69,904 research outputs found

    Personal Volunteer Computing

    Full text link
    We propose personal volunteer computing, a novel paradigm to encourage technical solutions that leverage personal devices, such as smartphones and laptops, for personal applications that require significant computations, such as animation rendering and image processing. The paradigm requires no investment in additional hardware, relying instead on devices that are already owned by users and their community, and favours simple tools that can be implemented part-time by a single developer. We show that samples of personal devices of today are competitive with a top-of-the-line laptop from two years ago. We also propose new directions to extend the paradigm

    Pando: Personal Volunteer Computing in Browsers

    Full text link
    The large penetration and continued growth in ownership of personal electronic devices represents a freely available and largely untapped source of computing power. To leverage those, we present Pando, a new volunteer computing tool based on a declarative concurrent programming model and implemented using JavaScript, WebRTC, and WebSockets. This tool enables a dynamically varying number of failure-prone personal devices contributed by volunteers to parallelize the application of a function on a stream of values, by using the devices' browsers. We show that Pando can provide throughput improvements compared to a single personal device, on a variety of compute-bound applications including animation rendering and image processing. We also show the flexibility of our approach by deploying Pando on personal devices connected over a local network, on Grid5000, a French-wide computing grid in a virtual private network, and seven PlanetLab nodes distributed in a wide area network over Europe.Comment: 14 pages, 12 figures, 2 table

    Genet: A Quickly Scalable Fat-Tree Overlay for Personal Volunteer Computing using WebRTC

    Full text link
    WebRTC enables browsers to exchange data directly but the number of possible concurrent connections to a single source is limited. We overcome the limitation by organizing participants in a fat-tree overlay: when the maximum number of connections of a tree node is reached, the new participants connect to the node's children. Our design quickly scales when a large number of participants join in a short amount of time, by relying on a novel scheme that only requires local information to route connection messages: the destination is derived from the hash value of the combined identifiers of the message's source and of the node that is holding the message. The scheme provides deterministic routing of a sequence of connection messages from a single source and probabilistic balancing of newer connections among the leaves. We show that this design puts at least 83% of nodes at the same depth as a deterministic algorithm, can connect a thousand browser windows in 21-55 seconds in a local network, and can be deployed for volunteer computing to tap into 320 cores in less than 30 seconds on a local network to increase the total throughput on the Collatz application by two orders of magnitude compared to a single core

    Mechanisms for Outsourcing Computation via a Decentralized Market

    Full text link
    As the number of personal computing and IoT devices grows rapidly, so does the amount of computational power that is available at the edge. Since many of these devices are often idle, there is a vast amount of computational power that is currently untapped, and which could be used for outsourcing computation. Existing solutions for harnessing this power, such as volunteer computing (e.g., BOINC), are centralized platforms in which a single organization or company can control participation and pricing. By contrast, an open market of computational resources, where resource owners and resource users trade directly with each other, could lead to greater participation and more competitive pricing. To provide an open market, we introduce MODiCuM, a decentralized system for outsourcing computation. MODiCuM deters participants from misbehaving-which is a key problem in decentralized systems-by resolving disputes via dedicated mediators and by imposing enforceable fines. However, unlike other decentralized outsourcing solutions, MODiCuM minimizes computational overhead since it does not require global trust in mediation results. We provide analytical results proving that MODiCuM can deter misbehavior, and we evaluate the overhead of MODiCuM using experimental results based on an implementation of our platform

    Public grid computing participation: An exploratory study of determinants

    Get PDF
    Using the Internet, “public” computing grids can be assembled using “volunteered” PCs. To achieve this, volunteers download and install a software application capable of sensing periods of low local processor activity. During such times, this program on the local PC downloads and processes a subset of the project's data. At the completion of processing, the results are uploaded to the project and the cycle repeats. Public grids are being used for a wide range of endeavors, from searching for signals suggesting extraterrestrial life to finding a cure for cancer. Despite the potential benefits, however, participation has been relatively low. The work reported here, drawing from technology acceptance and volunteer literature, suggests that the grid operator's reputation, the project's perceived need, and the level of volunteering activity of the PC owner are significant determinants of participation in grid projects. Attitude, in addition to personal innovativeness and level of volunteering activity, predicted intentions to join the project. Thus, methods traditionally used for motivating volunteer behavior may be effective in promoting the use of grid computing

    A collaborative citizen science platform for real-time volunteer computing and games

    Full text link
    Volunteer computing (VC) or distributed computing projects are common in the citizen cyberscience (CCS) community and present extensive opportunities for scientists to make use of computing power donated by volunteers to undertake large-scale scientific computing tasks. Volunteer computing is generally a non-interactive process for those contributing computing resources to a project whereas volunteer thinking (VT) or distributed thinking, which allows volunteers to participate interactively in citizen cyberscience projects to solve human computation tasks. In this paper we describe the integration of three tools, the Virtual Atom Smasher (VAS) game developed by CERN, LiveQ, a job distribution middleware, and CitizenGrid, an online platform for hosting and providing computation to CCS projects. This integration demonstrates the combining of volunteer computing and volunteer thinking to help address the scientific and educational goals of games like VAS. The paper introduces the three tools and provides details of the integration process along with further potential usage scenarios for the resulting platform.Comment: 12 pages, 13 figure

    MOON: MapReduce On Opportunistic eNvironments

    Get PDF
    Abstract—MapReduce offers a flexible programming model for processing and generating large data sets on dedicated resources, where only a small fraction of such resources are every unavailable at any given time. In contrast, when MapReduce is run on volunteer computing systems, which opportunistically harness idle desktop computers via frameworks like Condor, it results in poor performance due to the volatility of the resources, in particular, the high rate of node unavailability. Specifically, the data and task replication scheme adopted by existing MapReduce implementations is woefully inadequate for resources with high unavailability. To address this, we propose MOON, short for MapReduce On Opportunistic eNvironments. MOON extends Hadoop, an open-source implementation of MapReduce, with adaptive task and data scheduling algorithms in order to offer reliable MapReduce services on a hybrid resource architecture, where volunteer computing systems are supplemented by a small set of dedicated nodes. The adaptive task and data scheduling algorithms in MOON distinguish between (1) different types of MapReduce data and (2) different types of node outages in order to strategically place tasks and data on both volatile and dedicated nodes. Our tests demonstrate that MOON can deliver a 3-fold performance improvement to Hadoop in volatile, volunteer computing environments
    • …
    corecore