in developing those skills. He did not share any personal or

practical factors that might affect his programming abilities.

Anne

Anne was a 22-year old Caucasian female with 3.62 GPA on a 4-point scale and

was familiar with the imperative and object-oriented programming paradigm. She passed

Introduction to Computer Science 1 course with an A and completed Calculus I, Calculus

II, Discrete Mathematics, Introduction to Computer Science 2, Algorithms and Data

Structures, Advanced Algorithms, Introduction to Event Driven Programming and GUI's,

Introduction to Software Engineering, Operating Systems and Concurrency, and

 74

Developing Dynamic, Database-Driven, Web Applications courses with a C- or better.

Further, she was registered in the Programming Languages course during the data

collection. These courses indicated that she had more than the necessary knowledge to

answer all programming problems in this study. Anne also mentioned that she had served

as a tutor. During the data collection, Anne correctly answered all practice (i.e., the first

and second) and break (i.e., the fourth) questions.

Anne had a medium interest (i.e., four out of ten) in computer programming and

had spent around 2000 hours in developing those skills. She did not share any personal or

practical factors that might affect her programming abilities.

When asked about the challenge of being a female computer science, Anne said,

“Because there are not as many women, you do not have as many people to gauge it off

… It is harder to know where you really stand with people.” She elaborated that knowing

that some of her classmates were able to easily understand challenging CS concepts

lowered her sense of belonging; it was an “intimidating dynamic.” Further, she

mentioned that it was hard for an 18-year old female student to know that some of her

classmates were exposed to programming, computational thinking, and CS prior pursuing

their computer science degree; Anne said, “It is really hard not to quit before you

recognize that.” Anne’s feeling was consistent with variously reported findings that the

sense of belonging is essential for students, especially females (Falkner, Szabo, Michell,

Szorenyi, & Thyer, 2015; Lewis, Anderson, & Yasuhara, 2016). Anne further said:

“I know I am not as good as other people think I am, and as soon as they find out

how bad I am at programming, then they will realize that I should not be here.”

 75

Such feeling is commonly known as the imposter syndrome. De Vries (1990) argues that

people with imposter syndrome tend to “adopts a survival strategy based on

inauthenticity in order to win approval of others” (p.678), which then preventing them to

internalize their successes including in an academic environment (Clance & Imes, 1978;

Cope-Watson & Betts, 2010).

During her final years and after competing in an internal programming contest,

Anne was able to overcome her incompetent perception. She said, “For the last four

years, I thought that I am not as smart as you guys [her peers] but that was all made up in

my head.” She had served as the President of several clubs and as a college ambassador.

She also involved in the Association for Computing Machinery for Women (ACM-W),

the women chapter of ACM, as a mentor, where she helped other female students to have

a positive and rewarding experience throughout their education.

LStew

LStew was a 22-year old Caucasian female with 3.36 GPA on a 4-point scale and

was familiar with imperative and object-oriented programming paradigms. She passed

Introduction to Computer Science 1 course with an A and completed Calculus I, Calculus

II, Discrete Mathematics, Introduction to Computer Science 2, Algorithms and Data

Structures, Introduction to Event Driven Programming and GUI's, Introduction to

Software Engineering, Operating Systems and Concurrency, and Developing Dynamic,

Database-Driven, Web Applications courses with a C- or better. Further, she registered in

the Advanced Algorithms course during the data collection. These courses indicated that

LStew had more than the necessary knowledge to answer all programming problems in

 76

this study. During the data collection, she correctly answered all practice (i.e., the first

and second) and break (i.e., the fourth) questions.

LStew had a strong interest (i.e., eight out of ten) in computer programming and

had spent around 2100 hours in developing those skills. She also mentioned that her

father, self-practice, self-efficacy, and self-comparison affected her programming

abilities. LStew mentioned that her father was her mentor before and during her college

career, and shared stories on how her father encouraged her pursuing her dream to

become a computer scientist. LStew’s father had served as one of the mentors for her

robotics team in high school and became her private tutor for various courses. LStew’s

positive experience with mentoring is consistent with Ko & Davis' (2017) report that

mentoring has a positive influence on students’ perception of and interest in CS.

In addition to having a personal mentor, LStew also gained benefits by engaging

in self-practice activities, including during her internship and as a teaching assistant for

CS 1400. She said, “My internship at the Space Dynamic Laboratory made me a lot more

proficient. I also think that being a teaching assistant for CS 1400 has helped me

understand the basics of C++ a lot better and be more passionate about it.” It was clear

from her statement that practicing programming improved her self-efficacy. Miller et al.,

(2013) argue that the best way to improve students’ computer science self-efficacy is

through continuously applying the computer science principles. Additionally, Litchfield,

Javernick-Will, & Maul (2016) argues that students’ design experience in a highly

contextual and complex environment improves their professional skills, or in this case,

programming skills. Bandura (1986) defines self-efficacy as “people’s judgments of their

 77

capabilities to organize and execute courses of action required to attain designated types

of performances” (p.391). Several studies reported there was a strong correlation between

students’ self-efficacy and the quality of their learning performance (Al-mehsin, 2017;

Joo, Bong, & Choi, 2000; Paraskeva, 2007; Santoso, Lawanto, Becker, Fang, & Reeve,

2014; Santoso, 2013; Siddique, Hardré, & Altan, 2015). Similar to these reports, LStew

mentioned how self-efficacy was affecting her programming abilities by saying, “I nearly

failed a class because I did not believe I was capable of succeeding in it.”

Lewis, Anderson, & Yasuhara (2016) reported that stereotypes are important for

students including in computer science, and that CS students often assess their fitness to

CS stereotypes which then affects their performance and feeling of belonging. LStew was

not an exception; she said, “I have to ignore my colleagues and classmates programming

‘successes’ as that comparison game tends to reduce my self-esteem a lot and negatively

impact my problem-solving and programming capabilities.” LStew was not alone; while

she was able to dismiss the negative effects of CS stereotyping, which was “singularly

focused on CS, asocial, competitive, and male” (Lewis et al., 2016, p.30), she shared that

some of her female friends were still struggling with it. Some studies argue that one of

the reasons for women underrepresented in computing discipline (Fisher & Margolis,

2002; Galpin, 2002), including at USU (Office of Analysis, Assessment, and

Accreditation Utah State University, 2017), is the stereotype of computer scientists

(Graham & Latulipe, 2003; Irani, 2004; Outlay, Platt, & Conroy, 2017; Wang, Hejazi

Moghadam, & Tiffany-Morales, 2017). Consistent with Irani (2004)’s report, LStew

 78

mentioned that some female students felt they had to work harder to make people

recognize their abilities.

Qualitative Coding Results

The qualitative coding involved three coders, which were the researcher, an

information technologist, and a Ph.D. candidate in engineering education (see Chapter IV

for details). Please note that the coding process of the last participants’ (i.e., Anne)

transcriptions were conducted by the researcher and an information technologist. The

interrater agreement (i.e., Kappa score) was calculated for each participant on each

problem using MaxQDA, and the initial scores were in the range of -0.18 to 0.01, which

indicates agreements by chances (Viera & Garrett, 2005). In calculating the Kappa score,

MaxQDA also takes into account the segment size (MaxQDA, n.d.), in such that two

coders need to have at least a 90% similar segment and use the same code to label that

segment; the 90% segment similarity is MaxQDA default value and can be adjusted

accordingly. Thus, having different codes was not the only reason for the poor agreement

scores, but also due to the differences in segment size.

The most accurate strategic action code was not only influenced by the

participants’ action but also by their prior actions. For example, the ‘enacting’ code in

Table 5-1 was appropriate because Rusty said those words after verbalizing his plan to

check the algorithm’s output for six inputs. Another example, when LStew was solving

the third problem, she said:

 79

“And if I am a thief, maybe I can steal from a building, but I do not know how

that would work with the rules of Monopoly. Anyway, I can think about that

later.”

Both coders agreed to label the first sentence as ‘monitoring.’ The second sentence was

aligned with the definition of ‘planning,’ which is selecting appropriate cognitive and

metacognitive strategies for completing any tasks (Butler & Cartier, 2005). However,

because the second sentence occurred after LStew engaged in monitoring activity, the

most appropriate code would be ‘adjusting,’ which refers to students’ strategies

adjustment based on self-perceptions of progress or feedback (Butler & Cartier, 2005).

Thus, both coders agreed to code the second sentence as ‘adjusting.’

Table 5-1.

Segment Example for Each Strategic Action Code

Strategic Action Code Example
Task Interpretation “I am looking at this sentence, ‘two, three, four players,’ that is

important,…. So, two to four.” – Lstew when solving the third
problem.

Planning “I am going to grab one of these papers.” – Jake when solving the
fifth problem.

Enacting “[Writing it down] 4 5 6. Right, 1 kills 2, gives the sword to 3, so
1 3 4 5 6. 3 now has the sword, he kills 4 and gives it to 5, so we
have 1 3 5 6. 5 kill 6 and gives the sword back to 1, so we have 1 3
5, and then 1 kills 3 gives the sword to 5, and 5 kills 1, and 5 is the
last man standing.” – Rusty when solving the fifth problem and
after saying, “I will do six people instead and see who survives.”

Monitoring “Just occurred to me, I should have been crossing things off for
this paper as I had them written down.” – Jake when solving the
third problem.

Adjustment “So before I continue, I am going to skim through again and make
sure that I do understand, and that there are no any small details
that I forgot.” – Rusty when solving the third problem.

 80

Selecting the correct segments was important in this study because it helped the

researcher to identify various thinking episodes, which could be determined by

identifying the contexts related to each thought process (Butler & Cartier, 2005). As an

example, at the end of his endeavor in solving the third problem, Jake said:

“All right. So, that is everything-all have been taken care of. Now going along

with the plan I had written down earlier, I would rewrite this [solution], so it is

more readable. [That is] just what I would do if I were showing this to an

employer …”

The above passage was related to Jake’s monitoring activity, but it should be coded as

two segments. The first segment, which was the first and second sentences, was about

Jake’s monitoring activities of his progress in solving the problem. The second segment,

which was the third and fourth sentences, was about Jake’s monitoring activities about

his progress toward conforming to his overall problem-solving approach.

In self-regulated learning (SRL) research, it is important to identify students’

learning episodes and how they shifted through those episodes (Butler & Cartier, 2005;

Winne & Perry, 2000). Therefore, during the meeting, the coders did not only discuss

their code disagreements but also segment differences. On average, each coder in each

problem made 65 code changes including the segments. After the discussion, all coders

agreed on 1607 codes with the final Kappa score of 1.00 for each transcript, which

indicates perfect agreements (Viera & Garrett, 2005). Table 5-1 presents examples of

each code segment.

 81

When coding the participants’ transcriptions of the third problem, both coders

agreed to consider most of the participants’ rereading activities as task interpretation

because they were appeared as understanding the problem for the first time. However, not

all of their rereading activities were considered as task interpretation, for example, when

Jake was verifying his interpretation on Buildings’ characteristics and said, “Just double-

check what the Buildings do; Buildings need to keep track of who owns them,” both

coders agreed to label it as monitoring activity.

Participants’ Self-Regulation in Solving the Third Problem

The third problem was Monopoly in the Middle-Ages. This ill-structured problem

asked the participants to design a base for a digital version of a classic board game using

the object-oriented programming paradigm. The problem provided detailed requirements

and constraints including at least 18 issues, 24 functions, and 22 variables. Furthermore,

it asked the participants to go beyond the listed requirements when appropriate and use

their creativity to produce a thorough and extensive design. Under the Bloom’s

Taxonomy described in Gronlund et al. (2013), this problem is at level 6.2 which is

creating, planning, or devising steps to accomplish a certain task. Gronlund et al. (2013)

subcategorize level 6 Bloom’s Taxonomy (i.e., creating) into three, which are

generating/hypothesizing, planning/designing, and producing/constructing. It was

necessary to know basic programming and object-oriented design to answer this question.

Chapter IV presents a detailed discussion of this programming problem. In this section,

the participants’ approach to solving the third problem is described, including their initial

 82

task interpretation (i.e., prior to solving the problem), problem-solving approach, and

self-regulation activities.

Jake’s Self-Regulation in the Third Problem

Initial Task Interpretation. Jake described the goal of this problem as

“developing a class diagram and modeling all possible relationships between five or six

different classes, such as players, building, square [space], and items.” Jake was aware

that he needed knowledge and concepts of object-oriented design, including a class

diagram. Since object-oriented programming is an extension of imperative programming

(Lee, 2014), it can be implied that Jake is also referring to needing basic programming

knowledge. It was clear that Jake’s explicit understanding of this problem was correct.

Jake recognized that he needed to consider around ten requirements described in

the problem when designing the solution and that he could not remember everything,

except that there would be “player classes, items, buildings, player-action per turns, and

all interacted in a specific way.” In other words, Jake acknowledged there were many

requirements that he needed to consider when solving this problem.

He believed that his Software Development (CS5700) course and work

experience in refactoring a program would be valuable assets. Further, Jake elaborated

that in the software development course, students were required to engage in similar

planning activities (i.e., developing a class diagram) before writing any code. Refactoring

is an advanced programming task, which is defined as "the process of changing a

software system in such a way that it does not alter the external behavior of the code yet

improves its internal structure” (Fowler & Beck, 1999, p.xvi). When refactoring, the

 83

programmer must have both the overall and specific knowledge about the program and

then develop an adjustment plan while keeping the program’s external behavior intact.

As part of his implicit understanding of this problem, Jake described five steps to

solve it. First, he needed to reread the problem. The previous explained implicit

understanding (i.e., the paragraph above) influenced this first step, in which he was aware

of multitudinous requirements and constraints in this problem but could not remember all

of those. Second, he needed to create a rough draft of possible classes. Third, he needed

to use entity-relationship diagram (ERD) notation to express the relationships among

classes. He mentioned, “I have been working on the entity-relationship diagram a week

and a half ago, so I want to model the classes’ relationships like that,” suggesting that

Jake was more familiar with ERD compared to the class diagram because he engaged

with ERD recently. The ERD is commonly used to describe a relational structure of a

database system (TechTarget, n.d.), not a structure of an object-oriented system.

Therefore, some classes’ relationships could not be expressed correctly using the ERD,

such as inheritance and realization. Fourth, he needed to iteratively adjust the classes’

relationships until all the requirements were met. Fifth, he needed to evaluate his progress

and identify chances to optimize, clarify, or simplify the design.

Problem-Solving Approach. As presented in Figure 5-1, Jake’s approach to

solving the problem was aligned with his initial problem-solving steps (i.e., the paragraph

above). Since, he was starting “off with a vague idea of what the requirements were,”

Jake began by identifying the task goal and subgoal, and then went through each problem

requirement sequentially twice. In his first iteration (i.e., went through the requirements),

 84

Jake reread, interpreted, and solved each problem requirement. In other words, he was

enacting the first, second, and third problem-solving steps. In his second iteration, Jake

monitored his progress and clarified and simplified his design, which aligned with his

fourth and fifth problem-solving steps.

Figure 5-1. Jake’s approach for the third problem.

 85

Figure 5-1 presents Jake’s problem-solving approach using a modified flowchart,

in which the notations are consistent with the common flowchart symbols (Lucid

Software Inc., n.d.), but it assumes the first and the last box as the first and last activity,

respectively. The boxes represent Jake’s observed problem-solving activities, the texts on

the left represent the number of codes related to Jake’s observed task interpretation (TI),

and monitoring and adjusting on TI (MA-TI), and the texts on the right provide short

elaborations on his problem-solving activity.

During his problem-solving endeavor, Jake was observed verbalizing 112

instances of strategic actions including 26 task interpretation (TI), seven planning

strategies, 18 enacting strategies, 52 monitoring (M) activities, and nine adjustment (A)

strategies; the number of code is presented to provide a better picture of the participant’s

self-regulation. Butler & Cartier (2005) argues each strategic action (i.e., planning,

enacting, monitoring, and adjusting) starts with task interpretation, and any monitoring

activities on task interpretation can result in a revised understanding of the problem. The

researcher found all Jake’s observed planning and enacting strategies were aligned either

with his initial understanding of the problem or observed task interpretation and

monitoring and adjusting activities on his understanding of the problem. For example,

when incorporating building level requirement into his design, Jake said:

“So... since this game is only 20 turns long, I am going to limit it [the building's

level] at three, and each [building] has a level 1 property, level 2 property, and

level 3 property” (i.e., a planning strategy).

 86

Jake’s decision to limit the building levels to three was informed by his understanding

that there were only 20 turns in the game. Since this study focus on task interpretation

and all Jake’s other observed strategic actions were sequels of his task interpretation,

focusing further analysis on his observed TI and MA-TI would be sufficient to answer the

research questions. As presented in Figure 5-1, Jake’s TI and MA-TI activities occurred

throughout the problem-solving process, which suggests that he was continuously

refining his understanding of the task as he worked through the problem.

When interpreting the requirements, Jake did not only consider given information

but also integrated various issues, including original Monopoly’s rules, prior gaming

experience, the probability distribution of everyday events, the hypothetical company’s

structure, gameplay, and his awareness on his partial understanding of the game

requirements. As a result, Jake’s interpretations of the problem were sometimes beyond

what was expected from the problem. For example, when interpreting the virtual dice’s

behavior, he considered the real-life dice’s behavior and said:

“Well, in the original game it [the dice’ values] was [between] 2 to 12, but it had

a probability curve that was greater towards the center. Do I need to mimic that

too?” (i.e., monitoring his task interpretation).

Since the problem description did not have any specific instruction related to such

behavior, Jake’s decision to include it might be influenced by his prior experience,

interest, or something else. He later confirmed (i.e., during the interview) that he had a

passion for probability distribution functions. While this study considers the nature of

Jake’s contemplations as part of his self-regulation, other researchers may consider it as

 87

examples of deep thinking (Fischer & Hommel, 2012; Renesse & DiGrazia, 2018;

Wiersema & Licklider, 2009).

As presented in Figure 5-1, Jake occasionally monitored and adjusted his task

interpretation throughout his problem-solving endeavor, in such that 26.23% of his

monitoring and adjusting activities were related to task interpretation; the MA-TI

percentage is given to provide a better picture on the participant’s self-regulation. His

MA-TI activities were related to remembering the requirements, associating his

understanding of the problem with known concepts, confirming his interpretation by

rereading the problem description, being aware of forgotten requirements, interpolating

his interpretation, and adding creativity to the design, and all except the first two resulted

with a revised task interpretation. For example, when he was wondering whether a Player

could take multiple actions per turn, he said:

“So, 1-to-1. In every turn [a Player] will have to move … [based on] possible

actions. Can they take multiple actions per turn? [Re-reading the problem

description] ‘They can choose to do any of the following,’ I imagine that means

any one of the following [actions]. So, possible of 0 actions or 1, and at most one

action per turn” (i.e., monitoring and adjusting his task interpretation).

In the first sentence, Jake was interpolating his understanding of the problem by

considering multiple actions per turn. In the second, third, and fourth sentences, Jake was

confirming his interpolation by rereading the problem description and then came up with

the most relevant conclusion.

 88

By comparing Jake’s final design against the problem-space map, there were

some missing design details including Items benefit for the Players, the access level (e.g.,

public or private) of the classes’ properties and methods*, the trigger for special

instruction*, the mechanics for determining Players’ location on the board, the mechanics

for initializing all game instances*, the mechanics for declaring the winner and stop the

game*, and the classes’ constructors*. The issues with an asterisk (*) were most likely

caused by the limitation of ERD and its notations. As stated earlier, the ERD is not

designed to describe an object-oriented system. This finding suggests that Jake’s

interpretation was incomplete and most of his incomplete interpretations were caused by

selecting inappropriate modeling language for solving the problem. Jake’s situation is

consistent with Isomöttönen & Tirronen (2013)’s argument that relevant knowledge and

skills are essential for having accurate and efficient self-monitoring activities.

Rusty’s Self-Regulation in the Third Problem

Initial Task Interpretation. Rusty described the goal of this problem as

“create[ing] a logic layer inside of our program that can function completely without

interaction from the graphical user interface or user.” Rusty’s statement implied that he

recognized the problem requirements as part of the game logic. The decoupling between

the application logic and user interface is one of the best practices in software

engineering (Boudreau, Tulach, & Unger, 2006; US7837556B2, 2001; US8924845B2,

2008; Rails Community, 2014; Unity Technologies, 2018). During the interview, Rusty

shared that he learned about the logic-GUI-decoupling in one of his programming course

assignment. He believed that resorting to logic and GUI coupling would introduce many

 89

bugs and also complicate the program maintenance. Rusty was aware that he needed

knowledge and concepts of inheritance for describing the Character, Items, and Building,

and an understanding on “how to write a good class diagram so that they [people in a

hypothetical company] are prepared to use my code.” Since the object-oriented

programming is an extension of the imperative programming (Lee, 2014), it can be

implied that he is also referring to needing basic programming knowledge. It was clear

that Rusty’s explicit understanding of this problem was correct.

Rusty recognized that he needed to follow “clearly listed requirements and

constraints” while also exercising his creativity when applicable. Although he had never

designed a system of a similar size, he believed that his relevant programming

assignments (i.e., related to inheritance and class diagram) would be valuable assets.

During the interview, Rusty shared that the problem size made him worry, especially

because due to multiple interactions in the game and said, “it is hard to assess: Is the

design too open? Is this [design decision] to prone to bugs? Or have I… [made] it only

communicate when it needs to?”

Related to steps for solving the problem, Rusty wrote:

“First, I would draw up the class diagram to give myself a sort of roadmap for

completing the assignment. Once I feel I have made it as robust as possible, I

would start implementing super- and sub-classes case by case. It will be important

to make sure that as I go forward, I am constantly referring to the requirements

and constraints to make sure I am successfully completing the assignment.”

 90

Based on his description, Rusty’s first step was identifying and creating classes based on

the task description. His second step was restructuring the classes by utilizing the

inheritance concept. Additionally, while designing, he would continuously monitor his

progress and design compliance with the requirements.

Problem-Solving Approach. As presented in Figure 5-2, Rusty’s approach to

solving the problem was slightly different from his initial problem-solving approach (i.e.,

the paragraph above). Rusty began by verifying the problem goal, which was providing a

class diagram. This step was not mentioned in his problem-solving approach. He then

continued by rereading the problem description to “make sure that I do understand, and

that there are no any small details that I forgot.” Similarly, this process was not

mentioned as one of his problem-solving steps. During the interview, Rusty explained

that he frequently reread a problem description multiple times prior solving it because he

was aware that “there were sentences and little lines that I did not catch the first time I

read it.” Therefore, it was possible that Rusty did not mention this step because he

considered it as an inherent problem-solving approach. Interestingly, even though he was

aware that he might miss some small critical details when he first read the problem

description, Rusty only made mental notes during his rereading endeavor. Rusty then

created the class diagram for each issue (e.g., the Board class, its properties and methods,

and sub- and supporting classes and their relationships) based on his interpretation, and

optimized the classes as he moved forward. During his design endeavor, he frequently

monitored his progress and the design compliance with the requirements. In other words,

 91

Rusty enacted his problem-solving steps after confirming the problem goal and rereading

the problem description.

When solving this problem, Rusty was observed verbalizing 331 instances of

strategic actions including 55 task interpretation, 21 planning strategies, 32 enacting

strategies, 204 monitoring activities, and 19 adjustment strategies. Butler & Cartier

(2005) argues each strategic action (i.e., planning, enacting, monitoring, and adjusting)

starts with task interpretation, and any monitoring activities on task interpretation can

result in a revised understanding of the problem. The researcher found all Rusty’s

observed planning and enacting strategies were aligned either with his initial

understanding of the problem or observed task interpretation and monitoring and

adjusting activities on his understanding of the problem. For example, when designing

the Items for the Character class, Rusty extended his understanding of that issue and said:

“… pretty sure that a Character will start with some predefined Items; I remember

it saying that. [Writing it down] Array of Items and then as well as an amount of

money that they start with” (i.e., task interpretation followed by enacting

strategy).

Rusty’s decision to include starting amount of money inside the Character class was

informed by his understanding of the problem requirements on that issue. Since this study

focus on task interpretation and all Jake’s other observed strategic actions were sequels of

his task interpretation, focusing further analysis on his observed TI and MA-TI would be

sufficient to answer the research questions. As presented in Figure 5-2, Rusty’s TI and

MA-TI activities occurred throughout the problem-solving process, which suggests that

 92

he was continuously refining his understanding of the task as he worked through the

problem.

Figure 5-2. Rusty’s approach for the third problem.

 93

When interpreting the requirements, Rusty considered not only the provided

information but also various issues, including the design clarity for future maintenance,

prior gaming experience, gameplay, and his awareness of his partial problem

understanding. Consequently, Rusty occasionally interpreted the task beyond what was

required of the problem. For example, when he was describing the Item class’

characteristics, he contemplated whether the Item had a price value or not and made a

deduction by considering one of the item-related actions; he said, “…but if you can

purchase them [items] from a shop, my assumption is that they do have a value” (i.e.,

task interpretation).

Rusty was observed engaging in monitoring and adjusting activities throughout

his problem-solving endeavor, and as presented in Figure 5-2, 21.52% of those activities

were related to task interpretation. In more specific, these MA-TI activities were about

remembering the requirements, translating understanding to known concepts, clarifying

problem scope, rereading the problem description, recognizing forgotten requirements,

expanding understanding of the problem, and adding creativity to the design. All except

the first two issues resulted in a revised task interpretation. As an example, when Rusty

was generating possible implementations of Item’s and Character’s unique benefits and

abilities respectively, he was overwhelmed by the vast possibilities. Rusty then said,

“There is a lot of implementation [details] if you want to make it a robust game; we

would not focus on that too much” and stopped generating further examples and

refocused his problem-solving effort to complete the rest of the requirements.

 94

By comparing Rusty’s final design against the problem-space map, there were

some missing design details including the mechanics for initializing starting Items and

money, initializing Buildings on the Board, declaring a winner, and stopping the game.

Further, there were some design issues that he thoughtfully considered and solved but not

written including the details of special abilities, mechanic for virtual dice, Items benefit

for the Characters, and limiting the number of players, board spaces, and turns. Renumol

et al. (2010) reported that computer programming requires various cognitive skills and

interplay of different level of abstractions which consequently increased brain processing

load. Wing (2008) also postulates a similar argument in the context of computational

thinking. Therefore, it was possible that Rusty’s extensive problem-solving engagement

incited his brain to clear some space in the working memory, and combined with lack of

design notes, caused him to forget these design details. Anderson & Jeffries (1985)’ study

offers an explanation for the fact that Rusty still forgets these design details despite his

continuous monitoring. They reported that students tend to oblivious to programming

errors when there is information lost in their working memory, but the resulting

programming is still justifiable. Therefore, this finding suggests that Rusty’s

interpretation was incomplete and most of his incomplete interpretations were caused by

limited monitoring strategies, such as creating a design note.

Anne’s Self-Regulation in the Third Problem

Initial Task Interpretation. Anne described the goal of this problem as

“develop[ing] class diagram from given constraints.” Anne was aware that she needed

knowledge and concepts of object-oriented design, including a UML class diagram. Since

 95

object-oriented programming is an extension of imperative programming (Lee, 2014), it

can be implied that she is also referring to needing basic programming knowledge. It was

clear that Anne’s explicit understanding of this problem was correct.

Anne recognized that she needed to “follow given constraints, be creative in [the]

development, and [produce a] clear design” so people in the hypothetical company could

easily implement it. She elaborated that “You need to make sure that everything is …

organized in a logical way” so people could easily understand how the classes work

together. Anne believed that any programming assignments, especially object-oriented

projects, would be valuable assets. Further, she said, “I think programming [experience]

gives you a feel for how many classes is too many, does that [behavior] require its own

class or could it just be a function.”

As part of her implicit understanding of this problem, Anne described two steps to

solve it. First, she needed to “go through each of the requirements and make a list of all

the classes I think I need.” She also said, “I think there were nine of them, but I do not

remember them all,” which explains the need to reread the problem description. Second,

she needed to holistically think about the classes and requirements, such as “how do these

relate to each other? Are any of them like subclasses?”

Problem-Solving Approach. As presented in Figure 5-3, Anne’s approach to

solving the problem was aligned to some extent with her initial problem-solving steps

(i.e., the paragraph above). Anne began by monitoring the problem goal so she could

direct her effort to achieve it. She then reread the problem description, while creating a

list of needed classes and holistically thinking about the classes’ properties, methods, and

 96

relationships. In other words, she was enacting her problem-solving steps. After finishing

reading the problem description, Anne stopped and thought about adding her creativity to

the design; she said, “So if I was going to be creative... I honestly do not know. Maybe I

will just start designing and then see if I think of something.” Anne admitted that

creativity was not one of her strengths. Anne then continued by creating and enhancing a

class diagram while continuously aligning her design to satisfy the requirements; this

activity was not elicited in her problem-solving step.

Anne was observed verbalizing 170 instances of strategic actions during her

problem-solving endeavor, including 25 task interpretation, two planning strategies, 11

enacting strategies, 124 monitoring activities, and eight adjustment strategies. Butler &

Cartier (2005) argues each strategic action (i.e., planning, enacting, monitoring, and

adjusting) starts with task interpretation, and any monitoring activities on task

interpretation can result in a revised understanding of the problem. The researcher found

all Anne’s observed planning and enacting strategies were aligned either with her initial

understanding of the problem or observed task interpretation and monitoring and

adjusting activities on her understanding of the problem. For example, when

incorporating an abstraction of various structure types (e.g., shop) in the Space class,

Anne said, “Okay, so Foos are made up of I-they are either Building, Shops or

Instructions; [writing it down] so Spaces are made up of Foos” (i.e., monitoring followed

by enacting strategy). Anne’s abstraction (i.e., the Foo class) was informed by her

understanding of various structural types that could exist on a Space. Since this study

focus on task interpretation and all Anne’s other observed strategic actions were sequels

 97

of her task interpretation, focusing further analysis on her observed TI and MA-TI would

be sufficient to answer the research questions. As presented in Figure 5-3, Anne’s TI and

MA-TI activities occurred throughout the problem-solving process, which suggests that

she was continuously refining her understanding of the task as she worked through the

problem.

Figure 5-3. Anne’s approach for the third problem.

 98

When understanding the requirements, Anne considered the gameplay and the

original Monopoly’s rules, which enabled her to have sufficient interpretations for

solving the problem. She was also observed making a direct connection between the

requirements and associated approaches to accomplish them. For example, when reading

one of the requirements, she said, “Then in [reading the problem description] their turn,

each player must move, and they can choose to do any of the following; so we need an

Action class” (i.e., task interpretation). In this example, Anne instantaneously identified

that she needed an Action class. Ashcraft (1992) argues that instantaneous thinking is

possible as a result of continuously exercising a particular problem-solving strategy

which then strengthens the association between the nature of the problem and the

corresponding approach to solving it. Thus, it is reasonable to assume that Anne’s

programming experience enables her to quickly drawing connections between the

requirements and associated approaches.

As presented in Figure 5-3, Anne occasionally monitored and adjusted her task

interpretation throughout the problem-solving endeavor, in such that 28.03% of her

monitoring and adjusting activities were related to task interpretation. Her MA-TI

activities were related to remembering the requirements, associating her understanding of

the problem with known concepts, clarifying problem scope, confirming her

interpretation by rereading the problem description, and interpolating her interpretation,

and all except the first two resulted in a revised task interpretation.

Anne was also observed initiating a discussion with the researcher about her

interpretations or approaches, which suggests that she often worked in a pair or a group

 99

and that the research setting might negatively affect her problem-solving process. When

being asked about that during the interview, she shared that she had a good friend and

they often worked together in various courses. However, Anne’s behavior (i.e., initiating

a discussion with the researcher) does not suggest a lack of self-efficacy for solving the

problem or over-reliance on teamwork. During the last interview, Anne shared that she

participated in a team programming contest and was on the top 15th out of 200 teams,

suggesting an exceptional self-efficacy on her programming skills. Further, Anne

participated alone, which suggests she had outstanding self-reliance. Thus, Anne’s

behavior (i.e., initiating a discussion with the researcher) demonstrated her competency in

using various coregulation skills. Coregulation is a transitional process in which the

learners define and update their self-regulation skills for solving a problem through

interaction with peers (Hadwin, Jarvela, & Miller, 2011; Rivera-Reyes, Lawanto, & Pate,

2016).

After initiating a discussion and learning that the researcher could not give any

suggestions, Anne continued designing the Space class and said, “Well, okay, so Spaces

have... um... my learning report is going to be: we do not know how you made it through

this far actually” (i.e., monitoring activity). Considering the substance and its timing, the

researcher recognized this statement as part of her emotion regulation.

By comparing Anne’s final design against the problem-space map, there were

some missing design details including the classes’ and methods’ access level, creativity

enhancement, and mechanics to identify the Players’ position on the board. A clarity

 100

issue related to the robustness of one of the methods in handling the game logic also

existed. This finding suggests that Anne’s final interpretation was incomplete.

LStew’s Self-Regulation in the Third Problem

Initial Task Interpretation. LStew described the goal of this problem as “to

design a system that implements the rules of monopoly in an object-oriented way and that

is creative and easy to build upon and add to.” She was aware that she needed knowledge

and concepts of object-oriented design (e.g., classes, inheritance, dependencies, and

decoupling), “UML class diagram, and ease-of-use [in software design].” Since the

object-oriented programming is an extension of the imperative programming (Lee, 2014),

it can be implied that LStew is also referring to needing basic programming knowledge.

Seffah, Donyaee, Kline, & Padda (2006) argue there are ten critical factors in software

usability (or ease-of-use) including efficiency, effectiveness, productivity, satisfaction,

learnability, safety, trustfulness, accessibility, universality, and usefulness. It was clear

that LStew’s explicit understanding of this problem was correct.

LStew recognized that she needed to “follow the rules and constraints described

in the problem” while also exercising her creativity when applicable. She was also aware

that other people in the hypothetical company would use her code and that she needed to

avoid common object-oriented programming pitfalls by reducing coupling and avoiding

the diamond of death. In software design, coupling refers to “to the degree to which

software components are dependent upon each other” (TechTarget, n.d.). Thus, tightly-

coupled components increase the interdependencies, complexities, and maintenance

costs. For example, a programmer needs to update component A of a software system.

 101

However, since component A is tightly-coupled with B and C, the programmer need also

to update these two components to ensure the system could work properly. In some

programming languages, it is possible for a class to inherit properties and methods from

more than one parent classes. The diamond of death is a situation where two or more

parent classes have an identical public method signature (e.g., public void printMe()) and

is not overridden by the child class (geeksforgeeks, n.d.). In such circumstances, it will be

hard to determine from which parent the child class will inherit the method (e.g.,

printMe()). LStew believed that her experience in Object-Oriented Software

Development (CS5700), Introduction to Computer Science 2 (CS1410), and Algorithm

and Data Structures (CS2420) courses would be valuable assets.

LStew described eight steps to solve the problem. First, she needed to identify and

create a list of requirement. Second, she needed to create a class diagram based on her

understanding of the problem. Third, she needed to observe and create interfaces for any

possible interplay among the classes. Fourth, she needed to review if there was any

noticeable design pattern to be followed. Fifth, she needed to look for any poor design

choices. Sixth, she needed to find opportunities for adding creativity to the design, and

then noted that instead of performing this plan later, she might as well do it iteratively as

she was solving the problem. Seventh, she needed to verify that all requirements were

met by rereading the problem description.

Problem-Solving Approach. As presented in Figure 5-4, LStew’s approach to

solving the problem was aligned to her initial problem-solving approach (i.e., the

paragraph above) to some extent, in such that instead of enacting the steps sequentially,

 102

she combined them. She began by organizing the requirements and identifying the classes

including their characteristics and relationships, which was aligned with her first

problem-solving step. LStew continued by reviewing her notes and then drawing

identified classes and their characteristics. While she was solving each issue (e.g., the

Character class, its properties and methods, and sub- and supporting classes and their

relationships), LStew continuously enhanced the design by describing the classes’

interfaces, utilizing design known patterns, assessing the benefits of alternative design

options, adding her creativity, and ensuring the design compliance with the requirements.

In other words, LStew was enacting her second to seventh problem-solving steps.

When solving this problem, LStew was observed verbalizing 262 instances of

strategic actions including 84 task interpretation, six planning strategies, 27 enacting

strategies, 125 monitoring activities, and 20 adjustment strategies. Butler & Cartier

(2005) argues each strategic action (i.e., planning, enacting, monitoring, and adjusting)

starts with task interpretation, and any monitoring activities on task interpretation can

result in a revised understanding of the problem. The researcher found all LStew’s

observed planning and enacting strategies were aligned either with her initial

understanding of the problem or observed task interpretation and monitoring and

adjusting activities on her understanding of the problem. For example, when designing a

function for the Shop class, LStew said:

“And a shop, when you sell an item to a shop, it needs to detract an item from the

Player, so it [shop] should own that [number of items]. [Writing it down] So

shop, item, there's a function” (i.e., task interpretation by enacting strategy).

 103

LStew’s decision to add a function for handling a possible action of selling an item was

informed by her understanding of the entailed data flow. Since this study focus on task

interpretation and all LStew’s other observed strategic actions were sequels of her task

interpretation, focusing further analysis on her observed TI and MA-TI would be

sufficient to answer the research questions. As presented in Figure 5-4, LStew’s TI and

MA-TI activities occurred throughout the problem-solving process, which suggests that

she was continuously refining her understanding of the task as she worked through the

problem.

When interpreting the requirements, LStew considered not only the provided

information but also various issues, including known design pattern, prior gaming

experience, gameplay, and her awareness of her partial problem understanding.

Consequently, LStew occasionally interpreted the task beyond what required of the

problem. For example, when she was figuring out the nature of special abilities, she said,

“Special abilities… I am trying to think of how that works out because I do not remember

special abilities in the characters [that] I used to [play in] monopoly” (i.e., task

interpretation). She then generated some possible implementation of special abilities,

such as “If I am a King, maybe I get automatic discount … and if I am a thief, maybe I

have the ability to steal [from] a building.” During the interview, she clarified that

although it was not necessary to find examples of special abilities, it helped her to

understand their purpose and how to incorporate their behaviors in the class diagram

(e.g., the methods’ parameters).

 104

LStew was observed engaging in monitoring and adjusting activities throughout

her problem-solving endeavor, and as presented in Figure 5-4, 33.10% of those activities

Figure 5-4. LStew’s approach for the third problem.

 105

were related to task interpretation. In more specific, these MA-TI activities were about

remembering the requirements, associating her understanding of the problem with known

concepts, clarifying problem scope, confirming her interpretation by rereading the

problem description, interpolating her interpretation, and adding creativity to the design.

All except the first two issues resulted in a revised task interpretation. As an example,

after generating various possible implementations of special abilities, she assessed

whether these possibilities corresponded the nature of board games; she said, “Okay I am

going to take a step back and think about if I was playing this game as an actual board

game, what would I do with the king?” (i.e., monitoring activity).

LStew was also observed self-regulating her emotion throughout the problem-

solving endeavor. For example, after applying the singleton pattern to the Board and

Game classes, she said, “That makes me feel a little better, knowing that I have got some

patterns I can use …” (i.e., monitoring emotion). Singleton pattern is an object-oriented

design technique to ensures that a class (i.e., blueprint) can only have one instance (i.e.,

product) at a time (Freeman et al., 2004; TechTarget, n.d.). It was important to note that

utilizing various design pattern was part of LStew’s problem-solving approach which

also improved the design clarity.

By comparing LStew’s final design against the problem-space map, there were

some missing design details including the classes’ properties and methods’ access level.

Further, there were some design issues that she thoughtfully considered and solved but

not written including the mechanics to store building’s owner and identify the player’s

 106

location on the board. Therefore, this finding suggests that LStew’s interpretation was

incomplete.

Participants’ Self-Regulation in Solving the Fifth Problem

The fifth problem was the Last Standing Man. This well-structured problem asked

the participants to write pseudocode (i.e., non-specific programming language) that

simulated each step in given procedure to determine the last standing man. The problem

provided detailed requirements and constraints including at least five issues, one

function, and 4 to 41 variables within a dynamic subsystem. Under the Bloom’s

Taxonomy described in Gronlund et al. (2013), this problem is at level 6.3 which is

creating a product for a specific purpose. Gronlund et al. (2013) subcategorize level 6

Bloom’s Taxonomy (i.e., creating) into three, which are generating/hypothesizing,

planning/designing, and producing/constructing. It was necessary to a least know basic

programming to answer this question. Chapter IV presents a detailed discussion of this

programming problem. In this section, the participants’ approach to solving the fifth

problem is described, including their initial task interpretation (i.e., prior to solving the

problem), problem-solving approach, and self-regulation activities.

Jake’s Self-Regulation in the Fifth Problem

Initial Task Interpretation. Jake described the goal of this problem as “find[ing]

the position that will remain the longest in a circle of 3 to 40 people.” He was aware that

he needed to have the competency in the art of “making algorithms out of behaviors” and

basic programming knowledge to answer this problem. Jake’s understanding of the task

goal was incomplete because the problems asked him to simulate given procedure and

 107

print out the program’s state every time a rebel die. Since task interpretation is the

“critical first step in SRL” (Butler & Cartier, 2005, p.3). Butler (1995) argues incorrect

task interpretation may lead learners to select and employ ineffective strategies to

complete the task. Thus, Jake’s incomplete task interpretation might influence him to

choose wrong strategies.

Jake recognized that he did not need to consider the program’s speed or memory

used while designing the solution because it would be in pseudocode. However, his

solution needed to be mathematically correct. He also mentioned that he had “the exact

question in Discrete Mathematics” (MATH3000). The BCM describes that learners’ self-

regulation, including task interpretation, is bounded within multiple layers of context and

one of those contexts was related to learners’ experience (Butler & Cartier, 2004a, 2005;

Butler et al., 2015; Cartier & Butler, 2004). Studies reported that students tend to start

solving a problem intuitively and after that, they work interactively and analytically

(Abdillah, Nusantara, Subanj, Susanto, & Abadyo, 2016; Ball, Ormerod, & Morley,

2004; Kahneman, 2003), including when interpreting a problem. Therefore, it was

plausible that Jake’s incomplete understanding was influenced by his experience in this

Discrete Mathematics course.

As part of his implicit understanding of this problem, Jake described three steps to

solve it. First, he needed to try a few examples with inputs of three to eight people to

determine a pattern. Based on Jake’s understanding of the problem, the pattern refers to

parts of the algorithm or formula for solving the problem. Since the pseudocode’s

behavior was given in the problem description and it was necessary to simulate that

 108

behavior as described, finding a pattern was an unnecessary problem-solving step which

was influenced by Jake’s incomplete task interpretation. Second, he needed to

computationally model the pattern, such as using Array or modulus operation. Third, he

needed to assess “other ideas that occurred” during the problem-solving endeavor.

Problem-Solving Approach. As presented in Figure 5-5, Jake’s approach to

solving the problem was aligned with his initial problem-solving steps (i.e., the paragraph

above) to some extent. He began by simulating given procedure using all numbers

between three to eight, inclusive as inputs. He then contemplated on the simulation

results and tried to identify emerging patterns but came out with none. He then conducted

another simulation with nine as input and realized that he would not get a straightforward

pattern due to the nature of the problem. He then continued simulating and identifying

patterns by considering odd and even numbers until he recognized useful patterns. In

other words, Jake was iteratively enacting the first, second, and third problem-solving

steps until he found the patterns. He then wrote the pseudocode and answered the

problem; this activity was not elicited in his problem-solving step.

Figure 5-5. Jake’s approach for the fifth problem.

 109

During his problem-solving endeavor, Jake was observed verbalizing 56 instances

of self-regulation activities including four planning strategies, 42 enacting strategies, 69

monitoring activities, and seven adjustment strategies. Butler & Cartier (2005) argues

each strategic action (i.e., planning, enacting, monitoring, and adjusting) starts with task

interpretation, and any monitoring activities on task interpretation can result in a revised

understanding of the problem. The researcher found all Jake’s observed planning and

enacting strategies were aligned either with his initial understanding of the problem or

observed monitoring and adjusting activities on his understanding of the problem. For

example, most of Jake’s enacting strategies were related to identifying a working pattern

and were informed by his initial task interpretation. Since this study focus on task

interpretation and all Jake’s other observed strategic actions were sequels of his task

interpretation, focusing further analysis on his observed TI and MA-TI would be

sufficient to answer the research questions.

As presented in Figure 5-5, Jake’s MA-TI only occurred once during the problem-

solving endeavor, and it was related to remembering the problem scope. He said, “So

thankfully, I do not have to prove this [pattern] mathematically” (i.e., monitoring

activity). This finding suggests that Jake did not change his task interpretation while

solving the problem, and it was confirmed during the interview. Therefore, Jake’s final

understanding of the problem was still incomplete.

Rusty’s Self-Regulation in the Fifth Problem

Initial Task Interpretation. Rusty described the goal of this problem as “to

determine where in the circle Josephus should be [which position] in order to be the last

 110

man standing.” Rusty was aware that he needed basic programming knowledge,

especially the comprehension of “Arrays with conditional operators and if statements.”

Based on this description, it was clear that Rusty’s understanding of the task goal was

incomplete because the problems asked him to simulate given procedure and print out the

program’s state every time a rebel die. Since task interpretation is the “critical first step in

SRL” (Butler & Cartier, 2005, p.3). Butler (1995) argues incorrect task interpretation

may lead learners to select and employ ineffective strategies to complete the task. Thus,

Rusty’s incomplete task interpretation might influence him to choose wrong strategies.

Rusty recognized that the requirement and constraint of this problem were “the

algorithm must return the correct position, and the chosen number cannot die”

respectively. He then explained this was his first time working on such a problem.

However, Rusty clarified during the interview that he had solved similar problems in the

Discrete Mathematics course, suggesting he could not make an immediate conscious

connection between these two during the initial task interpretation.

As part of his implicit understanding of this problem, Rusty described two steps to

solve it. First, he needed to “do a few examples by hand, given certain inputs … and look

for common patterns that might show up.” He also specified that he was interested in

examining “odd groups and even groups, as well as large and small inputs.” Based on

Rusty’s understanding of the problem, the pattern refers to parts of the algorithm or

formula for solving the problem. Since the pseudocode’s behavior was given in the

problem description and it was necessary to simulate that behavior as described, finding a

pattern was an unnecessary problem-solving step which was influenced by Rusty’s

 111

incomplete task interpretation. Second, assuming he found the pattern, he needed to

“abstract it and put it into code.”

Problem-Solving Approach. As presented in Figure 5-6, Rusty’s approach to

solving the problem was slightly different from his initial problem-solving approach (i.e.,

the paragraph above). Rusty began by simulating given procedure using odd and even

numbers and then contemplated on the outputs, trying to identify emerging patterns.

Although he found promising patterns, he decided to reread the problem description and

realized that he misinterpreted the task. Following his revised task interpretation, Rusty

converted the given procedure into pseudocode. In other words, Rusty was enacting his

first problem-solving step until he realized his misunderstanding of the problem goal.

When solving this problem, Rusty was observed verbalizing 180 instances of self-

regulation activities including 13 planning strategies, 29 enacting strategies, 131

monitoring activities, and seven adjustment strategies. Butler & Cartier (2005) argues

each strategic action (i.e., planning, enacting, monitoring, and adjusting) starts with task

interpretation, and any monitoring activities on task interpretation can result in a revised

understanding of the problem. The researcher found all Rusty’s observed planning and

enacting strategies were aligned either with his initial understanding of the problem or

observed monitoring and adjusting activities on his understanding of the problem. For

example, most of Rusty’s enacting strategies were related to identifying a working

pattern and were informed by his initial task interpretation. Since this study focus on task

interpretation and all Rusty’s other observed strategic actions were sequels of his task

 112

interpretation, focusing further analysis on his observed TI and MA-TI would be

sufficient to answer the research questions.

Figure 5-6. Rusty’s approach for the fifth problem.

 113

As presented in Figure 5-6, there were only twelve observed MA-TI instances and

some of those were related to his revised task interpretation. During that critical time,

Rusty said:

“[Reading the problem description] You have to simulate each step... Oh my,

gosh, I did not read that part thoroughly. [Reading the problem description] You

have to simulate each step and then determine Josephus’ position. Yes, so I was

way overthinking it, [put more emphasis in his voice] way overthinking it” (i.e.,

monitoring activity).

During the interview, Rusty was asked to explain the trigger that encouraged him to

reread the problem description. Rusty responded:

“I kind of hit a cycle and I kept looping back to that [mathematical model of the

pattern], and I was like, okay, something is wrong, I am either not getting

something, or there is something obvious that I am skipping over. … but it was

not until I felt I had exhausted all my resources, best guesses, and ideas…”

Rusty elaborated that he might be “a little bit overconfidence in thinking that I

understood the problem,” especially since he had “past experience with the problem that I

thought was similar but turned out to be very different.”

During the interview, Rusty was asked to elaborate on his next approach under the

assumptions that he did not change his task interpretation, and could not found any

pattern. Rusty responded, “There always a pattern. Sometimes it is not super obvious,”

and then elaborated, “Well, if they [educators] are asking this question, there has got to

be a systematic way to approach it; there has got to be some underlying pattern.” His

 114

responses suggest that in an educational setting, all tasks have answers and can be solved

using the typical problem-solving approaches related to that type of the tasks.

Although Rusty revised his task interpretation, his final solution was still

incomplete, in such that his pseudocode was not designed to display each program state.

Nevertheless, the researcher believes that Rusty had a correct task interpretation because,

during the interview, Rusty said that the problem description provided “a possible

visualization of what it was doing.” Furthermore, he shared that developing a simulation

program with a specific output format was “something that I have done before with other

programming assignments.”

Anne’s Self-Regulation in the Third Problem

Initial Task Interpretation. Anne described the goal of this problem as

“determine[ing the] last surviving space.” She was aware that she needed to have a

competency in the art of “creative problem solving” and although not mentioned

explicitly, she understood that having basic programming knowledge was necessary to

answer this problem. Anne’s understanding of the task goal was incomplete because the

problems asked her to simulate given procedure and print out the program’s state every

time a rebel die. Since task interpretation is the “critical first step in SRL” (Butler &

Cartier, 2005, p.3). Butler (1995) argues incorrect task interpretation may lead learners to

select and employ ineffective strategies to complete the task. Thus, Anne’s incomplete

task interpretation might influence her to choose wrong strategies.

Anne recognized that the “n [number of people] is given with function call”

suggesting that she understood that her pseudocode should correctly handle any given

 115

inputs as described in the problem description (i.e., three to forty). She also mentioned

that she had worked on the “math proof of this problem [but] with a twist” in Discrete

Mathematics course, suggesting that she was aware of the similarities and differences

between these problems.

As part of her implicit understanding of this problem, Anne described three steps

to solve it. First, she needed to try few examples “by hand until a pattern is detected.”

Based on Anne’s understanding of the problem, the pattern refers to parts of the

algorithm or formula for solving the problem. Since the pseudocode’s behavior was given

in the problem description and it was necessary to simulate that behavior as described,

finding a pattern was an unnecessary problem-solving step which was influenced by

Anne’s incomplete task interpretation. Second, assuming she found the pattern, Anne

needed to “program the solution.” Third, she needed to inspect the program’s logic

including for “simplification or edge cases.”

Problem-Solving Approach. As presented in Figure 5-7, Anne’s approach to

solving the problem was slightly aligned with her initial problem-solving steps (i.e., the

paragraph above). She began by monitoring the problem goal and constraints; this

activity was not elicited in her problem-solving step. Anne continued by simulating given

procedure using all numbers between three to seven, inclusive as inputs and contemplated

on the results. She noticed an unlikely pattern and then realized that she was not

following given procedure correctly. Anne repeated the simulation and contemplated,

trying to identify a pattern. While contemplating, Anne had an epiphany that she could

exploit the problem constraints and created pseudocode without having to determine any

 116

pattern. She said, “Since it [the input] is between 3 and 40, I would just program out each

one [input] and have it in an Array and then return F [associated output],” and then

implemented this alternative solution. In other words, Anne only enacted her first

problem-solving step and adjusted the rest.

During her problem-solving endeavor, Anne was observed verbalizing 92

instances of self-regulation activities including 20 enacting strategies, 65 monitoring

activities, and seven adjustment strategies. Butler & Cartier (2005) argues each strategic

action (i.e., planning, enacting, monitoring, and adjusting) starts with task interpretation,

and any monitoring activities on task interpretation can result in a revised understanding

of the problem. The researcher found all Anne’s observed planning and enacting

strategies were aligned either with her initial understanding of the problem or observed

monitoring and adjusting activities on her understanding of the problem. For example,

earlier Anne’s enacting strategies were related to identifying a working pattern and were

informed by her initial task interpretation. Since this study focus on task interpretation

and all Anne’s other observed strategic actions were sequels of her task interpretation,

focusing further analysis on her observed TI and MA-TI would be sufficient to answer

the research questions.

As presented in Figure 5-7, Anne’s MA-TI only occurred at the beginning of the

problem-solving endeavor, and they were related to remembering the problem scope and

assessing whether she misunderstood given procedure’s behavior; both activities did not

alter her task interpretation. Therefore, Anne’s final understanding of the problem was

still incomplete.

 117

Anne was also observed initiating a discussion with the researcher about her

interpretations and approaches, which suggests that she often worked in a pair or a group

and that the research setting might negatively affect her problem-solving process. When

being asked about that during the interview, she shared that she had a good friend and

they often worked together in various courses. However, Anne’s behavior (i.e., initiating

a discussion with the researcher) does not suggest a lack of self-efficacy for solving the

problem or over-reliance on teamwork. During the last interview, Anne shared that she

participated in a team programming contest and was on the top 15th out of 200 teams,

suggesting an exceptional self-efficacy on her programming skills. Further, Anne was

Figure 5-7. Anne’s approach for the fifth problem.

 118

participated alone, which suggests she had outstanding self-reliance. Thus, Anne’s

behavior (i.e., initiating a discussion with the researcher) demonstrated her competency in

using various coregulation skills. Coregulation is a transitional process in which the

learners define and update their self-regulation skills for solving a problem through

interaction with peers (Hadwin, Jarvela, & Miller, 2011; Rivera-Reyes, Lawanto, & Pate,

2016).

Anne first discussion with the researcher was confirming whether her simulation

results were correct. In response and due to surprise, the researcher confirmed the

correctness of her results. After that, Anne noticed mistakes in her simulation results

because she did not accurately follow the given procedure. She then reinterpreted the

given procedure and tried to confirm the new interpretation. She said, “Are you allowed

to tell me that [her new interpretation] is right or do I just have to stay here and bang my

head against the wall?” The researcher responded that he could not answer that question,

and Anne said, “Oh, no! Oh, wow!” It was clear that she was frustrated and surprised by

the researcher’s response. Although Anne continued trying to find a working pattern, she

changed her approach to solving the problem at some point. During the interview, Anne

explained that she was unsure whether she could find the pattern, especially since she

made a mistake in following the given procedure.

During the interview, Anne was asked about the last instruction in the problem

description, which was “You have to simulate each step and then determine Josephus’

position. For example: ….” She said, “That means this is supposed to be the printed out

[program output]. If I call the function with five, then this should be the output of the

 119

function.” Anne elaborated that “I read through this instruction, but I did not remember it.

I guess I got too caught up in solving it and forgot how the actual output looks like.” Her

statements suggest that given enough time and different settings, Anne would be able to

interpret the problem correctly.

LStew’s Self-Regulation in the Fifth Problem

Initial Task Interpretation. LStew described the goal of this problem as “to

write pseudocode that figures out what position Josephus should be at in order to

survive.” She was aware that a competency in “making algorithms out of behaviors” and

basic programming knowledge were necessary to answer this problem. LStew’s

understanding of the task goal was incomplete because the problems asked her to

simulate given procedure and print out the program’s state every time a rebel die. Since

task interpretation is the “critical first step in SRL” (Butler & Cartier, 2005, p.3). Butler

(1995) argues incorrect task interpretation may lead learners to select and employ

ineffective strategies to complete the task. Thus, LStew’s incomplete task interpretation

might influence her to choose wrong strategies.

LStew recognized that “there will never be an input of zero or one because then

the problem would not exist” and that program needed to “take an input, run through the

formula, and return the output.” She also mentioned that she had solved the exact

question in the Discrete Mathematics final examination. Since learners’ self-regulation is

bounded within multiple layers of context, such as learners’ experience (Butler & Cartier,

2004a, 2005; Butler et al., 2015; Cartier & Butler, 2004), and that students tend to start

solving a problem intuitively (Abdillah et al., 2016; Ball et al., 2004; Kahneman, 2003),

 120

including when interpreting a problem, it was plausible that LStew’s incomplete

understanding was influenced by her experience in this Discrete Mathematics course.

When describing the steps to solve the problem, LStew restated the program’s

behavior, which was to read given input, run given input through the formula, and print

out the result, suggesting that it was important to remember the overall program flow

when designing the solution. She then mentioned, “The formula is probably based on

whether or not the number of people in the circle is even or odd” suggesting that finding

an appropriate formula would be her problem-solving goal.

Problem-Solving Approach. As presented in Figure 5-8, LStew’s began by

monitoring the given procedure’s behavior. She then simulated the given procedure,

contemplated on the output, identified emerging patterns, and verified the accuracy of

simulated outputs; she repeated this process until the end of her problem-solving

endeavor. Unfortunately, LStew was unable to solve the problem. Additionally, LStew

was observed expressing her frustration by frequently saying “I am so close!” throughout

the problem-solving endeavor.

When solving this problem, LStew was observed verbalizing 338 instances of

self-regulation activities including four task interpretation, 11 planning strategies, 36

enacting strategies, 277 monitoring activities, and 10 adjustment strategies. Butler &

Cartier (2005) argues each strategic action (i.e., planning, enacting, monitoring, and

adjusting) starts with task interpretation, and any monitoring activities on task

interpretation can result in a revised understanding of the problem. The researcher found

all LStew’s observed planning and enacting strategies were aligned either with her initial

 121

understanding of the problem or observed monitoring and adjusting activities on her

understanding of the problem. For example, most of LStew’s enacting strategies were

related to identifying a working pattern and were informed by her initial task

interpretation. Since this study focus on task interpretation and all LStew’s other

observed strategic actions were sequels of her task interpretation, focusing further

analysis on her observed TI and MA-TI would be sufficient to answer the research

questions.

Figure 5-8. LStew’s approach for the fifth problem.

 122

As presented in Figure 5-8, there were only four and two instances of TI and MA-

TI respectively, and all observed engagements did not alter her task interpretation.

Therefore, LStew’s final task interpretation was still incomplete. Further, LStew inability

to solve this problem might be explained by her lack of monitoring activities on task

interpretation. Schoenfeld (1983) argues that inadequate self-regulation activities may

result in a fail problem-solving attempt.

Addressing the Research Questions

In this section, the answer for each research question is presented by integrating

all participants’ initial task interpretation and problem-solving approach (i.e., the

discussion in the Participants’ Self-Regulation in Solving the Third Problem and

Participants’ Self-Regulation in Solving the Fifth Problem sections). Since there were

two units of analysis, which were the third and fifth problem, the discussion for each

question is grouped by these units.

Research Question 1: What was the students’ initial task interpretation of the given

problems?

The Third Problem. Jake, Rusty, Anne, and LStew were able to correctly

identify the explicit aspect of the third problem including determining the problem goal

and provided requirements and constraints. Due to its size (i.e., had at least 18 issues, 24

functions, and 22 variables), the participants could not remember all the requirements and

constraints. When interpreting the implicit aspect of the task, all participants were able to

draw relevant experience from their programming courses. Jake also considered his

refactoring experience during his internships as relevant. All participants correctly

 123

understood that having object-oriented design and basic programming skills were

essential to solving this problem. When describing their problem-solving steps, all

participants expressed that they would iteratively solve the problem, either by going

through the identified issues or listed requirements, while continuously optimizing (e.g.,

restructuring the classes or utilizing known design patterns), adding creativity, and

aligning the design to comply with the requirements. This finding supports Felder &

Soloman (n.d.)’s report that computer science students like to work linearly, handle facts

and details, and monitor their progress periodically.

When interpreting the task, Jake, Rusty, and LStew also considered software

design best practices related to easing the software maintenance, software usability, and

design clarity. There were no notable differences between male and female or higher- and

lower-performance participants’ initial task interpretation. However, Jake’s interest in

probabilistic affected his task interpretation, especially related to the dice’s behavior.

The Fifth Problem. Jake, Rusty, Anne, and LStew were unable to correctly

identify the problem goal, in such they did not recognize that the problems asked them to

simulate given procedure and provide a print out of the program’s state every time a rebel

die. Since all participants mentioned that they had worked on a similar problem in their

Discrete Mathematics course, plausibly that experience profoundly influenced their task

interpretation. This argument is consistent with SRL theory, which argues that students’

experience influence their self-regulation (Butler & Cartier, 2004a, 2005; Butler et al.,

2015; Cartier & Butler, 2004) and that students tend to start working intuitively (Abdillah

et al., 2016; Ball et al., 2004; Kahneman, 2003). Further, that experience negatively

 124

affected their interpretation of the requirements and constraints and their problem-solving

steps. As an example, all participants thought that they needed to identify patterns to

solving the problem, which was unnecessary. However, not all of the participants’ task

interpretations were wrong, for example, LStew correctly interpreted that “there will

never be an input of zero or one because then the problem would not exist.” This finding

suggested having an incorrect task interpretation did not negatively influence other

follow-up task understandings. Furthermore, in developing their problem-solving

approach, the participants assumed they would be able to identify the patterns, which was

worrying because it made them not generating any alternative approach in case

something went wrong.

The finding suggested that the participants’ incorrect task interpretations were

caused by drawing knowledge and strategies from the Discrete Mathematics course.

Their misinterpretations were systematic and made most of them oblivious to it. Such

phenomenon is commonly known as confidence bias, which is “a systematic error of

judgment made by individuals when they assess the correctness of their responses to

questions relating to intellectual or perceptual problems” (Pallier et al., 2002, p.258).

There were no notable differences among male and female participants’ initial

task interpretation. However, a contrast was found between higher- and lower-

performers. When interpreting the requirements and constraints of the problem, Rusty

and LStew focused on the explicit aspect of the task, while Jake and Anne focused on the

implicit aspect. For example, Jake interpreted that speed and memory utilization could be

ignored because he only had to create pseudocode.

 125

Research Question 2: How did their original understanding change during the

problem-solving endeavor?

The Third Problem. All participants were continuously refining their

understanding throughout the problem-solving process. Rusty’s comment during the

interview accurately describe this phenomenon:

“The general understanding did not really change because I knew that I was going

to be creating this class diagram, but as far as the [understanding that affect my]

design decisions, it changed a lot” [Rusty - Third Problem Interview].

On average, each participant was observed verbalizing 41 task interpretation and 37

monitoring and adjusting activities related to their interpretation, which was 21.71% and

17.03% respectively of their total observed strategic actions. The TI and MA-TI

percentages are given to provide a better picture of the participants’ self-regulation.

Although the participants continuously refined their problem understanding, their final

task interpretations were still incomplete, suggesting that they were overwhelmed with

the detailed of the task. This interpretation was consistent with Butler & Winne (1995)’s

argument that being overwhelmed might lower students’ self-regulation skills. Further,

there were two other identified strategies that partially contributed to the participants’

incomplete task understanding, which were selecting inappropriate modeling language

and limited monitoring strategies.

There were no notable differences among male and female participants, as well as

between higher- and lower- performers. However, Anne’s revised task understanding was

distinct compared to other participants. Most of her revised interpretation of the task were

 126

unrelated to incorporating her creativity into the design. Plausibly, this trend was

influenced by her low self-efficacy in creativity.

The Fifth Problem. All participants, except Rusty, did not change their task

interpretation during the problem-solving endeavor. Each participant on average was

observed verbalizing one task interpretation and four monitoring and adjusting activities

related to their interpretation, which was 0.55% and 2.32% respectively of their total

observed strategic actions, suggesting that they had limited task interpretation-related

engagements. The TI and MA-TI percentages are given to provide a better picture of the

participants’ self-regulation. It was worth noting that the participants’ TI and MA-TI

engagements in this problem were substantially smaller compared to the third problem.

Plausibly, the different problems’ characteristics and the participants’ familiarity with the

fifth problem influenced their engagements.

 The participants’ final task interpretations were identical to their initial

understanding of the problem. This finding supports Falkner et al. (2014)’s report that

some students are unable to align their problem-solving goal with the assessment criteria.

Rusty was an exception because he was able to gain an accurate understanding of the

problem during the problem-solving endeavor. Rusty was observed verbalizing twelve

monitoring activities related to his interpretation, which was 8.70% of his total observed

strategic actions. Rusty’s MA-TI engagements were higher compared to the other

participants’ average MA-TI activities. Aside from this, no other dissimilarities found

among different genders and performance levels.

 127

Research Question 3: What were the influencing factors for any revisions of their

initial task understanding?

The First Problem. Two factors influenced the participants to revise their task

understanding. First, they recognized the extensive requirements and could not remember

all of those, in such it prompted the participants to reread the problem description as if

they understood it for the first time. These phenomena were captured during the

qualitative coding (see Qualitative Coding Results section for more detailed discussion).

Second, all participants were aware that in designing a system, understanding how the

requirements (or the associated classes) work together was critical. During a

programming design activity, students need to employ various cognitive skills and

consider the interplays of varying levels and types of abstractions (Renumol et al., 2010;

Wing, 2008). Recognizing various levels and types of abstractions implies engaging in a

structured problem decomposition, which according to students, is one of the critical

computer science skill that is hard to master (Falkner et al., 2014).

The Fifth Problem. Since Rusty was the only participant who revised his task

interpretation, the researcher only used his problem-solving approach to answer this

research question. During the interview, Rusty’s explained that his problem-solving

endeavor was stagnant at a certain point and it alerted him that there was something

wrong; he said, “I am either not getting something, or there is something obvious that I

am skipping over.” Rusty then reread the problem description and adjusted his task

interpretation.

 128

Rusty’s behavior offers a new light in understanding Carver & Scheier (1990)’s

study, in which they argue that when facing an obstacle (e.g., missing information or

lengthy process), students will assess their progress and success probability, and adjust

their strategies accordingly. Ge, Law, & Huang (2016) postulate that during a problem-

solving process, learners work and self-regulated themselves within the problem-space

and solutions-space and their self-regulation in these spaces are not the same. Using their

theory, it is clear that Carver & Scheier (1990)’s argument is within the solution-space

boundary. Rusty’s behavior suggests that when facing an obstacle, students may also

return to the problem-space, revise their task interpretation, and then adjust their

strategies accordingly.

 129

CHAPTER VI

DISCUSSION, CONCLUSION, IMPLICATION, AND RECOMMENDATION

Introduction

In this chapter, the conclusion of the study is discussed, followed by its

implication and recommendation for future studies.

Discussion and Conclusion

The study findings suggest that the participants were cognizant of various

programming problems and able to adjust their problem-solving approach accordingly,

including when interpreting a task. Furthermore, the findings also reveal the nature of

students’ explicit and implicit task interpretation and their revision, which will be

discussed separately.

The explicit aspect of task interpretation refers to the “information that is overtly

presented in task descriptions and discussions” (Hadwin et al., 2009, p.2), including the

participants’ understanding of the problem goal and provided requirements and

constraints. The findings suggest that the participants were competent in identifying the

explicit aspect of the problem and integrating their existing knowledge to have a better

understanding of the problem. However, the analysis also reveals that their competency

deteriorated when they were familiar with the problem and overconfidence with that

feeling (i.e., having a confidence bias).

Associating a new task to previously solved problems is a common problem-

solving approach and an instance of good self-regulation (Butler & Cartier, 2004a, 2005;

Butler et al., 2015; Cartier & Butler, 2004). However, as revealed during their problem-

 130

solving endeavor, the participants’ confidence bias prevented them from checking

whether the association itself was correct and hindered them to gain an accurate

interpretation and solve the problem correctly. This finding supports Rudolph, Niepel,

Greiff, Goldhammer, & Kröner (2017)’s study, in which they reported that students’

confidence in knowledge acquisition is closely related to their performance.

Out of four participants, Rusty was the only student who defeated his confidence

bias when working on the fifth problem. After the problem-solving endeavor, he admitted

that he might be “a little bit overconfidence in thinking that I understood the problem.”

Rusty’s awareness on the stagnancy of his problem-solving endeavor, and that he often

misses essential small details when interpreting a problem, inspired him to question

whether his task understanding was accurate. In their language retrieval study, Miller &

Gerci (2014) reported that students display an improved performance after failing to

correctly answer one of the retrieval tasks, such that the failure reduces students’

overconfidence and helps them to perform better. Thus, it was possible that Rusty’s

awareness on his tendency to be oblivious to some small essential details in a problem

aided him to lower his overconfidence and monitor his task interpretation. Rusty’s self-

monitoring engagement and triumph in solving the fifth problem also supports Byun &

Lee (2014)’s argument in their physics education research, to which they argue that

students’ learning and problem-solving strategies have a powerful influence to their

success, even when compared to the number of problems that they have solved.

The implicit aspect of task interpretation refers to the “information students might be

expected to extrapolate beyond the assignment description” (Hadwin et al., 2009, p.2),

 131

including the participants’ relevant experience, problem-solving steps, relevant

knowledge and skills, and their extrapolated understanding of the problem requirements

and constraint. Please note that some requirements and constraints were given explicitly

in the description, which entailed they belong to the problem’s explicit aspect.

The analysis suggests that the participants could draw relevant experience,

consciously and unconsciously. Having relevant experience affects students’ self-

regulation (Butler & Cartier, 2004a, 2005; Butler et al., 2015; Cartier & Butler, 2004)

because it enables them to utilize the associated effective strategies to complete the task.

Falkner et al. (2014) argue that employing discipline-specific self-regulation strategies

facilitates students to be successful in programming, suggesting the advantage of

knowing and applying context-specific strategies. Thus, drawing strategies from

irrelevant experience may result in producing an incorrect solution, or an ineffective or a

failed problem-solving endeavor. For example, Jake was unable to address several design

issues of the third problem due to his decision to utilize the entity-relationship diagram

notations instead of the class diagram.

The analysis suggests that the participants were competent in identifying and

extrapolating the problem requirements and constraints. The terms identify and

extrapolate are used to emphasize that some of the requirements and constraints are

presented in the problem description, and the others have to be extrapolated. Further, the

term competent does not infer that the participants can determine all requirements and

constraints during their initial task interpretation but rather, given enough time, they are

able to do so. For example, when interpreting the third problem, the participants could

 132

not mention all given requirements and constraints, but they could figure out most of

those during the problem-solving process.

As mentioned in the previous paragraph, the participants were unable to figure out

all requirements and constraints of the third problem. The analysis suggests that they

were overwhelmed by the extensive amount of detail in the problem, which is consistent

with Butler & Winne (1995)’s argument. As observed during the problem-solving

process, sometimes being overwhelmed also hindered the participants to write their

design ideas and decisions, and thus forgotten, which then made their final task

interpretation incomplete.

The analysis suggests that the participants revised their understanding of the

problem requirements and constraints during the problem-solving endeavor, only when

the problem possessed many facets. During the third problem, for example, the

participants reread the problem description as if they were interpreting it for the first

time. When interpreting the requirements, the participants did not only consider given

information but also integrated various relevant issues, such as software design best

practices; such engagement is also known as deep thinking (Fischer & Hommel, 2012;

Renesse & DiGrazia, 2018; Wiersema & Licklider, 2009).

The analysis suggests that the participants were proficient in identifying the most

appropriate problem-solving steps according to their explicit and other implicit task

interpretation. Further, the analysis reveals that the participants’ problem-solving steps

are informed by their metacognitive knowledge of the typical approach to solving a

similar problem, which is consistent with Butler & Cartier (2004b)’s argument.

 133

When describing their approach to solving the fifth problem, all participants were

observed assuming that they could identify useful patterns, suggesting that they did not

have a complete problem-solving steps, especially in relation to handling unfavorable

outcome (i.e., could not find the patterns); it is important to note that it is unnecessary to

find any patterns to solving this problem. One participant explained that, “if they

[educators] are asking this question, there has got to be a systematic way to approach it;

there has got to be some underlying pattern,” which suggests the participants assumed

that their typical problem-solving approaches were suitable to solve similar problems, at

least in an educational setting. Consequently, their overconfidence and assumption on the

problem-solving approach and the nature of educational tasks respectively, informed their

self-regulation. For example, LStew, who failed to answer the fifth problem, was

continuously trying to determine a pattern in such that she was reluctant to assess her

progress and success probability and adjust her approach accordingly. After reading her

report, LStew commented, “If you approach a problem by focusing on your strengths and

flattering your ego you can sometimes miss obvious solutions because you were too busy

focusing on how great your special skills are.” LStew statement aligned with Jake’s and

Anne’s train of thought and suggested high self-efficacy on their competency.

In conclusion, this study found that the participants were aware of various

problems’ characteristics and able to tailor their approach to solving the problems

accordingly, including when interpreting a task. Given adequate time, all participants

were competent in identifying the explicit and extrapolating the implicit aspects of the

problem. Further, the participants were observed utilizing their existing knowledge to

 134

have a better understanding of the problem. However, their task interpretation

competence deteriorated when they were having a confidence bias, overwhelmed, or

drawing knowledge from irrelevant experience. During the problem-solving endeavor,

the participants tended only to revise their task interpretation when the problem possessed

an extensive amount of detail. Last, when formulating their problem-solving approach,

the participants tended to assume that they could solve it using existing problem-solving

approaches in their arsenal, and thus did not prepare to handle unfavorable outcomes.

It is important to note that this study is not designed to get generalized findings

but to capture as much diversity and depth as possible (Creswell, 2012) to elucidate the

nature of computer science students’ task interpretation. Related to diversity, be advised

that this study does not assess students’ task interpretation for all types of problems and

programming paradigms. However, some of the findings may be transferable to various

situations related to programming, software engineering, and general problem-solving.

Research and Educational Implications

This study has research and educational implications for educational researchers,

instructors, teaching assistants, and students in computer science. In this section, the

discussion starts by eliciting the research implications, followed by the educational

implications.

First, this study describes students’ task interpretation and its revision during a

programming endeavor and thus contributes to the limited computer science education

literature on self-regulation. This study also supports and expands the findings of various

self-regulation and problem-solving studies as demonstrated in the previous section.

 135

Second, this study demonstrates that the integration of Butler & Cartier’s self-

regulated learning framework (Butler & Cartier, 2004a, 2005; Butler et al., 2015; Cartier

& Butler, 2004) and Hadwin’s task interpretation model (Hadwin et al., 2009) is possible

and beneficial in better understanding students’ self-regulation. Therefore, the integration

of these models can be replicated in other studies.

Third, this study demonstrates the benefit of utilizing multiple assessment tools

and considering students’ learning episode to understand their self-regulation better, as

recommended by Dinsmore et al. (2008) and Butler & Cartier (2005) respectively. Thus,

the similar assessment and analysis methods can be replicated in other studies.

Fourth, this study responds to Teague (2009)’s calling that computer science

educators “need to delve a little deeper than normal into the person behind the student, in

order to determine the barriers … [that] affect their ability to learn to program” (p.178).

Teague’s calling suggests relying solely on reported learning and problem-solving

phenomena are insufficient. Educators need to know more about the students (e.g.,

beliefs, characters, and experience) to design an effective intervention. For example,

learning about Rusty’s experience and beliefs shed light on how he was able to overcome

his confidence bias.

Fifth, the description of participants’ problem-solving endeavor may benefit

computer science instructors, teaching assistants, and students by enabling them to reflect

on their self-regulation and deepening their appreciation of students’ thinking process

complexity. Their reflection and appreciation might also enhance their metacognitive and

problem-solving skills due to the increase of thinking process awareness.

 136

Sixth, the study found that the male participants reported spending twice as much

time to programming compared to the females. Since spending more time could infer

gaining more programming experience and developing expertise (Dreyfus, Dreyfus, &

Zadeh, 1987), this finding presents a potential gap between male and female students’

expertise. Consequently, a follow-up study is needed to assess any contrasts between

them. However, at the same time, it might be beneficial to encourage female students to

spend more time programming. Studies reported that female computer science students

want to use their programming skill to benefit the society (Balcita, Carver, & Soffa,

2002; Graham & Latulipe, 2003), but avoid the asocial-nerdy stereotype at the same time

(Graham & Latulipe, 2003). Thus, computer science educators could offer more authentic

and impactful projects in their courses by attracting clients from the community or

industry to attract female students to engage more in programming. Educators could also

form a female-friendly community in their institution similar to the Women Association

for Computer Machinery (W-ACM) mentioned by Anne. Further, educators could utilize

pair-programming and provide more communal environments in various programming

activities. In pair-programming, one student will act as the driver (i.e., a programmer) and

the other will be the navigator (i.e., a planner and debugger). Numerous studies have

reported the benefit of such practice (Lui & Chan, 2006; Umapathy & Ritzhaupt, 2017;

Williams et al., 2010).

Seventh, Anne was observed initiating discussion with the researcher during her

problem-solving enterprise. While some students may be reluctant to seek assistance

despite their learning difficulties (Dillon, 1988), Anne’s behavior indicates good self-

 137

regulation and perhaps, her competency in utilizing various co-regulation skills. Newman

& Schwager (1995) argue asking for hints, similar to Anne’s behavior, suggests

“students’ desire to try to work things out on their own as much as possible” (p. 369).

Thus, computer science educators should learn and understand varying and distinct

students’ needs and avoid associating negative judgment with it. Further, educators

should build a learning environment that may support those needs. For example, by

developing a learning community or utilizing pair-programming.

Eighth, the findings suggest that all participants were cognizant of various

problem types and were able to adjust their approach accordingly. This finding

demonstrates that the participants possessed some attributes of expert problem-solvers

(Glaser, 1992; Hoffman, 1996). However, it was unclear when the participants started to

develop these skills, and thus granting a chance for a potential follow-up study. On the

other hand, considering the importance of such skills, it might be beneficial to train

students to identify problem characteristics as early as possible (e.g., during their first-

year or K12 education). For example, the instructor could ask students to identify the

number of issues, variables, or functions presented in the problems. The instructor could

also challenge the students to categorize the problems based on its type (see Jonassen

(2000, 2004, 2010) for a detailed discussion of various problem types) or Bloom’s

Taxonomy.

Ninth, the findings suggest that all participants revised their task interpretation

during the problem-solving enterprise, especially when the problem was complex and had

extensive requirements or constraints. Thus, by enhancing students’ ability to identify

 138

problem characteristics might also help them to be more accurate in determining the

complexity of a problem, and then improve their awareness of having an incorrect initial

task understanding. Further, it might also improve their probability of success in

acquiring an accurate task interpretation during their problem-solving endeavor.

Computer science educators could help students by familiarizing them with the growth

mindset, such as making them aware that their abilities are not fixed but rather

changeable given enough time and training (Dweck, 2006). Meanwhile, educators and

researchers could design an intervention that may help accelerate students to acquire the

accurate task interpretation.

Tenth, Anne’s reaction towards creativity-related requirements in the third

problem suggests that some students might not be confident with their creativity skill.

Although creativity seems can only be assessed through the design artifacts, it is highly

related to the design process and metacognitive knowledge (Christiaans & Venselaar,

2005). During their problem-solving enterprise, Jake, Rusty, and LStew were observed

addressing creativity by tapping into their interests, preferences, experiences, and known

best practices. Thus, computer science educators could encourage students to be more

aware of their creative potential, and also encourage them to utilize it when solving

course assignments. At the same time, educators could expose students to various

creative products in computer science and give students a chance to learn from those.

Eleventh, this study identifies that being overwhelmed was one of the causes

preventing students from self-regulating themselves properly. This phenomenon was

evident in the third problem. Computer science educators might use this information to

 139

encourage students to work on a complex problem in multiple stages. To make students

aware of its benefit, educators might design a classroom design activity where the

students tackle the same design problem for multiple days and reflect on their

improvement each day.

Twelfth, the participants’ problem-solving endeavors for the fifth problem suggest

that overcoming confidence bias was not an easy task. Fischoff (1982)’s report suggests

that providing external motivations has a meager impact on students’ bias. On the other

hand, Gigerenzer (1991) argues training students to distinguish single- and frequent-event

confidences could lower their tendency to make biased decisions. However, this

argument is not applicable in this study because, in the Discrete Mathematics course,

students are frequently asked to analyze a set of numbers and develop a formula to

generate the exact set. In this study, Rusty’s experience suggests that being aware of the

problem-solving stagnancy and that one might sometimes miss essential small details,

could help overcoming the confidence bias. Thus, computer science educators might

design a case study that could draw students’ confidence bias, then help them to reflect

on that and other occasions where their confidence bias occurs. Educators could also

create a video of a biased-actor working on a problem while thinking aloud, present it in

the class, ask the students to identify the actor’s mistakes, and discuss their responses.

Thirteenth, this study reveals that the participants do not have a complete

problem-solving approach for the fifth question. Rusty’s explanation suggests that he had

a biased perception about assignments in academic settings. Saulnier & Brisson (2018)

also reported a similar finding in their study of using impactful and authentic problems in

 140

course assignments. In their study of students’ beliefs, McNeill, Douglas, Koro-

Ljungberg, Therriault, & Krause (2016) reported that students expect course assignments

to be more simple and straightforward compared to any real-world design tasks. Thus,

these reports suggest a gap between students’ perception of classroom and work field

tasks, and that students might need more training in handling real-world design problems.

Computer science educators could help by introducing more authentic design problems in

the classroom and advising students to develop a versatile plan to solve it.

Fourteenth, the analysis reveals that some participants were self-regulating their

emotion during the problem-solving enterprise. Thus, computer science educators could

expose students to various emotion regulation strategies and help enhance that

competency as early as possible.

Recommendation for Future Studies

The researcher recommends other educational investigators to conduct direct or

conceptual replication studies. As argued by Maksel & Plucker (2014) and Benson &

Borrego (2015), replication studies are needed to verify whether particular educational

findings are applicable in different settings. Such verifications could help to dismiss

educational practitioners’ and policies makers’ doubts of the educational research results.

When future investigators conducting a replication study, the researcher advises

them to utilize the verbal protocol or semi-structured interview for assessing students’

initial task interpretation because the collected initial task interpretation survey responses

in this study typically lack context and are sometimes hard to interpret. The investigators

should also schedule their data collection and analysis cautiously when having more than

 141

one unit of analysis because shifting between multiple analysis units is not easy and may

disrupt the analysis process. During the coding process, it is critical to have at least two

coders that have considerable experience in the research setting (i.e., computer

programming) and are familiar with self-regulated learning theory because they will be

proficient in identifying students’ learning episodes and deducing students’ intentions in

each learning episode. Conducting a study in self-regulated learning requires a lot of self-

regulation to understand students’ behavior. The researcher found that having a

discussion partner is beneficial, and suggests future investigators have at least one

discussion partner.

The researcher realized there is a need for a systematic literature review to capture

current knowledge on students’ self-regulation in programming, and to reframe existing

problem-solving, cognitive, and metacognitive studies related to computer programming

using the self-regulated learning framework. A follow-up investigation can be directed to

verify whether the reframed findings hold true.

The researcher also identifies seven possible follow-up educational investigations.

First, this study describes how the participants’ metacognitive knowledge inform their

task interpretation and problem-solving approach. It will be beneficial to investigate the

nature of students’ metacognitive knowledge of typical problem-solving approaches and

then address its deficiency, if any. Second, this study describes the influence of

participants’ confidence bias in their problem-solving endeavor. It will be beneficial to

investigate the nature of confidence bias in course-related programming assignments and

design an intervention to help students to conquer that challenge. Third, since this study

 142

identifies some causes that prevent students from self-regulating themselves properly, a

follow-up study designed to overcome these self-regulation challenges will be beneficial.

Fourth, Ge et al. (2016) argue that students’ self-regulation during a problem-solving

endeavor can be categorized by space (i.e., problem- and solution-space) and that

students have distinct self-regulation in each space. It would be interesting to assess

students’ self-regulation in both spaces and see their interplay, and then address its

deficiencies if any. Fifth, the findings suggest that the participants displayed experts’

behaviors. It will be beneficial to assess how those skills develop throughout their

education. Sixth, the researcher observed that male and female students self-regulated

themselves differently during the problem-solving process, in such that female students

were observed engaging in emotion regulation more frequently compared to the male

students. It would be interesting to assess how students’ emotion regulation impacts their

self-regulation in general while solving programming problems. Seventh, the researchers

also observed that male and female spent different amount of time to programming,

which might affect their expertise. Thus, a follow-up study to clarify this potential issue

is needed.

 143

References

 Office of Analysis, Assessment, and Accreditation, Utah State University. (2016).

Summaries by Department. Logan, UT, USA.

Office of Analysis, Assessment, and Accreditation, Utah State University. (2017).

Enrollment Summary Fall 2017 Utah State University. Logan, UT, USA. Retrieved

from http://www.usu.edu/aaa/pdf/enroll_sum/Fall17Total.pdf

Abdillah, A., Nusantara, T., Subanj, S., Susanto, H., & Abadyo, A. (2016). The Students

Decision Making in Solving Discount Problem. International Education Studies,

9(7), 57. https://doi.org/10.5539/ies.v9n7p57

Ackermann, E. K. (1996). Perspective-Taking and Object Construction: Two Keys to

Learning. Constructionism in Practice: Designing, Thinking, and Learning in a

Digital World, 25–37.

Adams, J. C. (2007). Alice, middle schoolers & the imaginary worlds camps. ACM

SIGCSE Bulletin, 39(1), 307. https://doi.org/10.1145/1227504.1227418

Al-mehsin, S. A. (2017). Self-Efficacy and Its Relationship with Social Skills and the

Quality of Decision-Making among the Students of Prince Sattam Bin Abdul-Aziz

University. International Education Studies, 10(7), 108.

https://doi.org/10.5539/ies.v10n7p108

Alexander, P. a., Schallert, D. L., & Reynolds, R. E. (2009). What Is Learning Anyway?

A Topographical Perspective Considered. Educational Psychologist, 44(3), 176–

192. https://doi.org/10.1080/00461520903029006

Alharbi, A., Henskens, F., & Hannaford, M. (2012). Student-Centered Learning Objects

 144

to Support the Self-Regulated Learning of Computer Science. Creative Education,

03(06), 773–783. https://doi.org/10.4236/ce.2012.326116

AlleyDog.com. (n.d.). Psychology Glossary. Retrieved January 1, 2017, from

http://www.alleydog.com/glossary/psychology-glossary.php

Ambrosio, A. P., Almeida, L., Franco, A., Martins, S. W., & Georges, F. (2012).

Assessment of self-regulated attitudes and behaviors of introductory programming

students. In Proceedings of the 42nd Frontiers in Education Conference - FIE’12

(pp. 1–6). https://doi.org/10.1109/FIE.2012.6462314

Anderson, J. R. (1980). Cognitive psychology and its implications. San Francisco:

Freeman. Retrieved from http://www.informationr.net/ir/20-

1/isic2/isic24.html#.VepxcRHBwXA

Anderson, J. R., & Jeffries, R. (1985). Novice LISP Errors: Undetected Losses of

Information from Working Memory. Human–Computer Interaction, 1(2), 107–131.

https://doi.org/10.1207/s15327051hci0102_2

Anderson, J. R., & Skwarecki, E. (1989). The automated tutoring of introductory

computer programming. Communications of the ACM, 29(9), 842–849.

Apple Inc. (n.d.). Apple Inc. Official Website. Retrieved January 1, 2017, from

http://www.apple.com/

Artino, A., & Stephens, J. (2007). Bored and frustrated with online learning?

Understanding achievement emotions from a social cognitive, control-value

perspective. In Annual meeting of the Northeastern Educational Research

Association. Rocky Hill, CT.

 145

Ashcraft, M. H. (1992). Cognitive arithmetic: A review of data and theory. Cognition,

44(1–2), 75–106. https://doi.org/10.1016/0010-0277(92)90051-I

Bainbridge, L., & Sanderson, P. (2005). Verbal Protocol Analysis. In J. R. Wilsom & N.

Corlett (Eds.), Evaluation of Human Work, 3rd Edition (3rd ed., p. 1048). CRC

Press. Retrieved from

https://books.google.com/books?id=dSmKYLp82b4C&pgis=1

Balcita, A. M., Carver, D. L., & Soffa, M. Lou. (2002). Shortchanging the Future of

Information Technology: the Untapped Resource. ACM SIGCSE Bulletin, 34(2), 32.

https://doi.org/10.1145/543812.543825

Ball, L. J., Ormerod, T. C., & Morley, N. J. (2004). Spontaneous analogising in

engineering design: a comparative analysis of experts and novices. Design Studies,

25(5), 495–508. https://doi.org/10.1016/j.destud.2004.05.004

Bandura, A. (1977). Social Learning Theory. Oxford, UK: Prentice Hall.

Bandura, A. (1986). Social Foundations of Thought and Action. Prentice Hall.

Barak, M., Harward, J., Kocur, G., & Lerman, S. (2007). Transforming an Introductory

Programming Course: From Lectures to Active Learning via Wireless Laptops.

Journal of Science Education and Technology, 16(4), 325–336.

https://doi.org/10.1007/s10956-007-9055-5

Basit, T. (2003). Manual or electronic? The role of coding in qualitative data analysis.

Educational Research, 45(2), 143–154.

https://doi.org/10.1080/0013188032000133548

Beaubouef, T., & Mason, J. (2005). Why the high attrition rate for computer science

 146

students. ACM SIGCSE Bulletin, 37(2), 103.

https://doi.org/10.1145/1083431.1083474

Ben-Ari, M. (1998). Constructivism in Computer Science Education. ACM SIGCSE

Bulletin, 30(1), 257–261. https://doi.org/10.1145/274790.274308

Benson, L., & Borrego, M. (2015). The Role of Replication in Engineering Education

Research. Journal of Engineering Education, 104(4), 388–392.

https://doi.org/10.1002/jee.20082

Bergin, S., Reilly, R., & Traynor, D. (2005). Examining the role of self-regulated

learning on introductory programming performance. In First International

Workshop on Computing Education Research (pp. 81–86). New York, New York,

USA: ACM Press. https://doi.org/10.1145/1089786.1089794

Berglund, A., Daniels, M., & Pears, A. (2006). Qualitative research projects in computing

education research: an overview. In ACE ’06 Proceedings of the 8th Australasian

Conference on Computing Education (pp. 25–33). Australian Computer Society,

Inc. Retrieved from http://dl.acm.org/citation.cfm?id=1151875

Biochemical Society. (n.d.). What is biochemistry? Retrieved March 7, 2018, from

http://www.biochemistry.org/?TabId=456

Boudreau, T., Tulach, J., & Unger, R. (2006). Decoupled Design: Building Applications

on the NetBeans Platform. In Companion to the 21st ACM SIGPLAN conference on

Object-oriented programming systems, languages, and applications - OOPSLA ’06

(p. 854). New York, New York, USA: ACM Press.

https://doi.org/10.1145/1176617.1176734

 147

Bransford, J. D., Brown, A. L., & Cocking, R. R. (1999). Learning: From Speculation to

Science. In How people learn: Brain, mind, experience, and school. National

Academy Press. Retrieved from http://www.nap.edu/read/9853/chapter/3

Breckner, R. E., Schlottmann, G. A., Beaulieu, N. M., LeMay, S. G., Nelson, D. R.,

Palchetti, J., & Benbrahim, J. (2001). US7837556B2. The United States. Retrieved

from https://patents.google.com/patent/US7837556B2/en

Brennan, K., & Resnick, M. (2012). New frameworks for studying and assessing the

development of computational thinking. … of the 2012 Annual Meeting of ….

Retrieved from http://scratched.gse.harvard.edu/ct/files/AERA2012.pdf

Briggs, T. (2005). Techniques for active learning in CS courses. Journal of Computing

Sciences in Colleges, 21(2), 156–165. Retrieved from

http://dl.acm.org/citation.cfm?id=1089053.1089075

Bruner, J. S. (1966). Toward a Theory of Instruction. Harvard University Press. Retrieved

from https://books.google.com/books?hl=en&lr=&id=F_d96D9FmbUC&pgis=1

Brydges, R., & Butler, D. (2012). A reflective analysis of medical education research on

self-regulation in learning and practice. Medical Education, 46(1), 71–9.

https://doi.org/10.1111/j.1365-2923.2011.04100.x

Bughin, J., Chui, M., & Manyika, J. (2010, August). Clouds, Big Data, and Smart Assets:

Ten Tech-Enabled Business Trends to Watch. McKinsey Quarterly, 1–14.

Bui, Q. (2015). Will Your Job Be Done By A Machine? Retrieved May 25, 2015, from

http://www.npr.org/sections/money/2015/05/21/408234543/will-your-job-be-done-

by-a-machine

 148

Bundy, A. (2007). Computational Thinking is Pervasive. Journal of Scientific and

Practical Computing, 1(2), 67–69. Retrieved from

http://homepages.inf.ed.ac.uk/bundy/drafts/Chen_Li_Article.pdf

Burton, L. (2002). Methodology and methods in mathematics education research: Where

is “The Why”? In S. Goodchild & L. English (Eds.), Researching mathematics

classrooms: A critical examination of methodology (pp. 1–10). Westport, CT:

Praeger.

Butler, D. L. (1995). Promoting Strategic Learning by Postsecondary Students with

Learning Disabilities. Journal of Learning Disabilities, 28(3), 170–190.

https://doi.org/10.1177/002221949502800306

Butler, D. L. (1998). Metacognition and Learning Disabilities. In B. Y. L. Wong (Ed.),

Learning About Learning Disabilities (2nd ed., pp. 277–307). Toronto: Academic

Press.

Butler, D. L., & Cartier, S. C. (2004a). Learning in varying activities: An explanatory

framework and a new evaluation tool founded on a model of self-regulated learning.

In Annual Conference of the Canadian Society for The Study of Education. Toronto,

ON. Retrieved from

http://perso.crifpe.ca/~scartier/spip/IMG/pdf/Butler_and_Cartier_2004_.pdf

Butler, D. L., & Cartier, S. C. (2004b). Promoting Effective Task Interpretation as an

Important Work Habit: A Key to Successful Teaching and Learning. Teachers

College Record, 106(9), 1729–1758. Retrieved from

http://www.sfu.ca/~jcnesbit/EDUC220/ThinkPaper/ButlerCartier2004.pdf

 149

Butler, D. L., & Cartier, S. C. (2005). Multiple Complementary Methods for

Understanding Self-Regulated Learning as Situated in Context. In American

Educational Research Association, Annual Meeting (pp. 11–15).

Butler, D. L., & Cartier, S. C. (2018). Case Studies as a Methodological Framework for

Studying and Assessing Self-Regulated Learning. In D. H. Schunk & J. Greene

(Eds.), Handbook of Self-Regulation of Learning and Performance (2nd ed., pp.

352–369). New York, New York, USA: Routledge.

Butler, D. L., Cartier, S. C., Schnellert, L., Gagnon, F., & Giammarino, M. (2011).

Secondary students’ self-regulated engagement in reading: researching self-

regulation as situated in context. Psychological Test and Assessment Modeling,

53(1), 73–105. Retrieved from

https://www.researchgate.net/profile/Sylvie_Cartier/publication/50864533_Secondar

y_students_self-regulated_engagement_in_reading_researching_self-

regulation_as_situated_in_context/links/54eca5a90cf27fbfd7713445.pdf

Butler, D. L., Schnellert, L., & MacNeil, K. (2015). Collaborative inquiry and distributed

agency in educational change: A case study of a multi-level community of inquiry.

Journal of Educational Change, 16(1), 1–26. https://doi.org/10.1007/s10833-014-

9227-z

Butler, D. L., & Winne, P. H. (1995). Feedback and Self-Regulated Learning: A

Theoretical Synthesis. Review of Educational Research, 65(3), 245–281.

https://doi.org/10.3102/00346543065003245

Byun, T., & Lee, G. (2014). Why students still can’t solve physics problems after solving

 150

over 2000 problems. American Journal of Physics, 82(9), 906–913.

https://doi.org/10.1119/1.4881606

Carnegie Mellon University. (n.d.). Alice. Retrieved April 19, 2017, from

http://www.alice.org/index.php

Carruthers, S., & Stege, U. (2013). On Evaluating Human Problem Solving of

Computationally Hard Problems. The Journal of Problem Solving, 5(2), 42–71.

https://doi.org/10.7771/1932-6246.1152

Cartier, S. C., & Butler, D. L. (2004). Elaboration and validation of questionnaires and

plan for analysis. In Annual Conference of the Canadian Society for The Study of

Education. Toronto, ON.

Carver, C. S., & Scheier, M. F. (1990). Origins and functions of positive and negative

affect: A control-process view. Psychological Review, 97(1), 19–35.

https://doi.org/10.1037/0033-295X.97.1.19

Case, J. M., & Light, G. (2011). Emerging Research Methodologies in Engineering

Education Research. Journal of Engineering Education, 100(1), 186–210.

https://doi.org/10.1002/j.2168-9830.2011.tb00008.x

Cass, S. (2016). The 2016 Top Programming Languages. Retrieved May 6, 2017, from

http://spectrum.ieee.org/computing/software/the-2016-top-programming-languages

Chi, M. T. H., De Leeuw, N., Chiu, M.-H., & Lavancher, C. (1994). Eliciting Self-

Explanations Improves Understanding. Cognitive Science, 18(3), 439–477.

https://doi.org/10.1207/s15516709cog1803_3

Christiaans, H., & Venselaar, K. (2005). Creativity in Design Engineering and the Role

 151

of Knowledge: Modelling the Expert. International Journal of Technology and

Design Education, 15(3), 217–236. https://doi.org/10.1007/s10798-004-1904-4

Clance, P. R., & Imes, S. A. (1978). The imposter phenomenon in high achieving

women: Dynamics and therapeutic intervention. Psychotherapy: Theory, Research

& Practice, 15(3), 241–247. https://doi.org/10.1037/h0086006

Clark, M. (2003). Computer Science: A hard-applied discipline? Teaching in Higher

Education, 8(1), 71–87. https://doi.org/10.1080/1356251032000052339

Cleaves, D. A. (1987). Cognitive biases and corrective techniques: proposals for

improving elicitation procedures for knowledge-based systems. International

Journal of Man-Machine Studies, 27(2), 155–166. https://doi.org/10.1016/S0020-

7373(87)80049-4

Cobb, P. (1994). Where Is the Mind? Constructivist and Sociocultural Perspectives on

Mathematical Development. Educational Researcher, 23(7), 13–20.

https://doi.org/10.3102/0013189X023007013

Computer Hope. (n.d.). Free Computer Help and Information. Retrieved April 22, 2017,

from http://www.computerhope.com

Cope-Watson, G., & Betts, A. S. (2010). Confronting otherness: An e- conversation

between doctoral students living with the Imposter Syndrome. Canadian Journal for

New Scholars in Education, 3(1), 13.

Coutinho, S. A. (2007). The relationship between goals, metacognition, and academic

success. Educate, 7(1), 39–47. Retrieved from

http://www.educatejournal.org/index.php/educate/issue/view/23

 152

Creswell, J. W. (2012). Qualitative Inquiry and Research Design: Choosing Among Five

Approaches (3rd ed.). SAGE Publications.

De Vaus, D. (2013). Surveys in Social Research (6th ed.). Routledge.

de Vries, M. F. R. K. (1990). The Impostor Syndrome: Developmental and Societal

Issues. Human Relations, 43(7), 667–686.

https://doi.org/10.1177/001872679004300704

Denning, P. J. (2001). The Profession of IT: Who are We? Communications of the ACM,

44(2), 15–19. https://doi.org/10.1145/359205.359239

Denning, P. J. (2003). Computer Science. In A. Ralston, E. D. Reilly, & D.

Hemmendinger (Eds.), Encyclopedia of Computer Science (4th ed., pp. 405–419).

Chichester, UK: John Wiley and Sons Ltd. Retrieved from

http://dl.acm.org/citation.cfm?id=1074266

Denning, P. J. (2004). Great principles in computing curricula. ACM SIGCSE Bulletin,

36(1), 336–341. https://doi.org/10.1145/1028174.971303

Denning, P. J., Comer, D. E., Gries, D., Mulder, M. C., Tucker, A., Turner, A. J., &

Young, P. R. (1989). Computing as a Discipline. Communications of the ACM,

32(1), 9–23. https://doi.org/10.1145/63238.63239

Denning, P. J., & Freeman, P. A. (2009). The Profession of IT Computing’s Paradigm.

Communications of the ACM, 52(12), 28. https://doi.org/10.1145/1610252.1610265

Dictionary.com, L. (n.d.). Dictionary.com. Retrieved April 22, 2017, from

http://www.dictionary.com

Diethelm, I., Hubwieser, P., & Klaus, R. (2012). Students, teachers and phenomena:

 153

educational reconstruction for computer science education. In Proceedings of the

12th Koli Calling International Conference on Computing Education Research -

Koli Calling ’12 (pp. 164–173). New York, New York, USA: ACM Press.

https://doi.org/10.1145/2401796.2401823

Dijkstra, E. W. (1989). On the cruelty of really teaching Computer Science.

Communications of the ACM, 32, 1398–1404.

Dillon, J. T. (1988). The Remedial Status of Student Questioning. Journal of Curriculum

Studies, 20(3), 197–210. https://doi.org/10.1080/0022027880200301

Dinsmore, D. L., Alexander, P. A., & Loughlin, S. M. (2008). Focusing the conceptual

lens on metacognition, self-regulation, and self-regulated learning. Educational

Psychology Review, 20(4), 391–409. https://doi.org/10.1007/s10648-008-9083-6

Dreyfus, H. L., Drey-fus, S. E., & Zadeh, L. A. (1987). Mind over Machine: The Power

of Human Intuition and Expertise in the Era of the Computer. IEEE Expert, 2(2),

110–111. https://doi.org/10.1109/MEX.1987.4307079

Dweck, C. S. (2006). Mindset: The New Psychology of Success. Random House.

Eden, A. H. (2007). Three Paradigms of Computer Science. Minds and Machines, 17(2),

135–167. https://doi.org/10.1007/s11023-007-9060-8

Engineering Accreditation Commission. (2003). Criteria for accrediting engineering

program. ABET Report E1 11/19. Baltimore, Md. Retrieved from

http://www.abet.org/criteria_eac.html

Engineering Education Department Utah State University. (2016). REU Site Program in

Engineering Education. Retrieved August 31, 2016, from http://reu.usu.edu/

 154

Ertmer, P. A., & Newby, T. J. (2013). Behaviorism, Cognitivism, Constructivism:

Comparing Critical Features From an Instructional Design Perspective. Performance

Improvement Quarterly, 26(2), 43–71. https://doi.org/10.1002/piq.21143

Falkner, K., Szabo, C., Michell, D., Szorenyi, A., & Thyer, S. (2015). Gender Gap in

Academia: Perceptions of Female Computer Science Academics. In Proceedings of

the 2015 ACM Conference on Innovation and Technology in Computer Science

Education - ITiCSE ’15 (pp. 111–116). New York, New York, USA: ACM Press.

https://doi.org/10.1145/2729094.2742595

Falkner, K., Vivian, R., & Falkner, N. J. G. (2014). Identifying computer science self-

regulated learning strategies. In Proceedings of the 2014 conference on Innovation

& technology in computer science education - ITiCSE ’14 (pp. 291–296). New

York, New York, USA: ACM Press. https://doi.org/10.1145/2591708.2591715

Febrian, A., Lawanto, O., & Cromwell, M. (2015). Advancing Research on Engineering

Design using e-Journal. In Frontiers in Education Conference (FIE), 2015. 32614

2015. IEEE (pp. 1–5). El Paso, TX: IEEE.

https://doi.org/10.1109/FIE.2015.7344191

Felder, R. M., & Soloman, B. A. (n.d.). Learning Styles and Strategies. Retrieved April

25, 2017, from

http://www4.ncsu.edu/unity/lockers/users/f/felder/public//ILSdir/styles.htm

Fischer, R., & Hommel, B. (2012). Deep thinking increases task-set shielding and

reduces shifting flexibility in dual-task performance. Cognition, 123(2), 303–307.

https://doi.org/10.1016/j.cognition.2011.11.015

 155

Fischoff, B. (1982). Debiasing. In D. Kahneman, P. Slovic, & A. Tversky (Eds.),

Judgment under Uncertainty: Heuristics and Biases (pp. 422–444). Cambridge,

MA, USA: Cambridge University Press.

Fisher, A., & Margolis, J. (2002). Unlocking the clubhouse: the Carnegie Mellon

experience. ACM SIGCSE Bulletin, 34(2), 79.

https://doi.org/10.1145/543812.543836

Forgas, J. P. (2000). Affect and information processing strategies: An interactive

relationship. In Feeling and thinking: The role of affect in social cognition (pp. 253–

280). Retrieved from http://philpapers.org/rec/FORAAI-2

Fowler, M., & Beck, K. (1999). Refactoring: Improving the Design of Existing Code

(Illustrate). Addison-Wesley Professional.

Freeman, E., Bates, B., Sierra, K., & Robson, E. (2004). Head First Design Patterns (1st

ed.). O’Reilly Media.

Froehlich, J., Chen, M. Y., Smith, I. E., & Potter, F. (2006). Voting with Your Feet: An

Investigative Study of the Relationship Between Place Visit Behavior and

Preference (pp. 333–350). Springer, Berlin, Heidelberg.

https://doi.org/10.1007/11853565_20

Gal-Ezer, J., & Harel, D. (1998). What (else) should CS educators know?

Communications of the ACM, 41(9), 77–84. https://doi.org/10.1145/285070.285085

Gall, M. D., Gall, J. P., & Borg, W. R. (2007). Educational Research: An Introduction.

(A. E. Burvikovs, Ed.) (8th ed.). USA: Pearson Education Inc.

Galpin, V. (2002). Women in computing around the world. ACM SIGCSE Bulletin, 34(2),

 156

94. https://doi.org/10.1145/543812.543839

Ge, X., Law, V., & Huang, K. (2016). Detangling the Interrelationships Between Self-

Regulation and Ill-Structured Problem Solving in Problem-Based Learning.

Interdisciplinary Journal of Problem-Based Learning, 10(2).

https://doi.org/10.7771/1541-5015.1622

geeksforgeeks. (n.d.). Geeks for Geek - A Computer Science Portal for Geeks. Retrieved

April 2, 2018, from https://www.geeksforgeeks.org/

Geffner, H. (2014). Artificial Intelligence: From programs to solvers. AI

Communications, 27(1), 45–51. https://doi.org/10.3233/AIC-130581

Gigerenzer, G. (1991). How to Make Cognitive Illusions Disappear: Beyond “Heuristics

and Biases.” European Review of Social Psychology, 2(1), 83–115.

https://doi.org/10.1080/14792779143000033

Glaser, R. (1992). Expert knowledge and processes of thinking. In D. Halpern (Ed.),

Enhancing thinking skills in the sciences and mathematics (pp. 63–75). Hillsdale,

NJ, USA: Lawrence Erlbaum Associates, Inc.

Glass, R. L. (2006). Call It Problem Solving, Not Computational Thinking.

Communications of the ACM, 49(9), 3. Retrieved from

http://search.ebscohost.com/login.aspx?direct=true&db=buh&AN=220436

23&site=eds-live

Gonzalez, G. (2006). A systematic approach to active and cooperative learning in CS1

and its effects on CS2. In ACM SIGCSE Bulletin (Vol. 38, p. 133). New York, New

York, USA: ACM Press. https://doi.org/10.1145/1124706.1121386

 157

Google Inc. (n.d.-a). Android. Retrieved February 28, 2018, from

https://www.android.com/

Google Inc. (n.d.-b). Google Developers Training - Android. Retrieved February 28,

2018, from https://developers.google.com/training/android/

Google Inc. (n.d.-c). Google Store. Retrieved January 1, 2017, from

https://store.google.com/

Graham, S., & Latulipe, C. (2003). CS girls rock: sparking interest in computer science

and debunking the stereotypes. ACM SIGCSE Bulletin, 35(1), 322.

https://doi.org/10.1145/792548.611998

Gronlund, N. E., Gronlund, E. N., & Waugh, C. K. (2013). Assessment of Student

Achievement. Assessment of Student Achievement (10th ed.). Pearson.

Grover, S., & Pea, R. (2013). Computational Thinking in K−12 : A Review of the State

of the Field. Educational Researcher, 42(1), 38–43.

https://doi.org/10.3102/0013189X12463051

Gul, R. B., & Ali, P. A. (2010). Clinical trials: the challenge of recruitment and retention

of participants. Journal of Clinical Nursing, 19(1–2), 227–233.

https://doi.org/10.1111/j.1365-2702.2009.03041.x

Guzdial, M. (2008). Education Paving the Way for Computational Thinking.

Communications of the ACM, 51(8), 25. https://doi.org/10.1145/1378704.1378713

Guzdial, M., Johnson, R., Wampler, K., Kussmaul, C., Swanson, J., Humenn, P., &

Lewchuk, M. (2015). What’s the best way to teach computer science to beginners?

Communications of the ACM, 58(2), 12–13. https://doi.org/10.1145/2714488

 158

Hadwin, A. (2006). Do your students really understand your assignments? LTC Currents:

Optimizing Learning Environments, 11(3), 8–9.

Hadwin, A. F., Jarvela, S., & Miller, M. (2011). Self-regulated, co-regulated, and socially

shared regulation of learning. In B. J. Zimmerman & D. H. Schunk (Eds.),

Handbook of Self-Regulation of Learning and Performance (pp. 65–84). New York,

New York, USA: Routledge.

Hadwin, A. F., Oshige, M., Miller, M., & Wild, P. (2009). Examining Student and

Instructor Task Perceptions in a Complex Engineering Design Task. In The Sixth

International Conference on Innovation and Practices in Engineering Design and

Engineering Education. Hamilton, ON, Canada: McMaster University.

Hagerott, S. G., & LaBanca, J. (2008). US8924845B2. The United States. Retrieved from

https://patents.google.com/patent/US8924845B2/en

Hambrusch, S., Hoffmann, C., Korb, J. T., Haugan, M., & Hosking, A. L. (2009). A

Multidisciplinary Approach Towards Computational Thinking for Science Majors.

ACM SIGCSE Bulletin, 41(1), 183. https://doi.org/10.1145/1539024.1508931

Hamp-Lyons, L., & Mathias, S. P. (1994). Examining expert judgments of task difficulty

on essay tests. Journal of Second Language Writing, 3(1), 49–68.

Havenga, M. (2015). The Role of Metacognitive Skills in Solving Object-Oriented

Programming Problems: a Case Study. TD: The Journal for Transdisciplinary

Research in Southern Africa, 11(1), 133–147. Retrieved from

https://journals.co.za/content/transd/11/1/EJC175923

Henderson, P. B. (2009). Ubiquitous computational thinking. Computer, 42(10), 100–

 159

102. https://doi.org/10.1109/MC.2009.334

Heppner, P. P., & Krauskopf, C. J. (1987). An information-processing approach to

personal problem solving. The Counseling Psychologist, 15, 371–447.

Hoffman, R. R. (1996). How can expertise be defined? Implications of research from

cognitive psychology. In R. Williams, W. Faulkner, & J. Fleck (Eds.), Exploring

Expertise (pp. 81–100). Edinburgh, Scotland: University of Edinburgh Press.

Howles, T. (2007). Preliminary Results of a Longitudinal Study of Computer Science

Student Trends, Behaviors and Preferences. Journal of Computing Sciences in

Colleges, 22(6), 18–27. Retrieved from http://dl.acm.org/citation.cfm?id=1231097

Huawei Technologies Co., L. (n.d.). Huawei. Retrieved January 1, 2017, from

http://consumer.huawei.com/

Institutional Review Board. (2011). Investigator Handbook (Version 2.). Logan, UT,

USA: Utah State University.

Irani, L. (2004). Understanding gender and confidence in CS course culture. ACM

SIGCSE Bulletin, 36(1), 195. https://doi.org/10.1145/1028174.971371

Isomöttönen, V., & Tirronen, V. (2013). Teaching programming by emphasizing self-

direction. ACM Transactions on Computing Education, 13(2), 1–21.

https://doi.org/10.1145/2483710.2483711

Johnson, S. D. (2008). Cognitive Analysis of Expert and Novice Troubleshooting

Performance. Performance Improvement Quarterly, 1(3), 38–54.

https://doi.org/10.1111/j.1937-8327.1988.tb00021.x

Jonassen, D. H. (2000). Toward a design theory of problem solving. Educational

 160

Technology Research and Development, 48(4), 63–85.

https://doi.org/10.1007/BF02300500

Jonassen, D. H. (2004). Learning to Solve Problems: An Instructional Design Guide. (M.

Davis, Ed.). John Wiley & Sons.

Jonassen, D. H. (2010). Learning to solve problems: A handbook for designing problem-

solving learning environments. Learning to Solve Problems: A Handbook for

Designing Problem-Solving Learning Environments. Routledge.

https://doi.org/10.4324/9780203847527

Jones, B. F., & Idol, L. (2013). Dimensions of Thinking and Cognitive Instruction.

Routledge.

Joo, Y.-J., Bong, M., & Choi, H.-J. (2000). Self-efficacy for self-regulated learning,

academic self-efficacy, and internet self-efficacy in web-based instruction.

Educational Technology Research and Development, 48(2), 5–17.

https://doi.org/10.1007/BF02313398

Kahneman, D. (2003). A Perspective on Judgment and Choice: Mapping Bounded

Rationality. American Psychologist, 58(9), 697–720. https://doi.org/10.1037/0003-

066X.58.9.697

Kim, Y. (2011). The Pilot Study in Qualitative Inquiry: Identifying Issues and Learning

Lessons for Culturally Competent Research. Qualitative Social Work, 10(2), 190–

206. https://doi.org/10.1177/1473325010362001

Kinnunen, P., & Malmi, L. (2006). Why students drop out CS1 course? In Proceedings of

the 2006 international workshop on Computing education research - ICER ’06 (p.

 161

97). New York, New York, USA: ACM Press.

https://doi.org/10.1145/1151588.1151604

Ko, A. J., & Davis, K. (2017). Computing Mentorship in a Software Boomtown. In

Proceedings of the 2017 ACM Conference on International Computing Education

Research - ICER ’17 (pp. 236–244). New York, New York, USA: ACM Press.

https://doi.org/10.1145/3105726.3106177

Koo, M., & Skinner, H. (2005). Challenges of Internet Recruitment: A Case Study with

Disappointing Results. Journal of Medical Internet Research, 7(1), e6.

https://doi.org/10.2196/jmir.7.1.e6

Kori, K., Pedaste, M., Tonisson, E., Palts, T., Altin, H., Rantsus, R., … Ruutmann, T.

(2015). First-year dropout in ICT studies. In 2015 IEEE Global Engineering

Education Conference (EDUCON) (pp. 437–445). IEEE.

https://doi.org/10.1109/EDUCON.2015.7096008

Krauss, J. (2008). Computer Science-in-a-Box: Unplug Your Curriculum. (D. Burkhart &

C. Stephenson, Eds.). Boulder, CO: The National Center for Women & Information

Technology. Retrieved from https://www.ncwit.org/resources/computer-science-

box-unplug-your-curriculum

Kumar, V., Winne, P., Hadwin, A., Nesbit, J., Jamieson-Noel, D., Calvert, T., & Samin,

B. (2005). Effects of self-regulated learning in programming. In Fifth IEEE

International Conference on Advanced Learning Technologies (ICALT’05) (pp.

383–387). IEEE. https://doi.org/10.1109/ICALT.2005.131

Lacey, T. A., & Wright, B. (2009). Monthly Labor Review: Occupational Employment

 162

Projections to 2018.

Lapadat, J. C., & Lindsay, A. C. (1999). Transcription in Research and Practice: From

Standardization of Technique to Interpretive Positionings. Qualitative Inquiry, 5(1),

64–86. https://doi.org/10.1177/107780049900500104

Lawanto, O. (2010). Students’ metacognition during an engineering design project.

Performance Improvement Quarterly, 24(2), 115–134.

Lawanto, O., Butler, D., Cartier, S. C., Santoso, H. B., Goodridge, W., Lawanto, K. N., &

Clark, D. (2013). Pattern of Task Interpretation and Self-Regulated Learning

Strategies of High School Students and College Freshmen during an Engineering

Design Project. Journal of STEM Education: Innovations and Research, 14(4), 15.

Lawanto, O., Butler, D., Cartier, S., Santoso, H. B., & Goodridge, W. (2013). Task

Interpretation, Cognitive, and Metacognitive Strategies of Higher and Lower

Performers in an Engineering Design Project: An Exploratory Study of College

Freshmen. International Journal of Engineering Education, 29(2), 459–475.

Lawanto, O., Cromwell, M., & Febrian, A. (2016). Students’ Self-Regulation in

Managing Their Capstone Senior Design Projects. In 123rd ASEE Annual

Conference and Exposition. New Orleans, LA, USA.

Lawanto, O., Goodridge, W. H., & Santoso, H. B. (2011). Task Interpretation and Self-

Regulating Strategies in Engineering Design Project: an Exploratory Study. In 118th

ASEE Annual Conference and Exposition. Vancouver, British Columbia, Canada.

Lawanto, O., & Johnson, S. (2009). Student’s cognitive self-appraisal, self-management,

and the level of difficulty of an engineering design project: are they related? In

 163

American Society for Engineering Education Annual Conference. Austin, TX.

Lawanto, O., Minichiello, A., Uziak, J., & Febrian, A. (2018). Students’ Problem

Understanding in Engineering Problem Solving (Under Review). International

Education Studies.

Lee, K. D. (2014). Foundations of Programming Languages. Cham: Springer

International Publishing. https://doi.org/10.1007/978-3-319-13314-0

Leiviskä, K., & Siponen, M. (2013). Understanding Why IS Students Drop Out: Toward

A Process Theory. In ECIS 2013 Proceedings (pp. 1–11). Retrieved from

http://aisel.aisnet.org/cgi/viewcontent.cgi?article=1285&context=ecis2013_cr

Lenox, T. L., Woratschek, C. R., & Davis, G. A. (2008). Exploring declining cs/is/it

enrollments. Information Systems Education Journal, 6(44), 11.

Leonard, N. R., Lester, P., Rotheram-Borus, M. J., Mattes, K., Gwadz, M., & Ferns, B.

(2003). Successful Recruitment and Retention of Participants in Longitudinal

Behavioral Research. AIDS Education and Prevention, 15(3), 269–281.

https://doi.org/10.1521/aeap.15.4.269.23827

Lewis, C. M., Anderson, R. E., & Yasuhara, K. (2016). “I Don’t Code All Day”: Fitting

in Computer Science When the Stereotypes Don’t Fit. In Proceedings of the 2016

ACM Conference on International Computing Education Research - ICER ’16 (pp.

23–32). New York, New York, USA: ACM Press.

https://doi.org/10.1145/2960310.2960332

Lischner, R. (2001). Explorations: Structured Labs for First-Time Programmers. ACM

SIGCSE Bulletin, 33(1), 154–158. https://doi.org/10.1145/366413.364571

 164

Litchfield, K., Javernick-Will, A., & Maul, A. (2016). Technical and Professional Skills

of Engineers Involved and Not Involved in Engineering Service. Journal of

Engineering Education, 105(1), 70–92. https://doi.org/10.1002/jee.20109

Lucid Software Inc. (n.d.). Flowchart Symbols and Notation. Retrieved March 29, 2018,

from https://www.lucidchart.com/pages/flowchart-symbols-meaning-explained

Lui, K. M., & Chan, K. C. C. (2006). Pair programming productivity: Novice–novice vs.

expert–expert. International Journal of Human-Computer Studies, 64(9), 915–925.

https://doi.org/10.1016/j.ijhcs.2006.04.010

Lye, S. Y., & Koh, J. H. L. (2014). Review on teaching and learning of computational

thinking through programming: What is next for K-12? Computers in Human

Behavior, 41, 51–61. https://doi.org/10.1016/j.chb.2014.09.012

Madigan, E. M., Goodfellow, M., & Stone, J. A. (2007). Gender, perceptions, and reality:

technological literacy among first-year students. ACM SIGCSE Bulletin, 39(1), 410.

https://doi.org/10.1145/1227504.1227453

Makel, M. C., & Plucker, J. A. (2014). Facts Are More Important Than Novelty.

Educational Researcher, 43(6), 304–316.

https://doi.org/10.3102/0013189X14545513

MaxQDA. (n.d.). MaxQDA - N. 5: Intercoder agreement. Retrieved March 8, 2018, from

https://www.maxqda.com/max12-tutorial/o-teamwork/n-5-intercoder-agreement

Mayer, R. (1996). Learners as Information Processors: Legacies and Limitations of

Educational Psychology’s Second Metaphor. Educational Psychologist, 31(3), 151–

161. https://doi.org/10.1207/s15326985ep3103&4_1

 165

McNeill, N. J., Douglas, E. P., Koro-Ljungberg, M., Therriault, D. J., & Krause, I.

(2016). Undergraduate Students’ Beliefs about Engineering Problem Solving.

Journal of Engineering Education, 105(4), 560–584.

https://doi.org/10.1002/jee.20150

Mercedes-Benz USA, L. (n.d.). SmartUSA. Retrieved January 1, 2017, from

https://www.smartusa.com/

Miller, L. D., Soh, L. K., Chiriacescu, V., Ingraham, E., Shell, D. F., Ramsay, S., &

Hazley, M. P. (2013). Improving Learning of Computational Thinking Using

Creative Thinking Exercises in CS-1 Computer Science Courses. In Proceedings -

Frontiers in Education Conference, FIE (pp. 1426–1432).

https://doi.org/10.1109/FIE.2013.6685067

Miller, T. M., & Gerci, L. (2014). Improving metacognitive accuracy: How failing to

retrieve practice items reduces overconfidence. Consciousness and Cognition, 29,

131–140. https://doi.org/10.1016/j.concog.2014.08.008

MIT Media Lab. (n.d.). Scratch. Retrieved April 19, 2017, from https://scratch.mit.edu/

Newman, R. S., & Schwager, M. T. (1995). Students’ Help Seeking During Problem

Solving: Effects of Grade, Goal, and Prior Achievement. American Educational

Research Journal, 32(2), 352–376. https://doi.org/10.3102/00028312032002352

Ormrod, J. E. (2007). Behaviorism and Classical Conditioning. In J. E. Ormrod (Ed.),

Human Learning (5th ed., pp. 32–47). Upper Saddle River, NJ: Allyn & Bacon.

Outlay, C. N., Platt, A. J., & Conroy, K. (2017). Getting IT Together: A Longitudinal

Look at Linking Girls’ Interest in IT Careers to Lessons Taught in Middle School

 166

Camps. ACM Transactions on Computing Education, 17(4), 1–17.

https://doi.org/10.1145/3068838

Pallier, G., Wilkinson, R., Danthiir, V., Kleitman, S., Knezevic, G., Stankov, L., &

Roberts, R. D. (2002). The Role of Individual Differences in the Accuracy of

Confidence Judgments. The Journal of General Psychology, 129(3), 257–299.

https://doi.org/10.1080/00221300209602099

Paraskeva, F. (2007). Self-regulated learning strategies and computer self-efficacy in IT

courses. In Data Mining VIII: Data, Text and Web Mining and their Business

Applications (Vol. I, pp. 235–244). Southampton, UK: WIT Press.

https://doi.org/10.2495/DATA070231

Parlante, N. (n.d.). CodingBat - code practice. Retrieved October 24, 2016, from

http://codingbat.com/

Peixoto, F., Mata, L., Monteiro, V., Sanches, C., & Pekrun, R. (2015). The Achievement

Emotions Questionnaire: Validation for Pre-Adolescent Students. European Journal

of Developmental Psychology, 12(4), 1–10.

https://doi.org/10.1080/17405629.2015.1040757

Pekrun, R., & Perry, R. P. (2014). Control-Value Theory of Achievement Emotions. In R.

Pekrun & L. Linnenbrink-Garcia (Eds.), International Handbook of Emotions in

Education (pp. 120–141). Routledge. Retrieved from

https://books.google.com/books?hl=en&lr=&id=8_UjAwAAQBAJ&pgis=1

Petticrew, M., & Roberts, H. (2006). Systematic reviews in the social sciences: A

practical guide. Oxford, UK: Blackwell Publishing. Retrieved from

 167

http://www.cebma.org/wp-content/uploads/Pettigrew-Roberts-SR-in-the-Soc-Sc.pdf

Pintrich, P. R. (2002). The role of metacognitive knowledge in learning, teaching, and

assessing. Theory into Practice, 41(4), 231–236.

Pintrich, P. R. (2003). A Motivational Science Perspective on the Role of Student

Motivation in Learning and Teaching Contexts. Journal of Educational Psychology,

95(4), 667–686. https://doi.org/10.1037/0022-0663.95.4.667

Pintrich, P. R. (2004). A conceptual framework for assessing motivation and self-

regulated learning in college students. Educational Psychology Review, 16(4), 385–

407. https://doi.org/10.1007/s10648-004-0006-x

Pivkina, I., Pontelli, E., Jensen, R., & Haebe, J. (2009). Young Women in Computing:

Lessons Learned from an Educational & Outreach Program. In Proceedings of the

40th ACM technical symposium on Computer science education - SIGCSE ’09 (Vol.

41, p. 509). New York, New York, USA: ACM Press.

https://doi.org/10.1145/1508865.1509042

Polit, D. F., Beck, C. T., & Hungler, B. P. (2001). Essentials of Nursing Research:

Methods, Appraisal and Utilization (5th ed.). Philadelphia, Pennsylvania, USA:

Lippincott Williams & Wilkins.

Prescott, P., & Soeken, K. (1989). The Potential Uses of Pilot Work. Nursing Research,

38(1), 60.

Rails Community. (2014). Rails - Web development that doesn’t hurt. Retrieved from

http://rubyonrails.org/

Renesse, C., & DiGrazia, J. (2018). Mathematics, Writing, and Rhetoric: Deep Thinking

 168

in First-Year Learning Communities. Journal of Humanistic Mathematics, 24–63.

https://doi.org/10.5642/jhummath.201801.04

Renumol, V. G., Janakiram, D., & Jayaprakash, S. (2010). Identification of Cognitive

Processes of Effective and Ineffective Students During Computer Programming.

ACM Transactions on Computing Education, 10(3), 1–21.

https://doi.org/10.1145/1821996.1821998

Resnick, M., Silverman, B., Kafai, Y., Maloney, J., Monroy-Hernández, A., Rusk, N., …

Silver, J. (2009). Scratch: Programming for All. Communications of the ACM,

52(11), 60. https://doi.org/10.1145/1592761.1592779

Rivera-Reyes, P. (2015). Students’ Task Interpretation and Conceptual Understanding in

Electronics Laboratory Work (Doctoral Dissertation). Logan, UT: Utah State

University.

Rivera-Reyes, P., Lawanto, O., & Pate, M. L. (2016). Understanding Student

Coregulation in Task Interpretation during Electronics Laboratory Activities.

International Education Studies, 9(7), 1. https://doi.org/10.5539/ies.v9n7p1

Rudolph, J., Niepel, C., Greiff, S., Goldhammer, F., & Kröner, S. (2017). Metacognitive

confidence judgments and their link to complex problem solving. Intelligence, 63,

1–8. https://doi.org/10.1016/j.intell.2017.04.005

Ruthmann, A., Heines, J. M., Greher, G. R., Laidler, P., & Saulters, C. (2010). Teaching

computational thinking through musical live coding in scratch. In Proceedings of the

41st ACM technical symposium on Computer science education - SIGCSE ’10 (p.

351). New York, New York, USA: ACM Press.

 169

https://doi.org/10.1145/1734263.1734384

Ryan, R., & Deci, E. (2000). Intrinsic and Extrinsic Motivations: Classic Definitions and

New Directions. Contemporary Educational Psychology, 25(1), 54–67.

https://doi.org/10.1006/ceps.1999.1020

Saldana, J. (2008). An introduction to codes and coding. In The Coding Manual for

Qualitative Researchers (pp. 1–31). SAGE Publications. Retrieved from

https://scholar.google.com/scholar?q=An+Introduction+to+Codes+and+Coding&btn

G=&hl=en&as_sdt=0%2C45#0

Samsung. (n.d.). Samsung. Retrieved January 1, 2017, from http://www.samsung.com/us/

Santoso, H. B. (2013). Computer Self-Efficacy, Cognitive Actions, and Metacognitive

Strategies of High School Students While Engaged in Interactive Learning Modules

(Doctoral Dissertation). Logan, UT: Utah State University. Retrieved from

http://discover.lib.usu.edu/iii/encore/record/C__Rb3243218__Sharry budi

santoso__Orightresult__X4?lang=eng&suite=cobalt

Santoso, H. B., Lawanto, O., Becker, K., Fang, N., & Reeve, E. M. (2014). High and

Low Computer Self-Efficacy Groups and Their Learning Behavior from Self-

Regulated Learning Perspective While Engaged in Interactive Learning Modules.

Journal of Pre-College Engineering Education Research (J-PEER), 4(2), 11–28.

https://doi.org/10.7771/2157-9288.1093

Saulnier, C. R., & Brisson, J. G. (2018). Design for Use: A Case Study of an

Authentically Impactful Design Experience. International Journal of Engineering

Education, 34(2B), 769–779.

 170

Schoenfeld, A. H. (1983). Episodes and Executive Decisions in Mathematical Problem

Solving. In R. Lesh & M. Landau (Eds.), Acquisition of Mathematics Concepts and

Processes (pp. 345–395). New York, New York, USA.

Seffah, A., Donyaee, M., Kline, R. B., & Padda, H. K. (2006). Usability measurement

and metrics: A consolidated model. Software Quality Journal, 14(2), 159–178.

https://doi.org/10.1007/s11219-006-7600-8

Senske, N. (2011). A Curriculum for Integrating Computational Thinking. In ACADIA

Regional 2011 Parametricism (pp. 91–98). Lincoln, NE. Retrieved from

https://acadia.s3.amazonaws.com/paper/file/6G2VA4/AcadiaRegional_010.pdf

Shaft, T. M. (1995). Helping Programmers Understand Computer Programs: the Use of

Metacognition. ACM SIGMIS Database, 26(4), 25–46. Retrieved from

http://dl.acm.org/citation.cfm?id=223280

Siddique, Z., Hardré, P. L., & Altan, D. (2015). Effects of a mechanical engineering

design course on students’ motivational features. International Journal of

Mechanical Engineering Education, 43(1), 44–74.

https://doi.org/10.1177/0306419015581734

Sinatra, G. M., Broughton, S. H., & Lombardi, D. (2014). Emotions in Science

Education. In R. Pekrun & L. Linnenbrink-Garcia (Eds.), International Handbook of

Emotions in Education (pp. 415–436). Routledge.

Skinner, B. F. (1988). Whatever Happened to Psychology as the Science of Behavior?

Counselling Psychology Quarterly, 1(1), 111–122.

https://doi.org/10.1080/09515078808251426

 171

Smarthome. (n.d.). SmartHome Store. Retrieved January 1, 2017, from

https://www.smarthome.com/

Teague, D. (2009). A People-First Approach to Programming. In ACE ’09 Proceedings of

the Eleventh Australasian Conference on Computing Education (pp. 171–180).

Australian Computer Society, Inc. Retrieved from

http://dl.acm.org/citation.cfm?id=1862737

TechTarget. (n.d.). What Is. Retrieved April 24, 2017, from http://whatis.techtarget.com

Teddlie, C., & Yu, F. (2007). Mixed Methods Sampling: A Typology With Examples.

Journal of Mixed Methods Research, 1(1), 77–100.

https://doi.org/10.1177/2345678906292430

Tew, A. E., McCracken, W. M., & Guzdial, M. (2005). Impact of alternative introductory

courses on programming concept understanding. In Proceedings of the 2005

international workshop on Computing education research - ICER ’05 (pp. 25–35).

New York, New York, USA: ACM Press. https://doi.org/10.1145/1089786.1089789

The Joint Task Force on Computing Curricula. (2013). Computer Science Curricula

2013: Curriculum Guidelines for Undergraduate Degree Programs in Computer

Science. Practice. https://doi.org/10.1145/2534860

Tigerfish. (n.d.). Transcription Style Guide. San Francisco, USA: Tigerfish. Retrieved

from http://www.tigerfish.com/Transcription Style Guide Rev. 6.10.pdf

Toal, R. (n.d.). Programming Paradigms. Retrieved April 22, 2017, from

http://cs.lmu.edu/~ray/notes/paradigms/

Trinh, V. Q., Chung, G. S., & Kim, H. C. (2012). Improving the Elder’s Quality of Life

 172

with Smart Television Based Services. International Journal of Social, Behavioral,

Educational, Economic, Business and Industrial Engineering, 6(7), 1794–1797.

Umapathy, K., & Ritzhaupt, A. D. (2017). A Meta-Analysis of Pair-Programming in

Computer Programming Courses. ACM Transactions on Computing Education,

17(4), 1–13. https://doi.org/10.1145/2996201

Unity Technologies. (2018). Unity 3D. Retrieved April 1, 2018, from https://unity3d.com

Utah State University. (n.d.). Computer Science - BS: A Catalog ACMS. Retrieved from

http://catalog.usu.edu/preview_program.php?catoid=12&poid=9373#tt7849

Utah State University Office of Research and Graduate Studies. (n.d.). About IRB.

Retrieved April 30, 2016, from http://rgs.usu.edu/irb/about/

van Teijlingen, E., & Hundley, V. (1998). The importance of pilot studies. Nursing

Standard : Official Newspaper of the Royal College of Nursing, 16(40), 33–36.

https://doi.org/10.7748/ns2002.06.16.40.33.c3214

Vansteenkiste, M., Lens, W., Elliot, A. J., Soenens, B., & Mouratidis, A. (2014). Moving

the Achievement Goal Approach One Step Forward: Toward a Systematic

Examination of the Autonomous and Controlled Reasons Underlying Achievement

Goals. Educational Psychologist, 49(3), 153–174.

https://doi.org/10.1080/00461520.2014.928598

Viera, A. J., & Garrett, J. M. (2005). Understanding interobserver agreement: the kappa

statistic. Family Medicine, 37(5), 360–363. Retrieved from

http://www.ncbi.nlm.nih.gov/pubmed/15883903

Wang, J., Hejazi Moghadam, S., & Tiffany-Morales, J. (2017). Social Perceptions in

 173

Computer Science and Implications for Diverse Students. In Proceedings of the

2017 ACM Conference on International Computing Education Research - ICER ’17

(pp. 47–55). Tacoma, Washington, USA: ACM Press.

https://doi.org/10.1145/3105726.3106175

Weisser, M. (1991). The Computer for the Twenty-First Century. Scientific American,

3(265), 94–104.

Whiting, L. S. (2008). Semi-structured interviews: guidance for novice researchers.

Nursing Standard, 22(23), 35–40. https://doi.org/10.7748/ns2008.02.22.23.35.c6420

Whittington, K. J. (2004). Infusing Active Learning Into Introductory Programming

Courses. Journal of Computing Sciences in Colleges, 19(5), 249–259. Retrieved

from http://dl.acm.org/citation.cfm?id=1060081.1060111

Wiersema, J. A., & Licklider, B. L. (2009). Intentional Mental Processing: Student

Thinking as a Habit of Mind. Journal of Ethnographic & Qualitative Research, 3(2),

117–127.

Wigfield, A., & Eccles, J. (2000). Expectancy-Value Theory of Achievement Motivation.

Contemporary Educational Psychology, 25(1), 68–81.

https://doi.org/10.1006/ceps.1999.1015

Williams, L., Wiebe, E., Yang, K., Ferzli, M., & Miller, C. (2010). In Support of Pair

Programming in the Introductory Computer Science Course. Computer Science

Education, 12(3), 197–212. https://doi.org/10.1076/csed.12.3.197.8618

Wing, J. M. (2006). Computational Thinking. Communications of the ACM, 49(3), 33.

https://doi.org/10.1145/1118178.1118215

 174

Wing, J. M. (2008). Computational Thinking and Thinking About Computing.

Philosophical Transactions. Series A, Mathematical, Physical, and Engineering

Sciences, 366(1881), 3717–25. https://doi.org/10.1098/rsta.2008.0118

Winne, P. H., & Perry, N. E. (2000). Measuring Self-Regulated Learning. In M.

Boekaerts, P. R. Pintrich, & M. Zeidner (Eds.), Handbook of Self-Regulation (pp.

531–566). Orlando, Florida, USA: Academic Press.

Yin, R. K. (2009). Case Study Research: Design and Methods. Los Angeles, CA, USA:

Sage Publications. Retrieved from

http://discover.lib.usu.edu/iii/encore/record/C__Rb2559607__SCase study research:

Design and methods__Orightresult__X4?lang=eng&suite=cobalt

Zimmerman, B. J., Heart, N., & Mellins, R. B. (1989). A Social Cognitive View of Self-

Regulated Academic Learning. Journal of Educational Psychology, 81(3), 329–339.

https://doi.org/10.1037//0022-0663.81.3.329

 175

APPENDICES

 176

APPENDIX A. THE 2016 REU PROJECT DESCRIPTION

 177

In this modern age, computers and smart devices are pervasive. It has been used to

improve the quality of, for example, telecommunication, transportation, medical, and

security services. Consequently, employers expect the next generation of workers to have

some basic knowledge in applying these technological advancements to solve their

problems. In other words, they are expected to have some computer science (CS) skills.

Being aware of the importance of CS skills in the future, the states of Florida, Chicago,

Utah, and California decided to incorporate CS-base courses in their respective K-12

curriculum through what commonly known as computational thinking. On the other

hand, educational researchers in education have shown that students with better self-

regulated learning (SRL) skills will excel in academic learning and problem solving

compared to their counterparts. However, little has been known about students' SRL in

programming design, one of the core activities in CS. This study aims to bridge that gap

by assessing and describing CS students' SRL while they engaged in programming tasks.

A qualitative case study will be conducted to three-to-four CS students who will be

recruited from the CS department at Utah State University using the criterion sampling

method. The participants will be asked to spend 2.5 hours to answer two programming

questions, which will be audio and video recorded. Framed in Butler and Cartier's SRL

model, the attribute, process, in-vivo, and pattern coding approaches will be applied to

the transcribed data. Each participant will receive $25 and a personalized SRL profile as

tokens of appreciation. A member checking activity will be conducted at the end of the

data analysis process to validate research findings.

 178

APPENDIX B. THE 2016 REU PROJECT SCHEDULE

 179

Date Activity Outcomes
Week 1
06/06 - 06/10

Seminars and training:
• Seminar “Self-Regulated Learning: What

is it?”
• Seminar “A Brief Introduction to

Qualitative Methods”
• Training: Institutional Review Board (IRB)

Introduction to research (in ‘All Participants’
folder):
• Searching for academic literatures:

EBSCO and ERIC
• Best practice: research log book
• Taking notes: annotated bibliography
• File naming and version convention

Literature:
• Self-regulated learning (1 provided by

mentor, 1 provided by you)
• Concept map (1 provided by mentor)

Debriefing:
• Issues/suggestions/resolutions
• Planning for next week

Each student:
• 2 summaries of

seminars
• IRB training

certificate
• Concept map of

the seminar and
literature

Week 2
06/13 - 06/17

Seminar:
• Seminar “Curriculum and Research:

Developing an Educational Research
Question”

• Seminar “Educational Data Analysis with
SPSS”

Learn programming:
• Complete: Light Bot stage 1 – 3

(http://lightbot.com/hocflash.html)
• Complete: Elsa Frozen puzzle 1 - 20

(http://code.org/api/hour/begin/frozen)
• SRL (task interpretation, planning,

strategic action, and monitoring) activities
note about your learning

Each student:
• 2 summaries of

the seminars
• 1 screenshot

which showed
the completion
of all Light Bot
stages

• 1 screenshot
which showed
the completion
of all Elsa
Frozen puzzles

• Your
programming-
SRL note

 180

Date Activity Outcomes

Literature:
• Qualitative research methods (1 provided

by mentor, 1 provided by you)
• Verbal protocol (1 provided by mentor)
• Application of verbal protocol (1 provided

by you)

Debriefing:
• Issues/suggestions/resolutions
• Planning for next week

• Concept map of
the literature

Week 3
06/20 - 06/24

Seminar:
• Seminar “Responsible Research”

Getting familiar with verbal protocol:
• Watch videos about conducting a verbal

protocol (1 provided by mentor, 1 provided
by you)

• Discuss possible issues and its handling
method on conducting verbal protocol in
this research

Literature:
• Attribute of problem (1 provided by

mentor)
• Transcription method (1 provided by

mentor)
• Qualitative study in computer science

education (1 provided by you)

Data collection preparation (provided by
mentor):
• Discuss the research methodology
• Discuss the research question
• Discuss the research instrument
• Learn to use data collection tools

Each student:
• 1 summary of

the seminar
• Concept map of

the literature

Group
• Note about the

research
methodology

• List of possible
issues and its
handling method
in verbal
protocol

 181

Date Activity Outcomes

Debriefing:
• Issues/suggestions/resolutions
• Planning for next week

Week 4
06/27 - 07/01

Data collection and transcription:
• From 3 or 4 computer science students

Preparation for qualitative data analyses:
• NVivo9 for transcribing
• MaxQDA12 for coding

Debriefing:
• Issues/suggestions/resolutions
• Planning for next week

Group:
• 1 to 4 raw data
• 1 to 4

transcription data
• 1 to 4 signed

informed
consents

Week 5
07/05 - 07/08

Data collection and transcription:
• From 3 or 4 computer science students

Literature:
• Qualitative data analyses (2 provided by

mentor, 1 provided by you)
• Interrater reliability (1 provided by

mentor)

Debriefing:
• Issues/suggestions/resolutions
• Planning for next week

Each student:
• Concept map of

the literature

Group:
• 3 to 4 final raw

data
• 3 to 4 final

transcription data
• 1 to 4 signed

informed
consents

Week 6
07/11 - 07/15

Phase 1 data analysis:
• Segmentation and coding: attribute and

process
• Interrater reliability

Phase 2 data analysis preparation:
• Identify emergent strategies

Debriefing:
• Issues/suggestions/resolutions
• Planning for next week

Each student:
• Emergent

strategies

Group:
• Phase 1: segment

and coding data
• Phase 1: coding

statistics
• Phase 1:

interrater score

 182

Date Activity Outcomes
Week 7
07/18 - 07/22

Phase 2 data analysis:
• Coding: in-vivo, pattern
• Interpretation of the category
• Select examples of events or personal

experiences

Literature:
• Computer science education (1 provided

by mentor, 1 provided by you)

Debriefing:
• Issues/suggestions/resolutions
• Planning for next week

Each student:
• Concept map of

the literature

Group:
• Phase 2: segment

and coding data
• Phase 2: coding

statistics
• Phase 2:

interrater score
• Phase 2:

interpretation
Week 8
07/26 - 07/29

Data analysis:
• Interpretation

Member checking:
• 3 to 4 personalized SRL reports for each

participants

Debriefing:
• Issues/suggestions/resolutions
• Planning for next week

Group:
• Final

interpretation
• 3 to 4

personalized
SRL report

Week 9
08/01 - 08/05

Member checking:
• Revise findings based on member

checking results

Documentation:
• Preparing research results presentation
• Develop a report of the analyzed

data/findings

Group:
• Revised

interpretation
• Research result

presentation

Week 10
08/08 - 08/14

At home research assignments:
Final report due on Friday, August 14th at
11:59 PM by email to Dr. Lawanto
(olawanto@usu.edu) and Andreas
(andreas.febrian@aggiemail.usu.edu)

Each student:
• Final REU report

 183

APPENDIX C. THE 2016 REU RECRUITMENT PUBLICATION

 184

Title: Research Participants Recruitment for CS Education Research

Content:

Courtenae Palmer,

My name is Andreas Febrian. I am a doctoral student in the Engineering Education

Department. Yesterday we talked about disseminating information to CS undergraduate

students; here is the information:

One of our REU summer projects is about assessing self-regulated learning of computer

science students while engaged in programming design (see

http://reu.usu.edu/projects.php#cP2). The goal of the study is to describe their task

interpretation and planning strategies. We would love to recruit 3 to 4 undergraduate CS

students who are willing to:

• Dedicate 2.5 hours in Logan between June 27 – July 8 to solve two

programming design questions.

• Dedicate 15-30 minutes between July 26 – 29 to read a personalized report of

his/her SRL and to comment about it (e.g., whether our interpretations were

wrong or not). This can be done through a phone call, skype, or email.

Each participant will receive a $40 gift card and a personalized report of their SRL.

Educational researchers found that students with higher self-regulation tend to perform

better academically compared to their counterparts. The personalized SRL report can help

students to identify their SRL strengths and weaknesses.

If you were interested in participating or had any questions, please contact me at

andreas.febrian@aggiemail.usu.edu.

mailto:andreas.febrian@aggiemail.usu.edu

 185

APPENDIX D. THE 2016 REU DEMOGRAPHICS SURVEY

 186

Demographic Survey

You have agreed to participate in the REU 2016 Project #2. This survey is intended to

collect demographic information about you, which includes basic and academic

information. If you have any questions or concerns, please contact Andreas Febrian

(andreas.febrian@aggiemail.usu.edu).

Personal Information

Questions with asterisk (*) are mandatory.

Name*: __

Nickname (research ID)*: ___________________________

Please provide a name as your research identifier. It has to be at least four characters long and only

contains alphabet (A-Za-z). You may also use your real name.

Gender*:

o Male o Female

Your age*: _______

Ethnic:

o African American

o Asian-Pacific Islander

o Caucasian

o Hispanic

o Native American

o Other

Phone (with area code)*: _________________________________

 187

Academic/Discipline Information

Questions with asterisk (*) are mandatory.

Current cumulative GPA (on a 4.00 scale)*: __________________

Latest CS 1400 (Introduction to Computer Science--CS 1) grade*:

o A

o A-

o B+

o B

o B-

o C+

o C

o C-

o Below C-

Please mark the all courses that you have passed with C- or better:

 MATH 1210: Calculus I (QL)

 CS 1410: Introduction to Computer Science--CS 2 (QI)

 CS 1440: Methods in Computer Science

 MATH 1220: Calculus II (QL)

 CS 2420: Algorithms and Data Structures--CS 3 (QI)

 MATH 3310: Discrete Mathematics

 CS 2410: Introduction to Event Driven Programming and GUI's

 CS 2610: Developing Dynamic, Database-Driven, Web Applications

 CS 3100: Operating Systems and Concurrency

 CS 3450: Introduction to Software Engineering (CI)

 CS 5000: Theory of Computability

 188

 CS 5050: Advanced Algorithms

 MATH 2270: Linear Algebra (QI)

 CS 4700: Programming Languages

 CS 5300: Compiler Construction

Rate your interest in programming (0 - 10): ______

Please mark all programming paradigms that you are proficient in:

 Imperative (Procedural)

Programming

 Object Oriented Programming

 Visual Programming

 Functional Programming

 Logic Programming

 Declarative Programming

Please estimate the number of hours you have spent in doing programming:

Are there any additional factors that you feel have affected your programming abilities?

If so, what are they?

__

__

__

 189

When do you want to meet with us?

Please select more than one.

 Thursday, June 30

 Friday, July 1

 Tuesday, July 5

 Wednesday, July 6

 Thursday, July 7

 Friday, July 8

What is the best time to meet on Tuesday, Wednesday, or Thursday?

Please select more than one.

 09:00 AM - 11:30 AM

 09:30 AM - 12:00 PM

 10:00 AM - 12:30 PM

 10:30 AM - 01:00 PM

 11:00 AM - 01:30 PM

 11:30 AM - 02:00 PM

 12:00 PM - 2:30 PM

 12:30 PM - 3:00 PM

 01:00 PM - 3:30 PM

 01:30 PM - 4:00 PM

 02:00 PM - 04:30 PM

What is the best time to meet on Friday?

Please select more than one.

 09:00 AM - 11:30 AM

 09:30 AM - 12:00 PM

 10:00 AM - 12:30 PM

 10:30 AM - 01:00 PM

Initials*: _________

 I certify that all information given in this application packet is accurate and true to

the best of my knowledge. I understand that submission of false information is

grounds for immediate dismissal from this study.

 190

APPENDIX E. THE 2016 REU INTRODUCTION SCRIPT

 191

Researchers: Hi! Thank you for coming in today, how are you doing?

Participant: Fine.

Researchers: Great! We have some chocolate here for you to eat throughout the session,

feel free to take as much as you like.

Before we get started, we do want to remind you that we will be filming this session and

will be using the audio and video recordings in our research. Here is the consent form,

which we would like you to sign. Please take your time reading it and if you have any

questions you would like to ask before you agree to participate, we will gladly answer

them.

Participant: No, I have no questions, and yes, I will sign the form.

Researchers: Great! As you may already know, we are researching the self-regulating

behaviors of computer science students, specifically those which occur during attempts to

solve problems. To accomplish our research goals, we have several other students,

similar to you, who either have already done or will soon do exactly what you are about

to do today.

You will be providing us with a verbal protocol, or think-aloud, which means that as you

work on the problems we give you, we would like you to speak your thoughts out loud as

they come to you. We will demonstrate an example of verbal protocol using a simple

bridges puzzle.

 192

Researchers: As we demonstrated, please say every thought that goes through your head,

no matter how small or irrelevant you think it is and speak loudly and clearly. If you are

silent for a while, we may ask questions to help you stay focused, and/or to remind you

that we need to hear your thoughts. Do you have any questions so far?

Participant: No questions.

Researchers: Good! Today, we will give you four problems total, two practice questions

to get you used to the idea of thinking out loud, and two more questions after those. We

will give you each problem one at a time, and we want hear how you work through the

problem from beginning to end. Please take your time and be thorough. You may use as

much paper as you need. Also, it is not important to get the “right answer”. In the last two

problems there is no “right answer” we are more interested in the way you work through

the problems. Do you have any final questions before we begin?

Participant: No.

Researchers: Then here is your first practice problem.

 193

APPENDIX F. THE 2016 REU PERSONALIZED SRL REPORT

 194

DanielO Report

Monitoring: Satisfying Requirements

In the monopoly problem, you also went back and made sure all requirements were met

several times. For example, you said “Let’s see… what else did they have? Castle,

fortress, or inn. Alright now, what else should a space have?” This may be due to the

length of the problem and all the specifications that were mentioned. This was done

throughout the entirety of the problem. You later said “All right so, valid number of

players here, valid number of players, table top, so what else should the game have?”

This can also be seen as monitoring the task, since meeting all the requirements was your

task interpretation.

Monitoring: Monitoring of the Task

While you were solving the monopoly problem, you reminded yourself that you were

doing pseudo-code because the problem wasn’t asking you to go any further. You said

things like “hmm, I mean, it is pseudo-code, so maybe I shouldn’t worry so much about

that” and “this is pseudo-code of course, this is not how you write any of this, but I’m just

writing it like this to make it easier to actually write down”. You recognized that your

task was to create pseudo-code, but had to monitor yourself because it often felt like you

wanted to go beyond that and write more accurate segments of code. An example of this

is when you debate on whether a variable should be private or public. You say: “Um…

I’m not sure if it should be public or private. I guess, public.”

Pseudo-code can be an informal a skeleton that will aid them in the design of the

program. Keywords may not truly be important in the pseudo-code process because once

 195

you are able to type, an IDE compiles for you and if there are any errors you can begin

debugging. In your case, it seemed as if you wanted to make your pseudo-code as close to

the real thing as possible so that when you actually start coding, the process will be as

simple as possible. Since the problem never mentioned future coding, this is seen as your

personal objective: to include keywords and make the pseudo-code as thorough as

possible.

Another example of this is when you say “I think that I just realized I need a constructor,

because yeah, game actually that’s not how you write constructors inside of classes when

you do inherency files here I just make-- is called game, and that’s the constructor”. It

should also be noted that your attention to detail in pseudo-code can be linked to

observation bias. Maybe since we were observing you, you weren’t sure how much detail

you should include for the purposes of our research?

Monitoring: Instruments Used

You were the only participant to ask whether a pencil could be used. We feel this is

noteworthy because you provided the reasoning as, “It’s just if I get myself into a corner,

I want to kind of wiggle out of it.” With this statement, you are aware of your own

monitoring techniques. It shows that when you make a mistake, you are able to erase and

start over, which is a good technique to employ in computer science.

Strategic Action: Reading the Title

Although it may not seem like a significant strategy, reading the title of a problem is an

effective way to gain insight of what the problem will entail. You read the title to every

question which means that you consider he title to be an integral part of each problem.

 196

You also read the numbers in the title. For example, “Question four. Oh, four, question

two. Okay. Monopoly in the middle ages”. Also you read, “So, the last standing man,

ominous.” The addition of the word “ominous” to the title gives us the impression that

you anticipate the problem will portray evil or harm. You draw this strictly after looking

at the problem and reading the title. This not only shows that you read the title, but you

strategically read the title by allowing yourself to anticipate characteristics of the

problem, which is an important part of monitoring.

Monitoring: Monitoring Interest Level

Trough out your problem-solving procedure you verbalized how you felt about the

problems. After reading several of the requirements for the monopoly problem, you said,

“I don’t like monopoly”. We believe that your feelings toward a problem are external

factors that affect your approach, so an interesting question to ask yourself is, “Would my

approach and strategies used on this problem be different if I liked monopoly?” Later you

say, “Yeah. That actually wasn’t as bad as I thought, okay I think that’s it.” This leads us

to believe that you initially thought the problem would be more tedious.

When a problem is perceived as tedious, the interest level in that problem is likely to

drop. When interest level drops, performance may not be as efficient in comparison to

when you are truly engaged in the problem. In your case, it appears as though the initial

feelings of dislike diminished once you completed the task. Personal Note: It could be

effective to not only monitor your emotions before approaching the task, like you did, but

if the emotions interfere with your objective, maybe monitor what you can do with those

emotions to strategically accomplish your task.

 197

Strategic Approach: Skipping Parts of Problem

“After you input your three values, the magic black box will output ‘true’ if your

friendship is compatible and ‘false’ if it’s not compatible. That’s the algorithm.” Here,

you are implicitly indicating that you will skip the code for now and come back to it later.

This is a nonlinear approach that is focused on determining the task before going back

and reading the code. This is strategic because once you determine the task, you can

actually run through the code and know what you are looking for, which can same time in

time-sensitive situations such as exams.

 198

Depend Report

Task Interpretation: Sticking with Initial Task Interpretation

In the problem called “the last man standing” you demonstrated a non-conventional

understanding of the problem objective and a unique personal objective. You appeared to

initially interpret the goal of the problem as…

“…using the algorithm, just find the perfect position of where he should stand. It should

probably calculate, it should like simulate, the number of people at first and then already

calculate, really quickly, because you don’t want to wait like a day because then you’re

going to die. Then, he should be able to pick the position he wants so I’m going to have

to look for a pattern and it has to be generic, like you can’t just hardcode.”

Here you explicitly describe your task interpretation, and show us that finding the

“quickest” solution is something you feel is necessary despite not being asked to do so by

the problem. Clearly, you noticed that the problem asked you to “simulate” the suicidal

method in the code, but you interpreted this to mean that your code should simply take

the number of people as an input, then calculate Josephus’ position in whatever way

would be fastest. Later, you added that, “Right now, I’m just trying to find a pattern. A

generic pattern that I can use.” This shows that you felt that you needed to find a strong

pattern which your code could use to find Josephus’ position faster than if it simulated

the whole suicidal process.

You stick to your plan of finding a pattern for 31 minutes. During this time, you

questioned whether your solution was correct, but you never questioned whether you task

understanding was correct. For example, you said, “Yeah, I think there’s a different way

 199

to approach this that I’m not thinking of, but I kind of just want to do one more.” This led

to repetition, and to the realization that the problem-solving approach you were using

may not have been the most efficient. Perhaps in the future, it would be useful for you to

monitor your understanding of the task throughout your problem-solving process.

Strategic Action: Marking for Organization

Secondly, we noticed that you marked the papers, and used them for figuring, all to better

organize your work. This was observed on multiple problems, such as in in the

troubleshooting problem, where you said, “Okay. So I’m just going to underline where I

think the error is.” In the board game design problem, you used check marks to specify

which constraints you had satisfied already, and question marks for those which you

would return to later. In the “output prediction” problem, you used the extra paper to

write down the results you got as you resolved each part of the complicated logic

statements.

Strategic Action: Not Reading the Title

We also noticed that you often do not read the title of a problem at the start of the

problem, most notable in the problem “monopolies in the middle ages” where you only

made the connection once you had reached the end. You say “I just realized it says

‘monopolies in the middle ages’. That explains why I was thinking monopoly the whole

time”. Perhaps, if you had read the title first, you would have gained more context about

the problem’s task and it could have helped to facilitate the problem-solving process.

 200

Strategic Action: Reading Silently

You clearly demonstrate, in the initial practice problems, a strong preference for reading

silently to yourself. However, you also give us reasons to believe that different things

work for you. After the second practice problem, you admitted to us that, “I had to re-

read the first paragraph like a couple of times to really understand what’s going on”.

Also, when you tried reading the problem out loud, you would restate every sentence

after reading it to check your understanding. This all tells us that your process for

understanding problems is more involved than you may realize, and all the little things

you do while interpreting a problem may help you develop more accurate interpretations,

and may help you do so faster.

Strategic Action: Linear Approach

In the “monopolies in the middle ages” problem, after you feel you have fulfilled the

majority of the requirements you go back and run through the list one by one. For

example, you say, “They have to start with different items. I’m not really sure on this

one, maybe… huh, I am going to put a question mark for there”. If you have satisfied the

requirement for the game, you put a checkmark, if you have not, you put a question mark.

This not only proves the aforementioned about your strategy to mark for organization, it

also shows that you choose to solve a problem linearly. It helps you to keep track of what

has been done and what you still need to work on.

 201

George Report

Strategic Action: Reads Title

Although this may seem like a common action, you’d be surprised that some of our other

participants didn’t read the title. Not only did you read the title every single time, you

included the numbers of the problems and verbalized your initial impressions. For

example, you said, “Umm… number 2. The second 2 seems redundant. Output

prediction.” Here there may not be any significance in the extra “2”, but you still take

notice of the numbers, which shows you pay great attention to detail. Also, you say

“Monopolies in the middle ages. This feels more like an essay question. Still only one

page though, not as bad as the bar exam.” The length of the problem led you to believe

this was similar to an essay question. When you did this, you were accessing prior

knowledge. You are familiar with what essay questions looks like because you’ve

encountered them before, so you are able to recognize an essay question according to its

length. This is a useful strategy which we observed while you solved the problems.

Strategic Action: Accessing Prior Knowledge

Even for trivial approaches, you reminded us that you learned certain tactics in the past,

and these past experiences led you to choose to employ a similar strategy at that

particular moment. Perhaps this helps to reinforce your actions in your mind and provides

you with a stronger foundation as you proceed with the problem. For example, you said,

“Okay, well I’m going to start by reading the instructions because that’s what I’ve

learned is always the best think to start with.” It can be assumed that we all mostly start

by reading the instructions, but you credit this approach to your prior experience (which

 202

is interesting). Also, as you are reading the problems, you mention, “Okay. I am starting

to run through some of the programs I have already done in C++.” This proves you have

experience in computer science and you understand that many times former programs can

help us form the basics of a new program. Students who do not have prior knowledge in

computer science do not have the memory bank that you do, and don’t have access such

information. You do, and you are making notable use of it by using your prior knowledge

when you know it will be advantageous. Another example of this is when you say,

“Alright, well I think remembering back to the games I’ve designed in my other classes,

I’m trying to decide if I want game objects to start with…” Again, you have a memory

bank of games you’ve designed, so you are able to go through that memory bank and find

an approach that would best suit this particular problem.

Planning Strategies: Skipping Sections of the Problem

During our observation, you strategically choose to skip sections of the problem. You say

“After three days of meetings… the people in charge have agreed on same basic aspects

of the game, which are… I’m going to skip the aspects again and see what I’m supposed

to do with that information before I read it.” This was a particularly lengthy problem (the

one you mentioned felt like an “essay question”), so perhaps it is usual for a computer

science student to skip the mumbo-jumbo, and try to find out what the problem is truly

asking. However, it was interesting to see that you still used this strategy even when the

problem wasn’t lengthy. For one of the relatively short practice problems you say, “I’m

going to skip the code and see what else I have to do before I go back and look at it, so

that I know what I’m looking for.” You were the only participant who chose a nonlinear

 203

approach to the problems. You are interested in knowing what the task is before you go

back and read the details, which shows that you are a task oriented person and place a

great deal of importance on the task.

Task Interpretation: Taking the Task Literally

The problems contain context to imitate some of the problems that are assigned in typical

computer science courses. You take the context literally and make it your personal

objective to fulfill the details mentioned in context. For example, “Yeah, the rest of the

team could easily develop the rest of the game, so hopefully they can read my

handwriting”. Other participants may simply see it as an unimportant problem on paper

they will try to solve (while employing verbal protocol) to aid us in our research, but you

consider everything mentioned in the instructions and view it as part of your duty to

satisfy the requirements literally. We believe this will be a valuable strategy to use in

real-life situations where you have to consider outside factors such as being the leader on

a project assigned by your employer. Since you are concerned with fulfilling every

requirement in classroom-given problems, you will be prepared to work in a team. You

mention “They didn’t give very good instructions on those. But I don’t want to go ask my

boss, because you know… and then you get fired, they want you to think.” This is a

perfect example of the aforementioned role-playing that you demonstrated. Perhaps you

understand that the purpose of a computer-science education is to be prepared for the

work-field/industry.

 204

Strategic Action: Organizing Thoughts on Paper

You make use of the scratch paper offered to you by using it to make sketches that help

you organize your thoughts. Once your thoughts are on paper in the form of a diagram,

the situation is clearer to you, and you are able to proceed from there. This is a strategy

that is often taught during our earlier years of school, and one that some of us forget in

our college education. It is especially important for students in the technical field such as

engineering and computer science to have a strong foundation to work off of. A visual aid

is a great example of building yourself a strong foundation which you can use

strategically to your benefit. Here are some examples:

“So I’m going to use this sheet to just sketch out a little bit of where things are.”

“So we’ll put board over here and we put what it has and then we can… kind of like a

backwards flowchart.”

 205

APPENDIX G. ONLINE APPLICATION FORM

 206

Consent Letter

[The consent letter place holder]

Are you willing to participate in the study*?

o I WILL participate in this study

o I WILL NOT participate in this study

Screening

Thank you for your willingness to participate in this study. Please answer four screening

questions to determine your eligibility to participate in this study.

Questions with an asterisk (*) are mandatory.

Your age*: __________

Are you a senior Computer Science students at USU*?

o Yes

o No

Current cumulative GPA (on a 4.00 scale)*: ____________

 207

Latest CS 1400 (Introduction to Computer Science--CS 1) grade*:

o A

o A-

o B+

o B

o B-

o C+

o C

o C-

o Below C-

Personal Information

Questions with an asterisk (*) are mandatory.

Name*: __

Nickname (research ID): ____________________________

Please provide a name as your research identifier. It has to be at least four characters long and only

contains alphabet characters (A-Za-z). You may also use your real name.

Primary email address*: _____________________________

Please provide your main email address. Further research communication will be delivered to this

address.

Gender*:

o Male

o Female

 208

Ethnicity:

o African American

o Asian-Pacific Islander

o Caucasian

o Hispanic

o Native American

o Other

Phone (with area code)*: __________________________

Academic/Discipline Information

Questions with an asterisk (*) are mandatory.

Please mark all the courses that you have passed with a C- or better*:

 MATH 1210: Calculus I (QL)

 CS 1410: Introduction to Computer Science--CS 2 (QI)

 CS 1440: Methods in Computer Science

 MATH 1220: Calculus II (QL)

 CS 2420: Algorithms and Data Structures--CS 3 (QI)

 MATH 3310: Discrete Mathematics

 CS 2410: Introduction to Event Driven Programming and GUI's

 CS 2610: Developing Dynamic, Database-Driven, Web Applications

 CS 3100: Operating Systems and Concurrency

 CS 3450: Introduction to Software Engineering (CI)

 CS 5000: Theory of Computability

 209

 CS 5050: Advanced Algorithms

 MATH 2270: Linear Algebra (QI)

 CS 4700: Programming Languages

 CS 5300: Compiler Construction

 Not Applicable

Rate your interest in computer programming (1-10): ______

Please mark all computer programming paradigms that you are proficient in:

 Imperative (Procedural) Programming

 Object Oriented Programming

 Visual Programming

 Functional Programming

 Logic Programming

 Declarative Programming

 Not Applicable - I do not know

Please estimate the number of hours you have spent in doing programming*:

Are there any additional factors that you feel have affected your programming abilities?

If so, what are they?

__

__

 210

What is your motivation to participate in this study?

__

__

Initials*: _______

 I certify that all information given in this application packet is accurate and true to

the best of my knowledge. I understand that submission of false information is

grounds for immediate dismissal from this study.

 211

APPENDIX H. ONLINE APPLICATION SCREENING FLOWCHART

 212

 213

APPENDIX I. DEMOGRAPHICS SURVEY

 214

Thank you for participating in this study. Please remember to keep your copy of signed

informed consent in a safe place. We are in the process of pre-analyzing your data. We

will contact you if we need some clarification. As part of this study, we need you to fill

this demographic form. All questions are mandatory.

Your nickname (research ID): ____________________________

Please provide your selected research identifier; please refer to the email if you forget.

Ethnicity:

o African American

o Asian-Pacific Islander

o Caucasian

o Hispanic

o Native American

o Other

Please mark all the courses that you have passed with a C- or better*:

 MATH 1210: Calculus I (QL)

 CS 1410: Introduction to Computer Science--CS 2 (QI)

 CS 1440: Methods in Computer Science

 MATH 1220: Calculus II (QL)

 CS 2420: Algorithms and Data Structures--CS 3 (QI)

 MATH 3310: Discrete Mathematics

 CS 2410: Introduction to Event Driven Programming and GUI's

 CS 2610: Developing Dynamic, Database-Driven, Web Applications

 CS 3100: Operating Systems and Concurrency

 CS 3450: Introduction to Software Engineering (CI)

 215

 CS 5000: Theory of Computability

 CS 5050: Advanced Algorithms

 MATH 2270: Linear Algebra (QI)

 CS 4700: Programming Languages

 CS 5300: Compiler Construction

 Not Applicable

Rate your interest in computer programming (1-10): ______

Please mark all computer programming paradigms that you are proficient in:

 Imperative (Procedural) Programming

 Object Oriented Programming

 Visual Programming

 Functional Programming

 Logic Programming

 Declarative Programming

 Not Applicable - I do not know

Please estimate the number of hours you have spent in doing programming*:

Are there any additional factors (personal or practical) that you feel have affected your

programming abilities? If so, what are they?

__

__

 216

Initials*: _______

 I certify that all information given in this application packet is accurate and true to

the best of my knowledge. I understand that submission of false information is

grounds for immediate dismissal from this study.

 217

APPENDIX J. PROBLEM SPACE MAP

 218

Question I

Explicit:

1. Task goal: Find two errors in a computer program

2. Requirements: The program must be able to select the greatest integer from three

given values

3. Constraints: Not applicable

4. Instructions/standards: Not applicable

Implicit:

1. Relevant concepts:

• Syntax error

• Logic error

2. Knowledge:

• Basic procedural programming language

• Debugging procedure

3. Cognitive process:

• Reading the provide code line-by-line

• Understanding intMax algorithm:

o It is a procedure

o It receives three integer values

o It returns one integer value

o Variable max stores the greatest integer value

 219

o It compares all given values against max, and then rewrite max with

the biggest value

• Finding errors in each line:

o Misspelling: “Max” instead of “max”

o Logic does not work as intended: using “==” instead of “=”

• Review the identified errors

 220

Question II

Explicit:

1. Task goal: Predict the program output for each input variation

2. Requirements:

• Read given three inputs

• Return a Boolean value

3. Constraints:

• The first parameter is an integer between -10 to 10

• The second parameter is an integer between -10 to 10

• The third parameter is a Boolean value

4. Instructions/standards: Write each output in the provided box

Implicit:

1. Relevant concepts: Various procedural programming concepts

2. Knowledge: Basic procedural programming knowledge

3. Cognitive process:

• Reading provided code line-by-line

• Understanding the algorithm:

o There is an if-statement that evaluate old_friend variable value

o The return value depends on whether the given inputs are positive or

negative

• Simulate the program process line-by-line based on each given input

variation:

 221

o Replace all variables with the associated input values line-by-line

o Compute the result

o Review the computation result

• Review whether all input variations have been simulated

 222

Question III

Explicit:

1. Task goal: Create a base class diagram of a digitalized modified monopoly game

2. Requirements:

• There are 2 – 4 players

• The player with most money after 20 turn wins

• Each player needs to roll virtual dice to determine its movement

• Each player must move each turn, and:

o Each player can buy, sell, and improve building

o Each player can use special ability

o Each player can buy items in the shop

• Character types:

o King, Warrior, Merchant, and Thief

o Each character type has unique special abilities

o Each character type starts with different items and amount of money

• The board has 30 spaces in a circle shape, where:

o Some spaces have buildings

o Some spaces have shops

o Some spaces have special instructions

• Building types:

o Castle, Fortress, and Inn

o Building’s properties change based on the improvement level

 223

o Each building can be bought and sold

o Each building has special instructions which depend on its type and

amount of improvement

• Item types:

o Sword, Potion, Horse, and others

o Each item gives unique special benefits for each Character type

3. Constraints: The game ends after 20 turns

4. Instructions/standards:

• Class diagram notation

• Do not have to think about:

o The game display or animation

o The game play-testing

• Improvise when possible

Implicit:

1. Relevant concepts: Various object-oriented concepts

2. Knowledge:

• Object-oriented design

• Class diagram notation

3. Cognitive process:

• Developing overall understanding:

o Identify the classes

o Identify the classes’ properties and their access levels

 224

o Identify possible user’s interactions

• Identifying and selecting programming language: Java, C++, or others

• Developing class diagram, by defining:

o Identified classes

o Super-classes or approaches (e.g., to group all types of items)

o Relationship between classes

o Each class’ properties, types, and access levels

o Each class’ methods, return types, and access levels

o Getter and setter methods for all private properties in each class

o Each character’s special abilities

o Each character’s starting items and amount of money

o Mechanics for setting up buildings

o Each building type’s properties

o Mechanics for storing each building’s owner

o Mechanics for setting up spaces

o Mechanics for setting up each building’s special instructions

o Mechanics for executing the special instruction

o Mechanics for identifying the spaces where each player is on

o Mechanics for rolling the dice and determining the number of dice

o Mechanics for counting the turn

o Mechanics for initializing all classes and the game loop

o Mechanics for stopping the game

 225

o Mechanics for declaring the winner

• Defining each class’ constructor

• The game plays improvements*:

o Selecting a winner if two or more players have the same amount of

money

o Mechanics for specifying the number of players

o Mechanics for attacking other players

o Mechanics for attacking other areas

o Using Mercian Twister instead of typical-random method for the dice

• The player and character classes’ improvements*:

o Adding player’s name

o Adding player’s stats

o Adding levels to characters’ special abilities

o Mechanics for items enhancement to characters’ stats

o Mechanics for Items enhancement to characters’ special abilities

• The building class’s improvement*:

o Adding maintenance cost

o Adding building levels

o Mechanics for utilizing buildings’ type and improvement

o Mechanics for handling changes of buildings’ types after an upgrade

o Mechanics for ordering multiple upgrades

• Reviewing identified classes, properties, method names, and access level

 226

• Reviewing identified relationship between classes

*) Examples

Question IV

Explicit:

1. Task goal: Developing an algorithm that can calculate the sum of three given

integers but will stop when 13 is found

2. Requirements: Accept three given integers

3. Constraints: If one of the values is 13, then that value and the values after it will

not count toward the sum

4. Instructions/standards: Nothing specific

Implicit:

1. Relevant concepts: Various procedural programming concepts

2. Knowledge: Basic procedural programming knowledge

3. Cognitive process:

• Understanding the expected behavior based on provided examples

o Reading the examples

o Simulating calculation procedure based on the examples

o Simulating calculation procedure based on given input variations

• Developing general model of the algorithm

• Writing the algorithm:

o Declaring a variable to store the total sum

 227

o Initializing the total sum variable with zero

o Ensuring the function will return the total sum

o For each given input:

 Check if the input value is 13

 If it is, return the current total sum

 If it is not, add the input value to the total sum

o Deciding mechanics for writing the if-else statements

• Reviewing the proposed algorithm using the examples

 228

Question V

Explicit:

1. Task goals: Developing a pseudo-code to simulate given situation and determine

the best position for Josephus

2. Requirements:

• The program starts by asking the number of people

• All people stand in circle facing the center (i.e., the sword)

• The person in the north most position start killing the person to its left

(clockwise):

o The first person represented in the program is the person at the north

most position

o The people can be assigned numerically clockwise

• Repeat the following until only one person remains:

o Pass the sword to the next living person on its left (clockwise)

o The person with sword then kill the person to its left (clockwise)

• Return the last position

3. Constraints: There are only 3 to 40 people

4. Instructions/standards: Nothing specific

Implicit:

1. Relevant concepts: Procedural programming concepts

2. Knowledge: Basic procedural programming knowledge

 229

3. Cognitive process:

• Understanding the expected behavior from the provided examples:

o Reading the example

o Bridging the example and given suicidal-procedure

• Developing patterns by generating more examples:

o Choosing the number of people

o Simulating given suicidal-procedure

o Finding patterns:

 Must not be in the even position

 In each turn half of the people disappear

 The total number of people in each turn has a behavioral

impact

• Testing identified patterns

• Identifying and selecting programming approach: imperative, object-oriented,

or others

• Identifying and selecting programming language: Java, C/C++, or others

• Writing the algorithm based on the identified pattern1

• Writing the algorithm by following the provided procedure2:

o Creating a procedure: its name and return type

o Selecting the best data type to represent the people

 Primitive: Array, Pointers

 Object: Linked List, Stack, Queue, Vector

 230

o Reading the number of people from the user

o Storing the number of people as an integer

o Initializing the people using the selected data type as the reference

o Declaring and initializing variable to point to the person who hold the

sword

o Identifying, selecting, and implementing the best way to repeat the

suicidal-procedure

 Loop: for or while

 Recursive + required parameters

o Implementing the suicidal-procedure inside the repeater (e.g., loop)

 Connecting the current situation to the next when reach the last

person when the number of people is odd (i.e., put the first

person at the end)

o Identifying and implementing the best way to store the updated people

list

 Using existing people list

 Creating new people list (e.g., when using Array)

o If using recursive, identify the best condition that will stop the

recursion

o Reviewing the variable names and types

• Reviewing the algorithm

1, 2) mutually exclusive

 231

 232

APPENDIX K. PROGRAMMING PROBLEM CHARACTERISTICS

 233

Characteristics of Question I: Locating the Errors

Structure : Structured
Complexity : There are two issues to solve, one function, and four

variables within a dynamic subsystem.
Required knowledge : Foundation of Programming
Cognitive skills : Level 5.1: Evaluate – Checking: Detecting internal

inconsistency within a process which required using factual,
conceptual, and metacognitive knowledge.

Type : Troubleshooting
Author(s) : Coding Bat (http://codingbat.com) with some modifications

by Andreas Febrian and the 2016 REU students.
Difficulty : 2.30 out of 10 with standard deviation of 1.25

Characteristics of Question II: Outputs Prediction

Structure : Structured
Complexity : There are seven issues, one function, and three variables

within a dynamic subsystem.
Required knowledge : Foundation of Programming
Cognitive skills : Level 3.1: Apply – Executing: Applying a procedure to a

familiar task which required using factual, conceptual,
procedural, and metacognitive knowledge.

Type : Algorithmic
Author(s) : Coding Bat (http://codingbat.com) with some modifications

by Andreas Febrian and the 2016 REU students.
Difficulty : 3.88 out of 10 with standard deviation of 3.09

Characteristics of Question III: Monopoly in the Middle-Ages

Structure : Ill-Structured
Complexity : There are at least 18 issues, 24 functions, and 22 variables

within a dynamic system.
Required knowledge : Foundation of Programming, Object Oriented Programming
Cognitive skills : Level 6.2: Create – Planning: Devising steps to accomplish

certain task which required using factual, conceptual,
procedural, and metacognitive knowledge.

Types : Design: designing a system
Author(s) : Collaborative work between the 2016 REU students and

http://codingbat.com/
http://codingbat.com/

 234

Andreas Febrian.
Difficulty : 6.88 out of 10 with standard deviation of 2.47

Characteristics of Question IV: Algorithm Generation

Structure : Structured
Complexity : There are three issues, one function, and, at least, three

variables within a dynamic subsystem.
Required knowledge : Foundation of Programming
Cognitive skills : Level 6.3: Create – Producing: Making a product for a

specific purpose which required using factual, conceptual,
procedural, and metacognitive knowledge.

Types : Design: designing an algorithm
Author(s) : Coding Bat (http://codingbat.com) with some modifications

by Andreas Febrian and the 2016 REU students.
Difficulty : 3.00 out of 10 with standard deviation of 1.50

Characteristics of Question V: The Last Standing Man

Structure : Structured
Complexity : There are at least five issues, one function, and 4 to 41

variables within a dynamic subsystem.
Required knowledge : Foundation of Programming
Cognitive skills : Level 6.3: Create – Producing: Making a product for a

specific purpose which required using factual, conceptual,
procedural, and metacognitive knowledge.

Types : Design: designing an algorithm
Author(s) : Herika Hayurani with major modification by Andreas

Febrian and the 2016 REU students.
Difficulty : 6.56 out of 10 with standard deviation of 1.94

http://codingbat.com/

 235

APPENDIX L. PROGRAMMING PROBLEM

 236

Question I: Locating the Errors

You are teaching an introductory course in C++ programming to a group of high school

students. You give them an assignment in which they are to provide a function that will

select the greatest integer among three given values. The students have freedom in how

they choose to write their function as long as it works properly. One of your students

thinks the assignment is too easy and turns it in to you before it is due, much sooner than

you expected. You’re surprised, but you take the paper anyway and check it for

correctness:

1. public int intMax(int a, int b, int c){

2. int max = a;

3. if(Max < b){max = b;}

4. if(max < c){max == c;}

5. return max;

6. }

You notice that the code contains two errors. What are the errors?

 237

Question II: Outputs Prediction

There exists a magic black box that takes in three values to verify whether a friendship

between two individuals is compatible. The first value should be an integer of value -10

through 10 chosen by the first person in the friendship. The second value should be an

integer of value -10 through 10 chosen by the second person in the friendship. Finally,

the third value should be a Boolean value. If the two individuals have been friends for

more than three years, this Boolean value will be TRUE, but if they have been friends for

less than three years, the Boolean value will be FALSE. After you input your three

values, the magic black box will return TRUE if the friendship is compatible, or FALSE

if the friendship isn’t compatible.

Please carefully read the code for the magic black box below:

1. public boolean blackBox(int a, int b, boolean old_friend){

2. if(old_friend){return a < 0 && b < 0;}

3. return (a < 0 && b > -1) || (a > -1 && b < 0);

4. }

Using the algorithm in the code above, determine the compatibility output for each

statement in the table below:

No. Statement Answer
1. blackBox(5, -5, FALSE)
2. blackBox(-6, 6, FALSE)
3. blackBox(-5, 6, TRUE)
4. blackBox(-5, -5, TRUE)

 238

Question III: Monopoly in the Middle-Ages

The game company that you work for has decided to develop a digital version of a classic

board game. You have been assigned as their system designer. You are informed that

other experts are in charge of the animation and play-testing, so these are not part of your

duties. After three days of meetings, the people in charge have agreed on some basic

aspects of the game, which are:

1. The game is meant to be played by either two, three, or four players.

2. Each player chooses to play as any one of the following characters: King,

Warrior, Merchant, or Thief. Each character has unique special abilities, and starts

with different items and different amounts of money.

3. The game board will consist of 30 spaces where players can land, arranged in a

circle. On some spaces, there are buildings which can be bought and sold. On

other spaces, there are shops where players can buy items. In addition, some

spaces have special instructions that players must follow when they land there.

4. In the original board game, movement is determined by rolling dice, so you must

develop an equivalent virtual method of determining the number of spaces each

player moves on his or her turn.

5. On their turn, each player must move and they can choose to do any of the

following: buy the building on the space they are on, sell any building they own,

spend money to improve buildings they own, or use one of their character’s

special abilities.

 239

6. Items give special benefits to the player. Items include the following: Sword,

Potion, Horse, etc. The effects of the item will be different for each character

type.

7. There are three different kinds of buildings: Castle, Fortress, and Inn. These

buildings have different properties depending on how much the owner has spent

on improving them.

8. When a player lands on a space with a building owned by someone else on it, then

that player must follow certain special instructions, determined in part by the type

of building, and also by the amount of improvements paid for by the owner.

9. The goal is to have the most money after each player has taken 20 turns.

As a system designer, you have been asked to create a complete base for this game that

will allow the rest of the team members to easily develop the rest of the game. You have

been told to use object oriented design, and specifically you must provide a detailed class

diagram, which will accommodate all the given objectives and constraints. Your

company has also requested that you go beyond the listed requirements when appropriate

and use your creativity to produce a thorough and extensive design.

 240

Question IV: Algorithm Generation

In Western culture, there is an irrational fear surrounding the number 13. For example,

according to the Stress Management Center and Phobia Institute in North Carolina, more

than 80 percent of high rise buildings in the U.S. don’t have a thirteenth floor. Because

you believe in this superstition, you want to create a “Lucky Sum” method. The method

(shown below) will return the sum of three given integer values. However, if one of the

values is 13 then that value and the values to its right will not count toward the sum. So

for example, if b is 13, then both b and c do not count.

1. public int luckySum(int a, int b, int c){

2. ...

3. }

Here are three examples to show the method behavior:

No. Statement Answer
1. luckySum(1, 2, 3) 6
2. luckySum(1, 2, 13) 3
3. luckySum(1, 13, 3) 1

 241

Question V: The Last Standing Man

It was the time when Rome had conquered most of Europe. A religious group decided to

rebel against the Roman Empire. The religious leader’s call for actions inspired their

young believers, one of whom was Josephus. He was a bright mathematician and

historian with unshakable belief in justice and the power of their God. Long story short,

after several months of fighting, the rebel group was being pushed outside of the city. Out

of hundreds, only 3 to 40 people remained. They knew that their days were numbered.

They had two options: to die at the hands of their comrades (suicide was not an option if

they wanted to go to Heaven) or to be tortured by the Romans. After a long discussion,

their leader decided that they would:

• Throw away all their swords, except one, which would be placed on the

ground.

• Stand in a circle, around the single sword, with everyone facing the center.

• The person who was standing in the north-most position in the circle then took

the sword.

• Repeat the following procedure:

o The person with the sword killed the person on his left (clockwise).

o That person then passed the sword to the next (living) person on his

left (clockwise).

o This process should be repeated until there was only one man left.

Josephus was not yet ready to die. He was a historian; he wanted to immortalize their

(and his) story; he had to be the last person alive.

 242

Your task is to develop a pseudo-code to simulate this depressing suicidal method and

determine where Josephus should stand. Your pseudo-code will start by asking for the

number of people in the group. You can represent each person with a number: start from

one (1) which is assigned to the person who initially stands in the north-most position,

and then assign the rest of the numbers clockwise from that person. You have to simulate

each step and then determine Josephus’ position. For example:

Number of people in the group: 5
1, 2, 3, 4, 5
3, 4, 5, 1
5, 1, 3
3, 5
3

Josephus should stand at the 3rd position.

 243

APPENDIX M. PROGRAMMING PROBLEM SOLUTION

 244

Solution for the Question I: Locating the Errors

This problem asks the participant to identify and locate two errors within a given code

snippet. The two errors are in line three (see the ‘Max’ variable) and four (see the

comparison syntax, ‘==’); also see the texts marked with red color below:

1. public int intMax(int a, int b, int c){

2. int max = a;

3. if(Max < b){max = b;}

4. if(max < c){max == c;}

5. return max;

6. }

In C++ and most programming (not scripting) languages, variable name is case sensitive,

which means ‘max’ and ‘Max’ are two different variables. Since variables have to be

declared prior usage, there are only four variables declared in the code snippet above,

which are ‘a’, ‘b’, ‘c’, and ‘max’. In other word, variable ‘Max’ was never declared;

variable ‘Max’ does not exist within the program. Therefore, the program has an error in

line three, where it tried to access undeclared variable ‘Max’. This is the first error.

The second error is in line four, where the student tried to assign the value of variable ‘c’

to ‘max’. By following the logic of the program, it is clear that the student’s intent was to

store the biggest value in variable ‘max’ (see the return statement at line five). In other

words, in line four, instead of using the comparison syntax (‘==’), the student should use

the assignment syntax (‘=’). Please note that the comparison syntax will compare the

value of variable ‘max’ to ‘c’, which will return, a Boolean value, TRUE if both are the

 245

same or FALSE if otherwise. On the other hand, the assignment syntax will put the value

of variable ‘c’ to variable ‘max’.

Solution for Question II: Outputs Prediction

This problem asks the participant to determine the outputs of four statements through

evaluating a given ‘blackBox(int, int, bool)’ function. This problem only has a correct

solution but can be approached in multiple ways, for example by using Boolean tables or

creating an abstraction for each Boolean expression. Both approaches will be explained

in the next section. The correct solutions for this problem are as follow:

No. Statement Answer

1. blackBox(5, -5, FALSE) TRUE

2. blackBox(-6, 6, FALSE) TRUE

3. blackBox(-5, 6, TRUE) FALSE

4. blackBox(-5, -5, TRUE) TRUE

Using a Boolean Table

In this section, the first statement (i.e., ‘blackBox(5, -5, FALSE)’) will be used to

illustrate the Boolean table approach. By applying the value of variable ‘old_friend’ (i.e.,

FALSE) to the third line in the code snippet, one can determine that the Boolean

expression in line three can be skipped and go to line four. Using the Boolean table

approach, one will get:

 246

Step Evaluation
Boolean expression in line four (a < 0 && b > -1) || (a > -1 && b < 0)
Replace each variable with its
correspondent value

(5 < 0 && -5 > -1) || (5 > -1 && -5 < 0)

Evaluate all innermost
comparisons

(FALSE && FALSE) || (TRUE &&
TRUE)

Evaluate all ‘AND’ statements in
each section

(FALSE) || (TRUE)

Evaluate the ‘OR’ statement TRUE

Therefore, the first statement, ‘blackBox(5, -5, FALSE)’, will yield TRUE.

Using Abstraction of Boolean Expressions

There are two Boolean expressions in this problem, which are in line three and four. The

Boolean expression in line three will only be evaluated if the value of variable

‘old_friend’ was TRUE. The Boolean expression in line three is ‘a < 0 && b < 0’, which

means if variable ‘a’ is less than zero and variable ‘b’ is less than zero, then the return

will be TRUE, otherwise the return will be FALSE. In other words, this expression will

only return TRUE if both variables ‘a’ and ‘b’ are negatives. Using this knowledge, we

can infer that the third and fourth statements will yield FALSE and TRUE respectively.

Solution for Question III: Monopoly in the Middle-Ages

This problem asks the participant to design an object oriented system based on given

goals and constraints. Below is one of the possible solutions which utilize various object

oriented concepts in the Java programming language.

 247

 248

Solution for Question IV: Algorithm Generation

This problem asks the participant to design a function based on given criteria and

constraints. Although the utilization of ‘IF’ statements are necessary, the solution for this

problem is not unique. Here are three of them.

First Solution

This solution utilized the in-line ‘IF’ syntax where all statements will be executed.

1. public int luckySum(int a, int b, int c) {

2. int count = (a == 13) ? 0 : a;

3. count += (a == 13 || b == 13) ? 0 : b;

4. count += (a == 13 || b == 13 || c == 13) ? 0 : c;

5. return count;

6. }

Second Solution

This solution utilized nested ‘IF’ approach where not all statements will be executed; it

depends on the values of variables ‘a’, ‘b’, and ‘c’.

1. public int luckySum(int a, int b, int c) {

2. int count = 0;

3. if(a != 13){

4. count += a;

5. if(b != 13){

6. count += b;

7. if(c != 13){

8. count += c;

 249

9. }

10. }

11. }

12. return count;

13. }

Third Solution

This solution utilized the combination of ‘IF’ and ‘return’ syntaxes where not all

statements will be executed; it depends on the values of variables ‘a’, ‘b’, and ‘c’.

1. public int luckySum(int a, int b, int c) {

2. int count = a + b + c;

3. if(a == 13){return 0;)

4. if(b == 13){return a;}

5. if(c == 13){return a + b;}

6. return count;

7. }

Solution for Question V: The Last Standing Man

This problem asks the participant to determine the best location for Josephus so he can

escape death. Here are three examples of the possible solutions.

Using Arrays

Although it is not straight forward, arrays can be used as a solution to this problem.

Below is an example of such solution (please note, this solution assumed that the first

index of an array is started with one (i.e., 1), not zero (i.e., 0)).

 250

int best_position = 0; // store the best location for Josephus

// store the number of the Josephus’ comrade

int people = in(<std_in>);

// <std_in> means ask input from the user

// store Josephus’ comrades’ information

Array members[] = new Array[people];

// fill the array with integers from 1 to ‘people’

initialize(members, people);

int sword_position = 1; // the sword starting position

while(members.length > 1){

 print(members); // print all array elements

 if(sword_position % 2 == 1) // if it is odd number

 zeroingEvenIndexedData(members);

 else // if it is even number

 zeroingOddIndexedData(members);

 // adjust sword position based on the number of people

 sword_position = (members.length % 2 == 0) ? 1 : 2;

 // create new array by removing all zeros in ‘members’

 members = recreateMembersArray(members);

}

print(best_position);

Consequently, methods ‘initialize(Array, int)’, ‘zeroingEvenIndexedData(Array)’,

‘zeroingOddIndexedData(Array)’, and ‘recreateMembersArray(Array)’ should also be

implemented.

 251

Using Queue

Queue is a dynamic data type. Unlike array, it can add and adjust its length on the fly

(i.e., when the program runs). Queue uses the FIFO (First In, First Out) principle, which

means if one inserted (pushed) 3, 2, 1 to the queue, one would get 3, 2, and 1 when one

ejects (pops) the queue three times. Most programming languages provide a built-in

queue. Here is an example of such a solution:

int best_position = 0; // store the best location for Josephus

// store the number of the Josephus’ comrade

int people = in(<std_in>);

// <std_in> means ask input from the user

Queue members = new Queue();

// fill the Queue with integers from 1 to ‘people’

initialize(member, people);

while(members.size() > 1){

 print(members);

 // move the person who hold the sword to the back

 member.push(members.pop());

 member.pop(); // kill the next person

}

print(best_position);

Consequently, methods ‘initialize(Queue, int)’ and ‘print(Queue)’ should also be

implemented.

 252

Using Double Linked List

A Double Linked List is a dynamic data type. Unlike array, it can adjust (add and

remove) its length on the fly (i.e., when the program runs). Unlike Queue or Stack, the

Double Linked List does not follow the FIFO (First In, First Out) or the LIFO (Last In,

First Out) principles. Each item in the list will be connected to the two other items, either

on its right or left. Here is an example of such a solution:

int best_position = 0; // store the best location for Josephus

// store the number of the Josephus’ comrade

int people = in(<std_in>);

// <std_in> means ask input from the user

DoubleLinkedList head<Integer> = new LinkedList<Integer>();

DoubleLinkedList head = initialize(head, people);

while(member.size() > 1){

 print(head);

 LinkedList temp = head.next;

 // remove connection to the next person

 // (kill the next person)

 head.next = temp.next; temp.next.prev = head;

 temp.next = null; temp.prev = null;

 // give the sword to the next living person.

 head = head.next;

}

print(best_position);

 253

Consequently, methods ‘initialize(LinkedList, int)’ and ‘print(DoubleLinkedList)’should

also be implemented.

 254

APPENDIX N. RESEARCH SCHEDULE

 255

The dissertation study activity overview is presented in Figure N-1, and the detailed

schedule is presented in Table N-1.

Figure N-1. Research Activities Overview

Table N-1.

Research Schedule

Research Activity
Month

1 2 3 4 5 6 7

IRB Application X X
Participant Recruitment X X
Participant Selection X
Data Collection X X
Preliminary Analysis X X
Member Checking 1 X X
Data Analysis X X X
Member Checking 2 X
Reporting X X X X X

 256

APPENDIX O. IRB APPROVAL

257

 258

APPENDIX P. PERSONALIZED TASK INTERPRETATION REPORTS

 259

Jake’s Task Interpretation Report

Hi Jake,

Thank you for your participation in the study on students’ task interpretation and

its revision during a programming endeavor. I am happy to share a personalized self-

regulated learning report related to your task interpretation for Monopoly in the Middle-

Ages (i.e., creating a class diagram) and the Last Standing Man (i.e., writing pseudocode

to simulate a depressing suicidal method and determine where Josephus should stand)

problems.

First, a summary of self-regulation and task interpretation. Self-regulation is a

common sense, such that before solving a programming problem, you need to understand

the problem itself, then you make a plan to solve it according to your understanding, then

you execute your plan, then you monitor your progress and approach, and adjust your

strategies as needed. The heart of your self-regulation is your task interpretation or

understanding of the problem. Task interpretation is crucial because when solving a

programming problem (or any task), your approach to solve it is informed by your

understanding of that problem. Therefore, if you have an incorrect task interpretation,

you may end up using wrong strategies or even fail to solve the problem. Fortunately,

your task interpretation evolves during the learning or problem-solving endeavor.

Overall, you have shown an excellent performance- and mastery-driven (e.g.,

utilizing various programming best practices) self-regulation skills that mimics the

experts’ behaviors during the data collection, such as:

 260

• You were capable of adjusting your problem-solving approach according to

the problem type.

• You were competent in identifying the problem-goal, requirements,

constraints, and relevant knowledge and skills.

• Given enough time, you were competent in identifying and extrapolating the

problem requirements and constraints.

• You were proficient in identifying the most appropriate problem-solving steps

based on your understanding of the problem.

• You were able to balance your two drivers (i.e., performance and mastery)

during the problem-solving endeavor.

When solving the third problem, you were observed using entity-relationship

diagram notation instead of the class diagram. Although this decision was a performance-

oriented accommodation that enabled you to solve the problem during the data collection,

this decision prevented you from addressing some design details, such as specifying

mechanics for declaring the winner or determining the access level (e.g., public or

private) of the classes’ properties and methods. This might be an area for consideration

during future problem-solving endeavors.

Some possible improvements are observed based on your approach to solving the

Last Standing Man problem. You were observed to inaccurately interpret the goal of this

problem, in such you did not seem able to identify that the problem asked to simulate the

given procedure and provide a print out of each program state. As a result, you were

drawing strategies from inaccurate experience (i.e., Discrete Mathematics) and utilizing

 261

inappropriate problem-solving approach. It was plausible you were overconfident in the

relationship between this problem and the Discrete Mathematics problems, which then

prevented you from checking whether the association itself was correct; this phenomenon

is also known as confidence bias. Unfortunately, aside from improving your self-

awareness and self-monitoring, the literature does not suggest any other strategies to

overcome it. However, you might want to reflect on Rusty’s experience:

Out of four participants, Rusty was the only student who defeated his confidence

bias when working on the Last Standing Man problem. Rusty’s awareness on the

stagnancy of his problem-solving endeavor, and he often misses essential small

details when interpreting a problem, inspired him to question whether his task

understanding was accurate.

Please let me know your comments on this report. Also, let me know if you want

to read an elaborated analyses of your problem-solving endeavor.

 262

Rusty’s Task Interpretation Report

Hi Rusty,

Thank you for your participation in the study on students’ task interpretation and

its revision during a programming endeavor. I am happy to share a personalized self-

regulated learning report related to your task interpretation for Monopoly in the Middle-

Ages (i.e., creating a class diagram) and the Last Standing Man (i.e., writing pseudocode

to simulate a depressing suicidal method and determine where Josephus should stand)

problems.

First, a summary of self-regulation and task interpretation. Self-regulation is

common sense, in that before solving a programming problem, you need to understand

the problem itself, then you make a plan to solve it according to your understanding, then

you execute your plan, then you monitor your progress and approach, and adjust your

strategies as needed. The heart of your self-regulation is your task interpretation or

understanding of the problem. Task interpretation is crucial because, when performing

any task such as solving a programming problem, your approach to solve it is informed

by your understanding of that problem. Therefore, if you have an incorrect task

interpretation, you may end up using ineffective strategies and failing to solve the

problem. Fortunately, your task interpretation evolves during the learning or problem-

solving endeavor.

Overall, you have shown an excellent performance- and mastery-driven (e.g.,

utilizing various design pattern) self-regulation skills that mimic the experts’ behaviors

during the data collection, such as:

 263

• You were capable of adjusting your problem-solving approach according to

the problem type.

• You were competent in identifying the problem-goal, requirements,

constraints, and relevant knowledge and skills.

• Given enough time, you were competent in identifying and extrapolating the

problem requirements and constraints.

• You were proficient in identifying the most appropriate problem-solving steps

based on your understanding of the problem.

• You were able to balance your two drivers (i.e., performance and mastery)

during the problem-solving endeavor.

Out of four participants, you were the only student who could correctly interpret

the Last Standing Man problem. Similarly to other participants, you were observed to

inaccurately interpret the goal of this problem as you did not identify that the problem

asked you to simulate the given procedure and provide a print out of each program state.

As a result, you were drawing strategies from inaccurate experience (i.e., Discrete

Mathematics) and utilizing inappropriate problem-solving approach. However, your

awareness on the stagnancy of your problem-solving endeavor, and that you often miss

essential small details when interpreting a problem, inspired you to question whether

your task understanding was accurate.

When solving the third problem, you were observed addressing the details of

special abilities, mechanics for virtual dice, Items benefit for the Characters, and limiting

the number of players, board spaces, and turns but forgot to integrate them in your class

 264

diagram. Theoretically, it was possible that your extensive problem-solving engagement

combined with the limited working memory space, made you forget these design details.

Such situation can be mitigated by being more sensitive to your intermediate design

decisions and improving your self-monitoring and note-taking skills.

A possible improvement is observed based on your approach to solving the Last

Standing Man problem. You were observed assuming you could identify useful patterns.

Your approach suggests you did not consider the follow-up actions if you were not able

to find the pattern; this might be an area of consideration for you. Further, it might be

beneficial to enrich your known problem-solving approaches, not only for this problem

type but others, so you do not have to improvise when your problem-solving attempt

seems not to be working.

Please let me know your comments on this report. Also, let me know if you want

to read more detailed analyses of your problem-solving activities.

 265

Anne’s Task Interpretation Report

Hi Anne,

Thank you for your participation in the study on students’ task interpretation and

its revision during a programming endeavor. I am happy to share a personalized self-

regulated learning report related to your task interpretation for Monopoly in the Middle-

Ages (i.e., creating a class diagram) and the Last Standing Man (i.e., writing pseudocode

to simulate a depressing suicidal method and determine where Josephus should stand)

problems.

First, a summary of self-regulation and task interpretation. Self-regulation is a

common sense, such that before solving a programming problem, you need to understand

the problem itself, then you make a plan to solve it according to your understanding, then

you execute your plan, then you monitor your progress and approach, and adjust your

strategies as needed. The heart of your self-regulation is your task interpretation or

understanding of the problem. Task interpretation is crucial because when solving a

programming problem (or any task), your approach to solve it is informed by your

understanding of that problem. Therefore, if you have an incorrect task interpretation,

you may end up using wrong strategies or even fail to solve the problem. Fortunately,

your task interpretation evolves during the learning or problem-solving endeavor.

Overall, you have shown an excellent performance-driven self-regulation skill

that mimic the experts’ behaviors during the data collection, such as:

• You were capable of adjusting your problem-solving approach according to

the problem type.

 266

• You were competent in identifying the problem-goal, requirements,

constraints, and relevant knowledge and skills.

• Given enough time, you were competent in identifying and extrapolating the

problem requirements and constraints.

• You were proficient in identifying the most appropriate problem-solving steps

based on your understanding of the problem.

Although you acknowledged that creativity is not one of your strengths, investing

some effort to enrich your programming style, known algorithms, known design patterns,

and various problem-solving approaches might be beneficial as studies suggest a close

relationship between computer programming and creativity.

Aside from creativity, some possible improvements are observed based on your

approach to solving the Last Standing Man problem. You were observed to inaccurately

interpret the goal of this problem, in such you did not seem able to identify the problem

asked to simulate the given procedure and provide a print out of each program state. As a

result, you were drawing strategies from inaccurate experience (i.e., Discrete

Mathematics) and utilizing inappropriate problem-solving approaches. It was plausible

you were overconfident in the relationship between this problem and the Discrete

Mathematics problems, which then prevented you from checking whether the association

itself was correct; this phenomenon is also known as confidence bias. Unfortunately,

aside from improving your self-awareness and self-monitoring, the literature does not

suggest any other strategies to overcome it. However, you might want to reflect on

Rusty’s experience:

 267

Out of four participants, Rusty was the only student who defeated his confidence

bias when working on the Last Standing Man problem. Rusty’s awareness on the

stagnancy of his problem-solving endeavor, and he often misses essential small

details when interpreting a problem, inspired him to question whether his task

understanding was accurate.

Further, related to your approach to solving this problem, you were observed assuming

you could identify useful patterns. Your approach suggests you did not consider the

follow-up actions if you were not able to find the pattern; this might be an area of

consideration for you. Further, it might be beneficial to enrich your known problem-

solving approaches, not only for this problem type but others, so you do not have to

improvise when your problem-solving attempt seems not to be working.

Please let me know your comments on this report. Also, let me know if you want

to read an elaborated analyses of your problem-solving endeavor.

 268

LStew’s Task Interpretation Report

Hi LStew,

Thank you for your participation in the study on students’ task interpretation and

its revision during a programming endeavor. I am happy to share a personalized self-

regulated learning report related to your task interpretation for Monopoly in the Middle-

Ages (i.e., creating a class diagram) and the Last Standing Man (i.e., writing pseudocode

to simulate a depressing suicidal method and determine where Josephus should stand)

problems.

First, a summary of self-regulation and task interpretation. Self-regulation is

common sense, in that before solving a programming problem, you need to understand

the problem itself, then you make a plan to solve it according to your understanding, then

you execute your plan, then you monitor your progress and approach, and adjust your

strategies as needed. The heart of your self-regulation is your task interpretation or

understanding of the problem. Task interpretation is crucial because, when performing

any task such as solving a programming problem, your approach to solve it is informed

by your understanding of that problem. Therefore, if you have an incorrect task

interpretation, you may end up using ineffective strategies and failing to solve the

problem. Fortunately, your task interpretation evolves during the learning or problem-

solving endeavor.

Overall, you have shown an excellent performance- and mastery-driven (e.g.,

utilizing various design pattern) self-regulation skills that mimic the experts’ behaviors

during the data collection, such as:

 269

• You were capable of adjusting your problem-solving approach according to

the problem type.

• You were competent in identifying the problem-goal, requirements,

constraints, and relevant knowledge and skills.

• Given enough time, you were competent in identifying and extrapolating the

problem requirements and constraints.

• You were proficient in identifying the most appropriate problem-solving steps

based on your understanding of the problem.

• You were able to balance your two drivers (i.e., performance and mastery)

during the problem-solving endeavor, except for the last problem (i.e., the

Last Standing Man).

When solving the third problem, you were observed addressing the mechanics to

store building’s owner and identify the player’s location on the board but forgot to

integrate them in your class diagram. Theoretically, it was possible that your extensive

problem-solving engagement combined with the limited working memory space, made

you forget these design details. Such situation can be mitigated by being more sensitive

to your intermediate design decisions and improving your self-monitoring and note-

taking skills.

Some possible improvements are observed based on your approach to solving the

Last Standing Man problem. You were observed to inaccurately interpret the goal of this

problem as you did not identify that the problem asked to simulate the given procedure

and provide a print out of each program state. As a result, you were drawing strategies

 270

from inaccurate experience (i.e., Discrete Mathematics) and utilizing inappropriate

problem-solving approach. It was plausible you were overconfident in the relationship

between this problem and the Discrete Mathematics problems. This overconfidence may

have prevented you from checking whether the association itself was correct; this

phenomenon is also known as confidence bias. Unfortunately, aside from improving your

self-awareness and self-monitoring, the literature does not suggest any other strategies to

overcome this. However, you might want to reflect on Rusty’s experience:

Out of four participants, Rusty was the only student who defeated his confidence

bias when working on the Last Standing Man problem. Rusty’s awareness on the

stagnancy of his problem-solving endeavor, and he often misses essential small

details when interpreting a problem, inspired him to question whether his task

understanding was accurate.

Further, related to your approach to solving this problem, you were observed assuming

you could identify useful patterns. Your approach suggests you did not consider the

follow-up actions if you were not able to find the pattern; this might be an area of

consideration for you. Further, it might be beneficial to enrich your known problem-

solving approaches, not only for this problem type but others, so you do not have to

improvise when your problem-solving attempt seems not to be working.

Please let me know your comments on this report. Also, let me know if you want

to read more detailed analyses of your problem-solving activities.

 271

CURRICULUM VITAE

Andreas Febrian

http://id.linkedin.com/pub/andreas-febrian/32/597/b0

Researcher ID: C-2716-2016, OrcID: 0000-0003-0746-242X

Formal Educations

Year GPA Information

2014 – 2018 3.94 Doctoral in Engineering Education at Utah State University

(http://www.eed.usu.edu/)

Dissertation: Senior Computer Science Students’ Task and

Revised Task Interpretation while Engaged in Programming

Endeavor

2008 – 2010 3.40 Master in Computer Science at Universitas Indonesia

(http://www.cs.ui.ac.id/)

Thesis: Implementation of Al-Fath Robot, Movement Limit

For Charged Robot, and Main Spread 2 in Simulation of

Robots for Odor Sources Localization.

2003 – 2008 2.90 Bachelor in Computer Science at Universitas Indonesia

(http://www.cs.ui.ac.id/)

Thesis: Evaluation of Architecture Component Selection on a

Single Bus Microprocessor.

 272

Teaching Experience

Semester Course Institution

2013 Fall Algorithm and Programming 1

Mobile Programming

Faculty of Information

Technology, Universitas YARSI

2013 Spring Algorithm and Programming 2

Web Programming

Faculty of Information

Technology, Universitas YARSI

2012 Fall Algorithm and Programming 1

Mobile Programming

Faculty of Information

Technology, Universitas YARSI

Research Experience

Period Experience

January 2014 – July

2018

Cognitive and Metacognitive Activities in Engineering Design

Education - Conducted at Utah State University

August 2017 - April

2018

Senior Computer Science Students’ Task and Revised Task

Interpretation while Engaged in a Programming Endeavor -

Conducted at Utah State University

June – August 2016 Self-Regulated Learning of Computer Science Students While

Engaged in Programming Design - Conducted at Utah State

University

June – August 2016 Experiences of Undergraduate Students in Engineering

Education Research - Conducted at Utah State University

April – August 2015 The Role of Self-Regulation in Problem-Solving Activities

using Computational Thinking Strategies: A Preliminary Study

- Conducted at Utah State University

 273

Period Experience

April – August 2014 Developing a Self-Regulation Survey Instrument for Problem

Solving in Engineering: An Exploratory Mixed-Methods

Design - Conducted at Utah State University

August – December

2013

Developing Non-Conventional (IT-based) Instructions for

Mobile Programming Course - Conducted at Universitas

YARSI

August 2008 –

September 2010

Developing Swarm Robots for Gas Leakage and Boom Source

Localization in an Industrial Environment - Conducted at

Universitas Indonesia

Academic Experiences

Period Experience

August 1, 2012 –

December 11, 2013

Research and Teaching Faculty at Faculty of Information

Technology, Universitas YARSI.

June – August 2012 Teaching Assistant Coordinator for Introduction to Digital

Systems at Faculty of Computer Science, Universitas Indonesia.

September 2011 –

January 2012

Teaching Assistant Coordinator and External Affairs Officer at

“Lembaga Asisten,” Faculty of Computer Science, Universitas

Indonesia.

February 7 - June 3,

2011

Teaching Assistant Coordinator for Introduction to Digital

System, Faculty of Computer Science, Universitas Indonesia.

February – June

2010

Teaching Assistant for Web Design and Programming, Faculty

of Computer Science, Universitas Indonesia.

February 1 - July

31, 2010

Technical Assistant for Accreditation and Curriculum Revision,

Faculty of Computer, Science Universitas Indonesia.

September 2008 –

January 2009

Teaching Assistant for Introduction to Digital Systems, Faculty

of Computer Science, Universitas Indonesia.

 274

Period Experience

June 2008 – August

2008

Teaching Assistant for Web Design and Programming, Faculty

of Computer Science, Universitas Indonesia.

August 29, 2005 -

January 6, 2006

Teaching Assistant for Introduction to Digital Systems, Faculty

of Computer Science, Universitas Indonesia.

August 30, 2004 -

January 7, 2005

Teaching Assistant for Introduction to Digital Systems, Faculty

of Computer Science, Universitas Indonesia.

Training

Date Title and Organizer

February 6, 2018 Preparing for a Career Outside of Academia

Utah State University

March 6, 2016 Broader Impacts: How to Include them in My Proposal

Utah State University

February 10, 2016 Data Management Workshop

Utah State University Research of Graduate Studies

November 18, 201

Prepare for Your Career in Academia

Utah State University Research of Graduate Studies

October 21, 2015 Agile Teaching and Learning

A workshop in the 2015 Frontiers in Education Annual

Conference

October 14, 2015 3 Most Effective Tactics to Improve Your Teaching

Utah State University Research of Graduate Studies

September 24, 2015 Getting Started as a Successful Proposal

Utah State University Research of Graduate Studies

March 19, 2015

1:00 PM - 2:00 PM

How to Design Stunning Poster

Utah State University Research of Graduate Studies

 275

Date Title and Organizer

October 13 -

November 3, 2012

Training Java™ Enterprise Edition

Brainmatics - IT Training and Consulting

July 26 - 30, 2010 Low-Cost Wireless Computer Networking

Faculty of Computer Science Universitas Indonesia and

International Center for Theoretical Physics

August 4 - 15, 2009 DAAD International summer School ”Computational Logic

and Its Applications”

DAAD, Fasilkom UI, and Technische Universität Dresden

June 12 - 24, 2008 brew™ Application Seminar and Workshop

Qualcomm, mobile8, and Jatis Mobile

Professional Experience

Period Information

February 2017 –

August 2018

Flash developer, Engineering Education Department, Utah State

University.

May 2015 –

August 2018

Scholarship in Science, Technology, Engineering, and

Mathematics (S-STEM) website and online application developer,

Engineering Education Department, Utah State University (see

http://s-stem.usu.edu).

February 2014 -

November 2016

REU Site Program in Engineering Education website and online

application developer, Engineering Education Department, Utah

State University (see http://reu.usu.edu).

November 2011

- May 2013

Member of e-Indonesian Government Interoperability Framework

(e-IGIF) Developer Team and a freelance translator of United

Nations Asian and Pacific Training Center First Premier Series.

http://s-stem.usu.edu/
http://reu.usu.edu/

 276

Period Information

October -

December 2010

Technical Committee of 2010 International Conference on

Computer Science and Information Systems, Faculty of Computer

Science, Universitas Indonesia.

February 2010 Formal Method Laboratory website developer, Faculty of

Computer Science, Universitas Indonesia

July 2 – October

31, 2007

System information developer, Universitas Indonesia.

2005 Instructor for "A Day Workshop: Developing a Dynamic and

Interactive Website"

Leadership and Service Experience

Period Role and Organization

November 21, 2017 Speaker at Universitas YARSI, Jakarta, Indonesia.

Topic: “Educational Research”

October 2016 –

October 2017

President of a non-profit religious organization

2015 – 2016 Webmaster of Student Chapter of American Society of

Engineering Education, Utah State University

March – August 2015 Committee member of a non-profit religious organization

2014 – 2015 Secretary of Student Chapter of American Society of

Engineering Education Utah State University

February 7, 2013 Instructor for LaTeX Tutorial for Instructors, Faculty of

Information Technology, Universitas YARSI.

January 29, 2013 Instructor for LaTeX Tutorial for Students, Faculty of

Information Technology, Universitas YARSI.

November 13, 2011 Instructor for LaTeX Tutorial, Faculty of Computer Science

Universitas Indonesia.

 277

Period Role and Organization

April 16, 2010 – now Member of Iluni Faculty of Computer Science, Universitas

Indonesia

August 2005 –2006 Coordinator of Academic Mentorship, Faculty of Computer

Science, Universitas Indonesia.

2004 –2005 Member of Department of Kreasi Mahasiswa (Students

Creativity) of Universitas Indonesia Student Body

Deputy of Pengembangan Masyarakat (Social Development)

of Faculty of Computer Science Universitas Indonesia

Student Body

Member of Pengembangan Sumber Daya Manusia (Human

Development) Department of Student Religious Organization

Professional Affiliations and Services

Date/Period Organization

2014 – 2018 Member of American Society of Engineering Education

Interest: Computers in Education, Computing & Information

Technology, Multidisciplinary Engineering, Software Engineering

Constituent Committee, Student, Community Engagement Division,

Engineering Leadership Development Division

2014 – 2018 Member of Student Chapter of American Society of Engineering

Education, Utah State University

April 25, 2015 Volunteer for inspirational class organized by ‘Indonesia Mengajar’

 278

Publications

Books

Jatmiko, W., Febrian, A., Jovan, F., Eka Suryana, M., Sakti Alvisalim, M., & Insani, A.

(2010). Swarm Robot dalam Pencarian Sumber Asap (in English: Swarm Robots

for Odor Source Localization). Depok, West Java, Indonesia: UI Press.

Jatmiko, W., Febrian, A., & Salsabila, S. (2010). Robot Lego Mindstorm: Teori and

Praktek (in English: Lego Mindstorm Robot: Theory and Application). Depok,

West Java, Indonesia: UI Press.

Journals

Lawanto, O., Minichiello, A., Uziak, J., & Febrian, A. (2018). Students’ Problem

Understanding in Engineering Problem Solving (Under Review). International

Education Studies.

Purnomo, Jati, D. M., Arinaldi, A., Priyantini, D. T., Wibisono, A., & Febrian, A.

(2016). Implementation of Serial and Parallel Bubble Sort on FPGA. Jurnal Ilmu

Komputer Dan Informasi, 9(2), 113–120.

Diana, N. E., Nurmaya, & Febrian, A. (2016). Understanding Student Emotion in Video-

Based Learning: Case Study - Programming Course. Journal of Teaching and

Education, 5(1), 641–647. Retrieved from

http://universitypublications.net/jte/0501/pdf/U5K394.pdf

Febrian, A., & Murni, A. (2012). Usulan Pengembangan Sistem BALITAROT untuk

Mendukung Perencanaan Berkelanjutan (In English: BALITAROT System

Development Proposal to Support Sustainable Planning). Jurnal Sistem Informasi,

5(2), 121–131.

Jatmiko, W., Pambuko, W., Febrian, A., Mursanto, P., Kusumoputro, B., Sekiyama, K.,

& Fukuda, T. (2010). Ranged subgroup particle swarm optimization for localizing

multiple odor sources. International Journal of Smart Sensing and Intelligent

Systems, 3(3).

http://universitypublications.net/jte/0501/pdf/U5K394.pdf

 279

Conferences

Febrian, A., Lawanto, O., Peterson-Rucker, K., Melvin, A., & Guymon, S. E. (2018).

Does Everyone Use Computational Thinking? - A Case Study of Art and

Computer Science Majors. In Proceedings of the 2018 ASEE Annual Conference

& Exposition (p. 15). Salt Lake City, UT, USA.

Lawanto, O., & Febrian, A. (2017). Students’ Self-Regulated Learning Deficiencies

During the Capstone Design Course. In 7th World Engineering Education Forum

2017 (pp. 1–5). Kuala Lumpur, Malaysia: IEEE. Retrieved from

http://www.weef2017.org/

Lawanto, O., & Febrian, A. (2017). Students’ Self-Regulation in a Senior Capstone

Design Context: A Comparison between Mechanical and Biological Engineering

Design Projects. In Proceedings of the 2017 ASEE Annual Conference &

Exposition (p. 22). Columbus, Ohio, USA.

Lawanto, O., & Febrian, A. (2017). Students’ Self-Regulation in Senior Capstone

Design Projects. In Proceedings of the 2017 ASEE Annual Conference &

Exposition. Columbus, Ohio, USA.

Lawanto, O., & Febrian, A. (2016). Student Self-Regulation in Capstone Design

Courses: A Case Study of Two Project Teams. In Frontiers in Education

Conference (FIE). IEEE

Lawanto, O., Cromwell, M., & Febrian, A. (2016). Students’ Self-Regulation in

Managing Their Capstone Senior Design Projects. In 123rd ASEE Annual

Conference and Exposition. New Orleans, LA, USA.

Febrian, A., Lawanto, O., & Cromwell, M. (2015). Advancing Research on Engineering

Design using e-Journal. In Frontiers in Education Conference (FIE), 2015. 32614

2015. IEEE (pp. 1–5). El Paso, TX: IEEE.

http://doi.org/10.1109/FIE.2015.7344191

Lawanto, O., Cromwell, M., & Febrian, A. (2015). Engineering Design Journey and

Project Management. In Frontiers in Education Conference (FIE), 2015. 32614

http://doi.org/10.1109/FIE.2015.7344191

 280

2015. IEEE (pp. 1–5). El Paso, TX: IEEE.

http://doi.org/10.1109/FIE.2015.7344208

Ortiz, C., Pham, B., Lawanto, O., & Febrian, A. (2014). Developing a Survey Instrument

to Measure Problem Perception, Task Interpretation, and Planning Strategies

within Self – Regulated Learning, a Work in Progress. In 2014 SACNAS National

Conference. Los Angeles, California, USA.

Satwika, I. P., Habibie, I., Ma’sum, M. A., Febrian, A., & Budianto, E. (2014). Particle

Swarm Optimation based 2-Dimensional Randomized Hough Transform for Fetal

Head Biometry Detection and Approximation in Ultrasound Imaging. In 2014

International Conference Advanced Computer Science and Information Systems

(ICACSIS) (pp. 468–473). IEEE.

Febrian, A., Matul, I. E., & Agus, S. (2011). Building Automation Tools to Calculate

Trichloroethylene Level in Human Liver Using ? Case Study: Images of White

Mouse Liver. In 22nd MHS2011 & Micro-Nano Global COE.

Ferdian, J., S, D. R. Y., Sakti, A. M., Jatmiko, W., Fanany, M. I., Febrian, A., Sekiyama,

K., & Fukuda, T. (2010). Real Multiple Mobile Robots Implementation of PSO

Algorithm for Odor Source Localization. In International Conference on

Advanced Computer Science and Information Systems 2010 (pp. 253 –258). Bali,

Indonesia.

Jatmiko, W., Fanany, M. I., Febrian, A., Pambuko, W., Nugraha, A., Alvissalim, M.

Sakti, Jovan, F., … Fukuda, T. (2010). Modified PSO Algorithm for Odor Source

Localization Problems: Progress and Challenge. In International Conference on

Advanced Computer Science and Information Systems 2010 (pp. 231–238). Bali,

Indonesia.

Jatmiko, W., Nugraha, A., Pambuko, W., Kusumoputro, B., & Febrian, A. (2009).

Localizing Multiple Odor Sources in Dynamic Environment Using Niche PSO

with Flow of Wind Based on Open Dynamics Engine Library. In Second

International Conference on IT Application and Management. Retrieved from

http://www.wseas.us/e-library/transactions/systems/2009/32-562.pdf

http://doi.org/10.1109/FIE.2015.7344208

 281

Mursanto, P., Febrian, A., Jatmiko, W., & Yuniarto, A. (2009). Performance Evaluation

of Single Bus Microprocessor Architecture. In International Conference on

Advanced Computer Science and Information Systems 2009. Depok, West Java,

Indonesia.

Workshop

Lawanto, O., Butler, D. L., Febrian, A., & Froyd, J. E. (2017). Self-regulated Learning

in Engineering Design Projects Workshop. Columbus, Ohio, USA: 2017 ASEE

Annual Conference & Exposition.

Theses

Febrian, A. (2010). Implementasi Model Robot Al-Fath, Pembatasan Gerak Robot

Bermuatan, dan Main Spread 2 Pada Perangkat Simulasi Robot Pencari Sumber

Asap (In English: Implementation of Al-Fath Robot, Movement Limit For

Charged Robot, and Main Spread 2 in Simulation of Robots for Odor Sources

Localization). Depok, West Java, Indonesia: Faculty of Computer Science

Universitas Indonesia.

Febrian, A. (2009). Evaluasi Pemilihan Komponen Arsitektur Terhadap Kinerja

Mikroprosesor Bus Tunggal (In English: Evaluation of Architecture Component

Selection on a Single Bus Microprocessor). Depok, West Java, Indonesia: Faculty

of Computer Science Universitas Indonesia.

Others

Jatmiko, W., Nugraha, A., Pambuko, W., & Febrian, A. (2010). User Guide: Manual

Simulator Robot Pencari Sumber Asap (Version 1.12). Depok, West Java,

Indonesia.

 282

Grants, Awards, and Honors

Date Information

February 2017 Graduate Researcher of the Year, Engineering Education

Department, Utah State University

October 2016 Travel Grant of $500 from Utah State University Engineering

Education Department for attending Frontier in Education Annual

Conference in Erie, Pennsylvania.

October 2016 Travel Grant of $300 from Utah State University Graduate School

for attending Frontier in Education Annual Conference in Erie,

Pennsylvania.

October 2015 Travel Grant of $300 from Utah State University Graduate School

for attending Frontier in Education Annual Conference in El Paso,

Texas.

December 2013 Research Grant of 10 million IDR from Universitas YARSI.

Title: Developing an Emotion Detection System to Improve

Students’ Mental Health - A Case Study in Programming Course

September 2013 Development Grant of 25 million IDR from the Indonesian Higher

Education Department.

Title: Developing Non-Conventional (IT-based) Instructions for a

Mobile Programming Course

April 2013 Research Grant of 95 million IDR from the Indonesian Higher

Education Department.

Title: Developing a Smart Programming Learning Environment

based on Affective Computing

December 8, 2009 Best Session Presentation at the International Conference on

Advanced Computer Science and Information Systems 2009

	Senior Computer Science Students’ Task and Revised Task Interpretation While Engaged in Programming Endeavor
	Recommended Citation

	1 - TitlePage_Febrian_A01983910_approved
	2 - Copyright
	3 - Abstract
	Abstract
	Public Abstract

	4 - Acknowledgement
	Acknowledgments

	5 - Content
	Contents

	6 - List of Tables
	List of Tables
	List of Figures

	report.all-chapters_v.7.01
	Chapter I Introduction
	Background of Study
	Research Questions
	Research Design Overview
	The Significance of the Study
	Assumptions of the Study
	Limitations of the Study
	Definition of Key Terms
	Dissertation Outline

	Chapter II Literature Review
	Introduction
	Biases and Corrective Methods
	Computer Science Education
	Computer Science
	Computer Science Education
	Programming and Object-oriented Design

	Task Interpretation and Monitoring in Self-Regulated Learning
	Self-Regulated Learning
	Task Interpretation and Monitoring
	Assessing Students’ Self-Regulation

	Self-Regulation during Programming and Object-Oriented Design
	Summary

	Chapter III Pilot Study
	Introduction
	The 2016 Research Experience for Undergraduates
	Participant Recruitment
	Lesson Learned

	The Qualitative Instrument
	Lesson Learned

	Data Collection
	Lesson Learned

	Data Analysis
	Lesson Learned

	Member Checking
	Lesson Learned

	Summary

	Chapter IV Research Design
	Introduction
	Research Questions
	The Researcher’s Positionality
	Ontology
	Epistemology
	Axiology

	Research Methodology
	Qualitative Case Study
	The Multiple Cases
	Participant Recruitment: Within-Site
	Multiple Data Points
	Embedded Data Analysis
	Reporting Results

	Research Method
	Institutional Review Board Application
	Research Participants
	Participant Recruitment Method
	Participant Selection Method

	Qualitative Instruments
	Programming Problems
	Problem-Space Maps
	Initial Task Interpretation Survey
	Post Problem-Solving Interview

	Data Collection Procedure
	Environment
	Thinking Aloud
	Brief Information Session
	Practice Session
	Problem-Solving Session
	Collected Data

	Data Analysis Method
	Data Organization
	Preliminary Analysis and Member Checking 1
	Transcribing and Coding
	Analysis
	Member Checking 2

	Chapter V The Participants and Findings
	Introduction
	The Participants
	Recruitment Challenge
	Jake
	Rusty
	Anne
	LStew

	Qualitative Coding Results
	Participants’ Self-Regulation in Solving the Third Problem
	Jake’s Self-Regulation in the Third Problem
	Rusty’s Self-Regulation in the Third Problem
	Anne’s Self-Regulation in the Third Problem
	LStew’s Self-Regulation in the Third Problem

	Participants’ Self-Regulation in Solving the Fifth Problem
	Jake’s Self-Regulation in the Fifth Problem
	Rusty’s Self-Regulation in the Fifth Problem
	Anne’s Self-Regulation in the Third Problem
	LStew’s Self-Regulation in the Fifth Problem

	Addressing the Research Questions
	Research Question 1: What was the students’ initial task interpretation of the given problems?
	Research Question 2: How did their original understanding change during the problem-solving endeavor?
	Research Question 3: What were the influencing factors for any revisions of their initial task understanding?

	Chapter VI Discussion, Conclusion, Implication, and Recommendation
	Introduction
	Discussion and Conclusion
	Research and Educational Implications
	Recommendation for Future Studies

	References
	Appendices
	Appendix A. The 2016 REU Project Description
	Appendix B. The 2016 REU Project Schedule
	Appendix C. The 2016 REU Recruitment Publication
	Appendix D. The 2016 REU Demographics Survey
	Demographic Survey
	Personal Information
	Academic/Discipline Information

	Appendix E. The 2016 REU Introduction Script
	Appendix F. The 2016 REU Personalized SRL Report
	DanielO Report
	Monitoring: Satisfying Requirements
	Monitoring: Monitoring of the Task
	Monitoring: Instruments Used
	Strategic Action: Reading the Title
	Monitoring: Monitoring Interest Level
	Strategic Approach: Skipping Parts of Problem

	Depend Report
	Task Interpretation: Sticking with Initial Task Interpretation
	Strategic Action: Marking for Organization
	Strategic Action: Not Reading the Title
	Strategic Action: Reading Silently
	Strategic Action: Linear Approach

	George Report
	Strategic Action: Reads Title
	Strategic Action: Accessing Prior Knowledge
	Planning Strategies: Skipping Sections of the Problem
	Task Interpretation: Taking the Task Literally
	Strategic Action: Organizing Thoughts on Paper

	Appendix G. Online Application Form
	Consent Letter
	Screening
	Personal Information
	Academic/Discipline Information

	Appendix H. Online Application Screening Flowchart
	Appendix I. Demographics Survey
	Appendix J. Problem Space Map
	Question I
	Explicit:
	Implicit:

	Question II
	Explicit:
	Implicit:

	Question III
	Explicit:
	Implicit:

	Question IV
	Explicit:
	Implicit:

	Question V
	Explicit:
	Implicit:

	Appendix K. Programming Problem Characteristics
	Characteristics of Question I: Locating the Errors
	Characteristics of Question II: Outputs Prediction
	Characteristics of Question III: Monopoly in the Middle-Ages
	Characteristics of Question IV: Algorithm Generation
	Characteristics of Question V: The Last Standing Man

	Appendix L. Programming Problem
	Question I: Locating the Errors
	Question II: Outputs Prediction
	Question III: Monopoly in the Middle-Ages
	Question IV: Algorithm Generation
	Question V: The Last Standing Man

	Appendix M. Programming Problem Solution
	Solution for the Question I: Locating the Errors
	Solution for Question II: Outputs Prediction
	Using a Boolean Table
	Using Abstraction of Boolean Expressions

	Solution for Question III: Monopoly in the Middle-Ages
	Solution for Question IV: Algorithm Generation
	First Solution
	Second Solution
	Third Solution

	Solution for Question V: The Last Standing Man
	Using Arrays
	Using Queue
	Using Double Linked List

	Appendix N. Research Schedule
	Appendix O. IRB Approval
	Appendix P. Personalized Task Interpretation Reports
	Jake’s Task Interpretation Report
	Rusty’s Task Interpretation Report
	Anne’s Task Interpretation Report
	LStew’s Task Interpretation Report

	Curriculum Vitae
	Andreas Febrian
	Formal Educations
	Teaching Experience
	Research Experience
	Academic Experiences
	Training
	Professional Experience
	Leadership and Service Experience
	Professional Affiliations and Services
	Publications
	Books
	Journals
	Conferences
	Workshop
	Theses
	Others

	Grants, Awards, and Honors

