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Abstract—MapReduce offers a flexible programming
model for processing and generating large data sets on
dedicated resources, where only a small fraction of such
resources are every unavailable at any given time. In
contrast, when MapReduce is run on volunteer comput-
ing systems, which opportunistically harness idle desktop
computers via frameworks like Condor, it results in poor
performance due to the volatility of the resources, in
particular, the high rate of node unavailability.

Specifically, the data and task replication scheme
adopted by existing MapReduce implementations is woe-
fully inadequate for resources with high unavailability. To
address this, we propose MOON, short for MapReduce On
Opportunistic eNvironments. MOON extends Hadoop, an
open-source implementation of MapReduce, with adaptive
task and data scheduling algorithms in order to offer
reliable MapReduce services on a hybrid resource architec-
ture, where volunteer computing systems are supplemented
by a small set of dedicated nodes. The adaptive task and
data scheduling algorithms in MOON distinguish between
(1) different types of MapReduce data and (2) different
types of node outages in order to strategically place tasks
and data on both volatile and dedicated nodes. Our tests
demonstrate that MOON can deliver a 3-fold performance
improvement to Hadoop in volatile, volunteer computing
environments.

I. INTRODUCTION

The maturation of volunteer computing systems
with multi-core processors offers a low-cost re-
source for high-performance computing [1], [2], [3],
[4]. However, these systems offer limited program-
ming models and rely on ad-hoc storage solutions,
which are insufficient for data-intensive problems.
MapReduce is an effective programming model that

simplifies large-scale parallel data processing [5],
but has been relegated to dedicated computing re-
sources found in high-performance data centers.

While the union of MapReduce services with
volunteer computing systems is conceptually ap-
pealing, a vital issue needs to be addressed –
computing resources in desktop grid systems are
significantly more volatile than in dedicated com-
puting environments. For example, while Ask.com
per-server unavailability rate is an astonishingly low
0.000455 [6], availability traces collected from an
enterprise volunteer computing system [7] showed
a more challenging picture: individual node un-
availability rates average around 0.4 with as many
as 90% of the resources simultaneously inacces-
sible (Figure 1). Unlike dedicated systems, soft-
ware/hardware failure is not the major contributor
to resource volatility on volunteer computing sys-
tems. volunteer computing nodes shut down at the
owners’ will are unavailable. Also, typical volunteer
computing frameworks such as Condor [1] consider
a computer unavailable for running external jobs
whenever keyboard or mouse events are detected. In
such a volatile environment it is unclear how well
existing MapReduce frameworks perform.

In this work, we evaluated Hadoop, a popular,
open-source MapReduce runtime system[8], on an
emulated volunteer computing system and observed
that the volatility of opportunistic resources cre-
ates several severe problems. First, the Hadoop
Distributed File System (HDFS) provides reliable
data storage through replication, which on volatile
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Fig. 1. Percentage of unavailable resources measured in a 7-day
trace from a production volunteer computing system at San Diego
Supercomputing Center [7]. The trace of each day was collected
from 9:00AM to 5:00PM. The average percentage unavailability is
measured in 10-minute intervals.

systems can have a prohibitively high replication
cost in order to provide high data availability.
For instance, when machine unavailability rate is
0.4, eleven replicasare needed to achieve 99.99%
availability for a single data block, assuming that
machine unavailability is independent. Handling
large-scalecorrelated resource unavailability re-
quires even more replication.

Second, Hadoop does not replicate intermediate
results (the output of Map tasks). When a node
becomes inaccessible, the Reduce tasks processing
intermediate results on this node will stall, resulting
in Map task re-execution or even livelock.

Third, Hadoop task scheduling assumes that the
majority of the tasks will run smoothly until com-
pletion. However, tasks can be frequently suspended
or interrupted on volunteer computing systems. The
default Hadoop task replication strategy, designed
to handle failures, is insufficient to handle the high
volatility of volunteer computing platforms.

To mitigate these problems in order to realize
the computing potential of MapReduce on volunteer
computing systems, we have a created a novel
amalgamation of these two technologies to produce
MOON, “MapReduce On Opportunistic eNviron-
ments”. MOON addresses the challenges of pro-
viding MapReduce services within the opportunistic
environment of volunteer computing systems, in
three specific ways:

• adopting a hybrid resource architecture by pro-
visioning a small number of dedicated comput-
ers to serve as a system anchor to supplement

other personal computers,
• extending HDFS to (1) take advantage of

the dedicated resources for better data avail-
ability and (2) to provide differentiated
replication/data-serving services for different
types of MapReduce job data, and

• extending the Hadoop speculative task schedul-
ing algorithm to take into account high resource
volatility and strategically place Map/Reduce
tasks on volatile or dedicated nodes.

We implemented these three enhancements in
Hadoop and carried out extensive evaluation work
within an opportunistic environment. Our results
show that MOON can improve the QoS of MapRe-
duce services significantly, with as much as a 3-
fold speedup, and even finish MapReduce jobs that
could not be completed previously in highly volatile
environments.

II. BACKGROUND

A. Volunteer Computing

Many volunteer computing systems have been de-
veloped to harness idle desktop resources for high-
performance or high-throughput computing [1], [2],
[3], [4]. A common feature shared by these systems
is non-intrusive deployment. While studies have
been conducted on aggressively stealing computer
cycles [9] and its corresponding impact [10], most
production volunteer computing systems allow users
to donate their resources in a conservative way by
not running external tasks when the machine is
actively used. For instance, Condor allows jobs to
execute only after 15 minutes of no console activity
and a CPU load less than 0.3.

B. MapReduce

MapReduce is a programming model designed to
simplify parallel data processing [5]. Google has
been using MapReduce to handle massive amount of
web search data on large-scale commodity clusters.
This programming model has also been found ef-
fective in other application areas including machine
learning [11], bioinformatics [12], astrophysics and
cyber-security [13].

A MapReduce application is implemented
through two user-supplied primitives: Map and
Reduce. Map tasks take inputkey-valuepairs and
convert them into intermediatekey-value pairs,



which are in turn converted to outputkey-value
pairs by reduce tasks.

In Google’s MapReduce implementation, the
high-performance distributed file system, GFS [14],
is used to store the input, intermediate, and output
data.

C. Hadoop

Hadoop is an open-source cluster-based MapRe-
duce implementation written in Java [8]. It is log-
ically separated into two subsystems: the Hadoop
Distributed File System (HDFS), and a MapReduce
task execution framework.

HDFS consists of aNameNodeprocess running
on the master and multipleDataNode processes
running on the workers. To provide scalable data
access, the NameNode only manages the system
metadatawith the actual file contents stored on
the DataNodes. Each file in the system is stored
as a collection of equal-sized data blocks. For I/O
operations, an HDFS client queries the NameNode
for the data block locations, with subsequent data
transfer occurring directly between the client and
the target DataNodes. Like GFS, HDFS achieves
high data availability and reliability through data
replication, with the replication degree specified by
a replication factor.

To control task execution, a singleJobTracker
process running on the master manages job status
and performs task scheduling. On each worker ma-
chine, aTaskTracker process tracks the available
execution slots. A worker machine can execute up
to M Map tasks andR Reduce tasks simultaneously
(M and R default to 2). A TaskTracker contacts
the JobTracker for an assignment when it detects
an empty execution slot on the machine. Tasks
of different jobs are scheduled according to job
priorities. Within a job, the JobTracker first tries to
schedule a non-running task, giving high priority to
the recently failed tasks, but if all tasks for this job
have been scheduled, the JobTracker speculatively
issues backup tasks for slow running ones. These
speculative tasks help improve job response time.

III. MOON DESIGN RATIONALE AND

ARCHITECTURE OVERVIEW

MOON targets institutional intranet environ-
ments, where volunteer personal computers (PCs)

are connected with a local area network with rel-
atively high bandwidth and low latency. However,
PC availability is ephemeral in such an environment.
Moreover, large-scale, correlated resource inacces-
sibility can be normal [15]. For instance, many
machines in a computer lab will be occupied si-
multaneously during a lab session.

Observing that opportunistic PC resources are not
dependable enough to offer reliable compute and
storage services, MOON supplements a volunteer
computing system witha small number of dedicated
compute resources. Figure 2 illustrates this hybrid
architecture, where a small set of dedicated nodes
provide storage and computing resources at a much
higher reliability level than the existing volatile
nodes.

(a) Volunteer computing
environments

(b) MOON

Fig. 2. Overview of MOON executing environments. The resources
on nodes with a question mark are ephemeral.

The MOON hybrid architecture has multiple ad-
vantages. First, placing a replica on dedicated nodes
can significantly enhance data availability without
imposing a high replication cost on the volatile
nodes, thereby improving overall resource utiliza-
tion and reducing job response time. For example,
the well-maintained workstations in our research lab
have had only 10 hours of unscheduled downtime
in the past year (due to an unnotified power out-
age), which is equivalent to a 0.001 unavailability
rate. Assuming the average unavailability rate of a
volunteer computing system is 0.4 and the failure
of each volatile node is independent, achieving
99.99% availability only requires a single copy on
the dedicated node and three copies on the volatile
nodes. Second, long-running tasks with execution
times much larger than the mean available interval



of volunteered machines may be difficult to finish
on purely volatile resources because of frequent in-
terruptions. Scheduling those long-running tasks on
dedicated resources can guarantee their completion.
Finally, with these more predictable nodes dedicated
to assist a volunteer computing system, it is easier
to perform QoS control, especially when the node
unavailability rate is high.

Due to the wide range of scheduling policies used
in volunteer computing systems, we have designed
for the extreme situation where MOON might be
wrapped inside a virtual machine and distributed to
each PC, as enabled by Condor [1] and Entropia [3].
In this scenario, the volunteer computing system
controls when to pause and resume the virtual
machine according to the policy chosen by the
computer owners. To accommodate such a scenario,
MOON assumes that no computation or commu-
nication progress can be made on a PC when it
is actively used by the owner, and it relies on the
heartbeat mechanismin Hadoop to detect when a
PC is unavailable.

As we will discuss in Section IV, one design
assumption of the current MOON solution is that,
collectively, the dedicated nodes have enough aggre-
gate storage for at least one copy of all active data
in the system. We argue that this solution is made
practical by the decreasing price of commodity
servers and hard drives with large capacity. For
example, currently a decent desktop computer with
1.5 TB of disk space can be acquired for under
$1,000. In the future, we are going to investigate
scenarios where the above assumption is relaxed.

IV. MOON DATA MANAGEMENT

In this section, we present our enhancements to
Hadoop to provide a reliable MapReduce service
from the data management perspective. Within a
MapReduce system there are three types of user
data – input, intermediate, and output. Input data
are provided by a user and used by Map tasks
to produce intermediate data, which are in turn
consumed by Reduce tasks to create output data.
The availability of each type of data has different
implications on QoS.

For input data, temporary inaccessibility will stall
computation of corresponding Map tasks, whereas
loss of the input data will cause the entire job to

fail1. Similar situations will be experienced with
temporary unavailability of intermediate or output
data. However, these two types of data are more
resilient to loss, as they can be reproduced by re-
executing the Map and/or Reduce tasks involved.
On the other hand, once a job has completed, lost
output data is irrecoverable if the input data have
been removed from the system. In this case, a user
will have to re-stage the previously removed input
data and re-issue the entire job, acting as if the
input data was lost. In any of these scenarios the
time-to-completion of the MapReduce job can be
substantially elongated.

As mentioned in Section I, we found that existing
Hadoop data management is insufficient to provide
high QoS on volatile environments for two main
reasons. First, the replication cost to provide the
necessary level of data availability for input and out-
put data in HDFS on volunteer computing systems is
prohibitive when the volatility is high. Additionally,
non-replicated intermediate data can easily become
temporarily or permanently unavailable due to user
activity or software/hardware failures on the worker
node where the data is stored, thereby unnecessarily
forcing the relevant Map tasks to be re-executed.

To address these issues, MOON augments
Hadoop data management in several ways to lever-
age the proposed hybrid resource architecture to
offer a cost-effective and robust storage service.

A. Multi-dimensional, Cost-effective Replication
Service

Existing MapReduce frameworks such as Hadoop
are designed for relatively stable environments run-
ning on dedicated nodes. In Hadoop, data replication
is carried out in a rather static and uniform man-
ner. To extend Hadoop to handle volatile volunteer
computing environments, MOON provides a multi-
dimensional, cost-effective replication service.

First, MOON manages two types of resources –
supplemental dedicated computers and volatile vol-
unteer nodes. The number of dedicated computers is
much smaller than the number of volatile nodes for
cost-effectiveness purposes. To support this hybrid

1In Hadoop, an incomplete Map task (e.g., caused by inaccessibil-
ity of the corresponding input data block) will be rescheduled up to
4 times, after which the Map task will be marked as failed and in
turn the corresponding job will be terminated.



scheme, MOON extends Hadoop’s data manage-
ment and defines two types of workers:dedicated
DataNodes andvolatile DataNodes. Accordingly,
the replication factor of a file can no longer be
adequately represented by a single number. Instead,
it is defined by a pair{d, v}, where d and v

specify the number of data replicas on the dedicated
DataNodes and the volatile DataNodes, respectively.

Intuitively, since dedicated nodes have much
higher availability than volatile nodes, placing repli-
cas on dedicated DataNodes can significantly im-
prove data availability and in turn minimize the
replication cost on volatile nodes. Because of the
limited aggregated network and I/O bandwidth on
dedicated computers, however, the major challenge
is how to maximize the utilization of the dedicated
resources to improve service quality while pre-
venting the dedicated computers from becoming a
system bottleneck. To this end, MOON’s replication
design differentiates between various data types at
the file level and takes into account the load and
volatility levels of the DataNodes.

MOON characterizes Hadoop data files into two
categories,reliable andopportunistic. Reliable files
are defined as data thatcannot be lost under any
circumstances. One or more dedicated copies are
always maintained for reliable files so that they can
tolerate potential outage of a large percentage of
volatile nodes. MOON always stores input data and
system data required by the job as reliable files.

In contrast,opportunistic filescontain transient
data that can tolerate a certain level of unavailability
and may or may not have dedicated replicas. Inter-
mediate data will always be stored as opportunistic
files. On the other hand, output data will first be
stored as opportunistic files while the Reduce tasks
are completing, and once all are completed they are
then converted to reliable files.

The separation of reliable files from opportunistic
files is critical in controlling the load level of
dedicated DataNodes. When MOON decides that
all dedicated DataNodes are nearly saturated, an I/O
request to replicate an opportunistic file on a dedi-
cated DataNode will be declined (details described
in Section IV-B).

Additionally, by allowing output data to be first
stored as opportunistic files enables MOON to dy-
namically direct write traffic towards or away from

the dedicated DataNodes as necessary. Furthermore,
only after all data blocks of the output file have
reached its replication factor, will the job be marked
as complete and the output file be made available
to users.

To maximize the utilization of dedicated comput-
ers, MOON will attempt to have dedicated replicas
for opportunistic files when possible. When dedi-
cated replicas cannot be maintained, the availability
of the opportunistic file is subject to the volatility of
the volunteer PCs, possibly resulting in poor QoS
due to forced re-execution of the related Map or
Reduce tasks. While this issue can be addressed by
using a high replication degree on volatile DataN-
odes, such a solution will inevitably incur high
network and storage overhead.

MOON addresses this issue by adaptively chang-
ing the replication requirement to provide the user-
defined QoS. Specifically, consider a write re-
quest of an opportunistic file with replication factor
{d, v}. If the dedicated replicas are rejected because
the dedicated DataNodes are saturated, MOON will
dynamically adjustv to v′, wherev′ is chosen to
guarantee that the file availability meets the user-
defined availability level (e.g., 0.9) pursuant to the
node unavailability ratep (i.e., 1 − pv

′

> 0.9). If
p changes before a dedicated replica can be stored,
v′ will be recalculated accordingly. Also, no extra
replication is needed if an opportunistic file already
has a replication degree higher thanv′. While we
currently estimatep by simply having the NameN-
ode monitor the fraction of unavailable DataNodes
during the past intervalI, MOON allows for user-
defined models to accurately predictp under a given
volunteer computing system.

The rationale for adaptively changing the replica-
tion requirement is that when an opportunistic file
has a dedicated copy, the availability of the file is
high thereby allowing MOON to decrease the repli-
cation degree on volatile DataNodes. Alternatively,
MOON can increase the volatile replication degree
of a file as necessary to prevent forced task re-
execution caused by unavailability of opportunistic
data.

Similar to Hadoop, when any file in the system
falls below its replication factor this file will be
put into a replication queue. The NameNode pe-
riodically checks this queue and issues replication



Fig. 3. Decision process to determine where data should be stored.

requests giving higher priority to reliable files.

B. Prioritizing I/O Requests

When a large number of volatile nodes are sup-
plemented with a much smaller number of dedicated
nodes, providing scalable data access is challenging.
As such, MOON prioritizes the I/O requests on the
different resources.

To alleviate read traffic on dedicated nodes,
MOON factors in the node type in servicing a read
request. Specifically, for files with replicas on both
volatile and dedicated DataNodes, read requests
from clients on volatile DataNodes will always try
to fetch data from volatile replicas first. By doing
so, the read request from clients on the volatile
DataNodes will only reach dedicated DataNodes
when none of the volatile replicas are available.

When a write request occurs, MOON prioritizes
I/O traffic to the dedicated DataNodes according to
data vulnerability. A write request from a reliable
file will always be satisfied on dedicated DataNodes.
However, a write request from an opportunistic file
will be declined if all dedicated DataNodes are close
to saturation. As such, write requests for reliable
files are fulfilled prior to those of opportunistic files
when the dedicated DataNodes are fully loaded.
This decision process is shown in Figure 3.

To determine whether a dedicated DataNode is al-
most saturated, MOON uses a sliding window-based
algorithm as show in Algorithm 1. MOON monitors
the I/O bandwidth consumed at each dedicated
DataNode and sends this information to the NameN-
ode piggybacking on theheartbeatmessages. The

throttling algorithm running on the NameNode com-
pares the updated bandwidth with the average I/O
bandwidth during a past window. If the consumed
I/O bandwidth of a DataNode is increasing but only
by a small margin determined by a thresholdTb, the
DataNode is considered saturated. On the contrary,
if the updated I/O bandwidth is decreasing and
falls more than thresholdTb, the dedicated node is
unsaturated. Such a design is to avoid false detection
of saturation status caused by load oscillation.

Algorithm 1 I/O throttling on dedicated DataNodes
Let W be the throttling window size
Let Tb be the control threshold
Let bwk be the measured bandwidth at timestepk
Input: current I/O bandwidthbwi

Output: setting throttling state of the dedicated node

avg bw = (
Pi−1

j=i−W bwj)/W
if bwi > avg bw then

if (state == unthrottled) and (bwi < avg bw ∗ (1 + Tb))
then

state = throttled
end if

end if
if bwi < avg bw then

if (state == throttled) and (bwi < avg bw∗(1−Tb)) then
state = unthrottled

end if
end if

C. Handling Ephemeral Unavailability

Within the original HDFS, fault tolerance is
achieved by periodically monitoring the health of
each DataNode and replicating files as needed. If a
heartbeat message from a DataNode has not arrived
at the NameNode within theNodeExpiryInterval
the DataNode will be declared dead and its files
replicated as needed.

This fault tolerance mechanism is problematic for
opportunistic environments where transient resource
unavailability is common. If theNodeExpiryInterval
is shorter than the mean unavailability interval of the
volatile nodes, these nodes may frequently switch
betweenlive and dead states, causing replication
thrashing due to HDFS striving to keep the correct
number of replicas. Such thrashing significantly
wastes network and I/O resources and should be
avoided. On the other hand, if theNodeExpiryInter-
val is set too long, the system would incorrectly con-
sider a “dead” DataNode as “alive”. These DataN-



odes will continue to be sent I/O requests until it
is properly identified as dead, thereby degrading
overall I/O performance as the clients experience
timeouts trying to access the nodes.

To address this issue, MOON introduces ahiber-
natestate. A DataNode enters the hibernate state if
no heartbeat messages are received for more than a
NodeHibernateInterval, which is much shorter than
the NodeExpiryInterval. A hibernated DataNode
will not be supplied any I/O requests so as to avoid
unnecessary access attempts from clients. Observing
that a data block with dedicated replicas already
has the necessary availability to tolerate transient
unavailability of volatile nodes, only opportunistic
files without dedicated replicas will be re-replicated.
This optimization can greatly save the replication
traffic in the system while preventing task re-
executions caused by the compromised availability
of opportunistic files.

V. MOON TASK SCHEDULING

One important mechanism that Hadoop uses to
improve job response time is to speculatively issue
backup tasks for “stragglers”, i.e. slow running
tasks. Hadoop considers a task as a straggler if the
task meets two conditions: 1) it has been running
for more than one minute, and 2) itsprogress score
lags behind the average progress of all tasks of the
same type by 0.2 or more. The per-task progress
score, valued between 0 and 1, is calculated as the
fraction of data that has been processed in this task.

In Hadoop, all stragglers are treated equally re-
gardless of the relative differences between their
progress scores. The JobTracker (i.e., the master)
simply selects stragglers for speculative execution
according to the order in which they were originally
scheduled, except that for Map stragglers, priority
will be given to the ones with input data local to
the requesting TaskTracker (i.e., the worker). The
maximum number of speculative copies (excluding
the original copy) for each task is user-configurable,
but capped at 1 by default.

Similar to data replication, such static task repli-
cation becomes inadequate in volatile volunteer
computing environments. The assumption that tasks
run smoothly toward completion, except for a small
fraction that may be affected by the abnormal nodes
is easily invalid in opportunistic environments; a

large percentage of tasks will likely be suspended or
interrupted due to temporary or permanent outages
of the volatile nodes. Consequently, the existing
Hadoop solution of identifying stragglers based
solely on tasks’ progress scores is too optimistic.

First, when the machine unavailability rate is
high, all instances of a task can possibly be sus-
pended simultaneously, allowing no progress to be
made on that task. Second, identifying stragglers
via the comparison with average progress score
assumes that the majority of nodes run smoothly to
completion. Third, even for an individual node, the
progress score is not a reliable metric for detecting
stalled tasks that have processed a lot of data. In a
volunteer computing environment, where computers
are turned off or reclaimed by owner activities
frequently independent of the MapReduce work-
load, fast progressing tasks may be suddenly slowed
down. Yet, because of their relatively high progress
scores, it may take a long time for those tasks
to be allowed to have speculative copies issued.
Meanwhile, the natural computational heterogeneity
among volunteer nodes plus additional productivity
variance caused by node unavailability may cause
Hadoop to issue a large number of speculative tasks
(similar to an observation made in [16]). The end
result is a waste of resources and an increase in job
execution time.

Therefore, MOON adopts speculative task exe-
cution strategies that are aggressive for individual
tasks to prepare for high node volatility, yet overall
cautious considering the collectively unreliable en-
vironment. We describe these techniques in the rest
of this section.

A. Ensuring Sufficient Progress with High Node
Volatility

In order to guarantee that sufficient progress is
made on all tasks, MOON characterizes stragglers
into frozen tasks(tasks whereall copies are simul-
taneously inactive) andslow tasks(tasks that are
not frozen, but satisfy the Hadoop criteria for spec-
ulative execution). The MOON scheduler composes
two separate lists, containing frozen and slow tasks
respectively, with tasks selected from the frozen list
first. In both lists, tasks are sorted by the progress
made thus far, with lower progress ranked higher.



It is worth nothing that Hadoop does offer a task
fault-tolerant mechanism to handle node outage.
The JobTracker considers a TaskTrackerdead if
no heartbeat messages have been received from
the TaskTracker for anTrackerExpiryInterval(10
minutes by default). All task instances on a dead
TaskTracker will be killed and rescheduled. Naively,
using a smalltracker expiry intervalcan help detect
and relaunch inactive tasks faster. However, using a
too small value for theTrackerExpiryIntervalwill
cause many suspended tasks to be killed prema-
turely, thus wasting resources.

In contrast, MOON considers a TaskTrackersus-
pended if no heartbeat messages have been re-
ceived from the TaskTracker for aSuspensionIn-
terval, which can be set to a value much smaller
thanTrackerExpiryIntervalso that the anomaly can
be detected early. All task instances running on a
suspended TaskTracker are then flaggedinactive, in
turn triggering frozen task handling. Inactive task
instances are not killed right away in the hope
that they may be resumed when the TaskTracker
is returned to normal later.

MOON imposes a cap on the number of spec-
ulative copies for a slow task similar to Hadoop.
However, a speculative copy will be issued to a
frozen task regardless of the number of its copies
so that progress can always be made for the task.
To constrain the resources used by task replication,
however, MOON enforces a limit on the total con-
current speculative task instances for a job, similar
to the approach used by a related Hadoop schedul-
ing study [16]. Specifically, no more speculative
tasks will be issued if the concurrent number of
speculative tasks of a job is above a percentage
of the total currently available execution slots. We
found that a threshold of 20% worked well in our
experiments.

B. Two-phase Task Replication

The speculative scheduling approach discussed
above only issues a backup copy for a taskafter
it is detected as frozen or slow. Such a reactive
approach is insufficient to handle fast progressing
tasks that become suddenly inactive. For instance,
consider a task that runs normal until 99% complete
and then is suspended. A speculative copy will only
be issued for this task after the task suspension is

detected by the system, and the computation needs
to be started all over again. To make it worse, the
speculative copy may also become inactive before
its completion. In the above scenario, the delay in
the reactive scheduling approach can elongate the
job response time, especially when that scenario
happens toward the end of the job.

To remedy this, MOON separates job progress
into two phases,normal and homestretch, where
the homestretchphase begins once the number of
remaining tasks for the job falls belowH% of
the currently available execution slots. The basic
idea of this two-phase design is to alleviate the
impacts of unexpected task interruptions by proac-
tively replicating tasks toward the job completion.
Specifically, during the homestretch phase, MOON
attempts to maintain at leastR activecopies ofany
remaining taskregardless the task progress score.
If the unavailability rate of volunteer PCs isp, the
probability that a task will become frozen decreases
to pR.

The motivation of the two-phase scheduling stems
from two observations. First, when the number of
concurrent jobs in the system is small, computa-
tional resources become more underutilized as a job
gets closer to completion. Second, a suspended task
will delay the job more toward the completion of
the job. The choosing ofH and R is important to
achieve a good trade-off between the task replica-
tion cost and the performance improvement. In our
experiments, we foundH = 20 andR = 2 can yield
generally good results.

C. Leveraging the Hybrid Resources

MOON attempts to further decrease the impact
of volatility during both normal and homestretch
phases by replicating tasks on the dedicated nodes.
Doing this allows us to take advantage of the
CPU resources available on the dedicated computers
(as opposed to using them as pure data servers).
We adopt a best-effort approach in augmenting
the MOON scheduling policy to leverage the hy-
brid architecture. The improved policy schedules
a speculative task on dedicated computers if there
are empty slots available, with tasks prioritized in
a similar way as done in task replication on the
volunteer computers.



Intuitively, tasks with a dedicated speculative
copy are givenlower priority in receiving additional
task replicas, as the backup support from dedicated
computers tends to be much more reliable. Simi-
larly, tasks that already have a dedicated copy do
not participate the homestretch phase.

As a side-effect of the above task scheduling
approach, long running tasks that have difficulty
in finishing on volunteer PCs because of frequent
interruptions will eventually be scheduled and guar-
anteed completion on the dedicate computers.

VI. PERFORMANCE EVALUATION

We now present the performance evaluation of
the MOON system. Our experiments are executed
on System X at Virginia Tech, comprised of Apple
Xserve G5 compute nodes with dual 2.3GHz Pow-
erPC 970FX processors, 4GB of RAM, 80 GByte
hard drives. System X uses a 10Gbs InfiniBand
network and a 1Gbs Ethernet for interconnection. To
closely resemble volunteer computing systems, we
only use the Ethernet network in our experiments.
Each node is running the GNU/Linux operating
system with kernel version 2.6.21.1. The MOON
system is developed based on Hadoop 0.17.2.

On production volunteer computing systems,
machine availability patterns are commonly non-
repeatable, making it difficult to fairly compare
different strategies. Meanwhile, traces cannot easily
be manipulated to create different node availability
levels. In our experiments, we emulate a volunteer
computing system with synthetic node availability
traces, where node availability level can be adjusted.

We assume that node outage is mutually inde-
pendent and generate unavailable intervals using
a normal distribution, with the mean node-outage
interval (409 seconds) extracted from the aforemen-
tioned Entropia volunteer computing node trace [7].
The unavailable intervals are then inserted into 8-
hour traces following a Poisson distribution such
that in each trace, the percentage of unavailable
time is equal to a given node unavailability rate. At
runtime of each experiment, a monitoring process
on each node reads in the assigned availability trace,
and suspends and resumes all the Hadoop/MOON
related processes on the node accordingly.

Our experiments focus on two representative
MapReduce applications, i.e.,sort and word

count, that are shipped with the Hadoop distribu-
tion. The configurations of the two applications are
given in Table I2. For both applications, the input
data is randomly generated using tools distributed
with Hadoop.

TABLE I
APPLICATION CONFIGURATIONS.

Application Input Size # Maps # Reduces
sort 24 GB 384 0.9 × AvailSlots
word count 20 GB 320 20

A. Speculative Task Scheduling Evaluation

First, we evaluate the MOON scheduling algo-
rithm using job response time as the performance
metric. On opportunistic environments both the
scheduling algorithm and the data management poli-
cies can largely impact this metric. To isolate the
impact of speculative task scheduling, we use the
sleep application distributed with Hadoop, which
allows us to simulate our two target applications
with faithful Map and Reduce task execution times,
but generating only insignificant amount of inter-
mediate and output data (two integers per record of
intermediate and zero output data).

We feed the average Map and Reduce execution
times fromsort and word count benchmark-
ing runs intosleep. We also configure MOON
to replicate the intermediate data as reliable files
with one dedicated and one volatile copy, so that
intermediate data are always available to Reduce
tasks. Sincesleep only deals with a small amount
of intermediate data, the impact of data management
is minimal.

The test environment is configured with 60
volatile nodes and 6 dedicated nodes, resulting in
a 10:1 of volatile-to-dedicated (V-to-D) node ratio
(results with higher V-to-D node ratio will be shown
in Section VI-C). We compare the original Hadoop
task scheduling policy and two versions of the
MOON two-phase scheduling algorithm described
in Section V: with and without awareness of the
hybrid architecure (MOON and MOON-Hybrid re-
spectively).

We control how quickly the Hadoop fault-tolerant
mechanism reacts to node outages by using 1, 5,

2Note by default, Hadoop runs 2 reduce tasks per node.



and 10 (default) minutes forTrackerExpiryInterval.
With even largerTrackerExpiryIntervals, Hadoop
performance gets worse and hence those results
are not shown here. For MOON, as discussed in
Section V-B, the task suspension detection allows
using largerTrackerExpiryIntervalsto avoid killing
tasks prematurely. We use 1 minute forSuspension-
Interval, and 30 minutes forTrackerExpiryInterval.
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Fig. 4. Execution time with Hadoop and MOON scheduling policies.

Figure 4 shows the execution times on various
average node unavailability rates. Overall, the job
execution time with the default Hadoop scheduling
policy reduces asTrackerExpiryIntervaldecreases.

For the sort application (Figure 4(a)),
Hadoop1Min (Hadoop with 1 minute
TrackerExpiryInterval) outperformsHadoop10Min
by 48% andHadoop5Min by 35%, on average.
When node unavailability rate is low, the
performance with the MOON scheduling
policies are comparable to or slightly better than
Hadoop1Min. This is because in these scenarios,
a high percentage of tasks run normally, and thus
the default Hadoop speculative algorithm performs

relatively well. However, at the 0.5 unavailability
rate, the MOON scheduling policy significantly
outperforms Hadoop1Min, by 45% without even
being aware of the hybrid architecture. This is
because the MOON two-phase scheduling algorithm
can handle task suspension without killing tasks
prematurely, and reduce the occurrence of tasks
failing towards the end of job execution. Finally,
when leveraging the hybrid resources, MOON can
further improve performance, especially when the
unavailability rate is high.

Figure 4(b) shows similar results withword
count. While the MOON scheduler still outper-
forms Hadoop1Min, the improvement is smaller.
This is due to the fact theword count has
a smaller number of Reduce tasks, providing
less room for improvement. Nonetheless, MOON-
Hybrid outperforms the best alternative Hadoop
policy (Hadoop1Min) by 24% and 35% at 0.3 and
0.5 unavailability rates, respectively. Note that the
efficacy of leveraging the hybrid nodes inword
count is slightly different than that insort.
MOON-Hybrid does not show a performance im-
provement when the unavailability rates are 0.1 and
0.3, mainly because the number of reduce tasks of
word count is small, and the speculative tasks
issued by the two-phase algorithm on volatile nodes
are sufficient to handle the node outage. How-
ever, at the 0.5 unavailability rate, the reduce tasks
on volatile nodes are interrupted more frequently,
in which case placing reduce tasks on dedicated
nodes can deliver considerable performance im-
provements.

Another important metric to evaluate is the total
number of duplicated tasks issued, as extra tasks
will consume system resources as well as energy.
Figure 5 plots the number of duplicated tasks (in-
cluding both Map and Reduce) issued with different
scheduling policies. For Hadoop, with a smaller
TrackerExpiryInterval, the JobTracker is more likely
to consider a suspended TaskTracker as dead and
in turn increase the number of duplicated tasks
by re-executing tasks. Meanwhile, a smallerTrack-
erExpiryInterval can decrease the execution time
by reacting to the task suspension more quickly.
Conversely, a reduction in the execution time can
decrease the probability of a task being suspended.
Because of these two complementary factors, we



observe that generally, the Hadoop scheduler creates
larger numbers of speculative tasks as a smaller
TrackerExpiryIntervalis used, with a few exceptions
for sort at 0.1 and 0.3 unavailability rates.

The basic MOON algorithm significantlyreduces
duplicated tasks. Forsort, it issues 14%, 22%, and
44% fewer such tasks, at the three unavailability rate
levels respectively. Similar improvements can be
observed forword count. With hybrid-resource-
aware optimizations, MOON achieves further im-
provement averaging 29% gains, and peaking at
44% in these tests.
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Fig. 5. Number of duplicated tasks issued with different scheduling
policies.

Overall, we found that the default Hadoop
scheduling policy may enhance its capability of
handling task suspensions in opportunistic environ-
ments, but often at the cost of shorteningTrackerEx-
piryInterval and issuing more speculative tasks. The
MOON scheduling policies, however, can deliver
significant performance improvement over Hadoop
native algorithms while creating fewer speculative
tasks, especially when the resource volatility is high.

B. Replication of Intermediate Data

In a typical Hadoop job, theshufflephase, where
intermediate data are copied to Reduce tasks, is
time-consuming even in dedicated environments.
On opportunistic environments, achieving efficient
shuffle performance is more challenging, given that
the intermediate data could be inaccessible due
to frequent machine outage. In this section, we
evaluate the impact of MOON’s intermediate data
replication policy on shuffle efficiency and conse-
quently, job response time.

We compare avolatile-only (VO) replication ap-
proach that statically replicates intermediate data
only on volatile nodes, and thehybrid-aware(HA)
replication approach described in Section IV-A. For
the VO approach, we increase the number of volatile
copies gradually from 1 (VO-V1) to 5 (VO-V5). For
the HA approach, we have MOON store one copy
on dedicated nodes when possible, and increase the
minimum volatile copies from from 1 (HA-V1) to
3 (HA-V3). Recall that in the HA approach, if the
data block does not yet have a dedicated copy, then
the number of volatile copies of a data block is
dynamically adjusted such that the availability of
a file reaches 0.9.

These experiments use 60 volatile nodes and 6
dedicated nodes. To focus solely on intermediate
data, we configure the input/output data to use a
fixed replication factor of{1, 3} across all experi-
ments. Also, the task scheduling algorithm is fixed
at MOON-Hybrid, which was shown to be the best
in the previous section.

In Hadoop, a Reduce task reports a fetch failure if
the intermediate data of a Map task is inaccessible.
The JobTracker will reschedule a new copy of a
Map task if more than 50% of the running Reduce
tasks report fetching failures for the Map task. We
observe that with this approach, the reaction to the
loss of Map output is too slow, and as a result, a
typical job runs for hours. We remedy this by allows
the JobTracker to query the MOON file system to
see whether there areactive replicas for a Map
output, once it observes three fetch failures from
this task, it immediately reissues a new copy of the
Map task to regenerate the data.

Figure 6(a) shows the results ofsort. As
expected, enhanced intermediate data availability



through the VO replication clearly reduces the over-
all execution time. When the unavailability rate is
low, the HA replication does not exhibit much ad-
ditional performance gain. However, HA replication
significantly outperforms VO replication when the
node unavailability level is high. While increasing
the number of volatile replicas can help improve
data availability on a highly volatile system, this
incurs a high performance cost. As a result, there is
no further execution time improvement fromVO-V3
to VO-V4, and fromVO-V4 to VO-V5, the per-
formance actually degrades. With HA replication,
having at least one copy written to dedicated nodes
substantially improves data availability, with a lower
overall replication cost. More specifically,HA-V1
outperforms the best VO configuration, i.e.,VO-V3
by 61% at the 0.5 unavailability rate.

With word count, the gap between the best
HA configuration and the best VO configuration is
small. This is not surprising, asword count gen-
erates much smaller intermediate/final output and
has much fewer Reduce tasks, thus the cost of fetch-
ing intermediate results can be largely hidden by
Map tasks. Also, increasing the number of replicas
does not incur significant overhead. Nonetheless,
at the 0.5 unavailability rate, the HA replication
approach still outperforms the best VO replication
configuration by about 32.5%.

To further understand the cause of performance
variances of different policies, Table II shows the
execution profile collected from the Hadoop job
log for tests at 0.5 unavailability rate. We do not
include all policies due to space limit. Forsort,
the average Map execution time increases rapidly
as higher replication degrees are used in the VO
replication approach. In contrast, the Map execution
time does not change much across different policies
for word count, due to reasons discussed earlier.

The most noticeable factor causing performance
differences is the averageshuffletime. Forsort,
the average shuffle time ofVO-V1 is much higher
than other policies due to the low availability of
intermediate data. In fact, the average shuffle time of
VO-V1 is about 5 times longer than that ofHA-V1.
For VO replication, increasing the replication degree
from 1 to 3 results in a 54% improvement in the
shuffle time, but no further improvement is observed
beyond this point. This is because the shuffle time is

partially affected by the increasing Map execution
time, given that the shuffle time is measured from
the start of a reduce task till the end of copying all
related Map results. Forword count, the shuffle
times with different policies are relatively close
except withVO-V1, again because of the smaller
intermediate data size.

Finally, since the fetch failures of Map results
will trigger the re-execution of corresponding Map
tasks, the average number of killed Map tasks is a
good indication of the intermediate data availability.
While the number of killed Map tasks decreases
as the VO replication degree increases, the HA
replication approach in general results in a lower
number of Map task re-executions.

C. Overall Performance Impacts of MOON

To evaluate the impact of MOON strategies on
overall MapReduce performance, we establish a
base line by augmenting Hadoop to replicate the
intermediate data and configure Hadoop to store six
replicas for both input and output data, to attain a
99.5% data availability when the average machine
unavailability is0.4 (selected according to the real
node availability trace shown in Figure 1). For
MOON, we assume the availability of a dedicated
node is at least as high as that of three volatile
nodes together with independent failure probability.
That is, the unavailability of dedicated node is less
than 0.43, which is not hard to achieve for well
maintained workstations. As such, we configure
MOON with a replication factor of{1, 3} for both
input and output data.

In testing the native Hadoop system, 60 volatile
nodes and 6 dedicated nodes are used. These nodes,
however are all treated as volatile in the Hadoop
tests as Hadoop cannot differentiate between volatile
and dedicated. For each test, we use the VO repli-
cation configuration that can deliver the best per-
formance under a given unavailability rate. It worth
noting that we do not show the performance of the
default Hadoop system (without intermediate data
replication), which wasunable to finish the jobs
under high machine unavailability levels, due to
intermediate data losses and high task failure rate.

The MOON tests are executed on 60 volatile
nodes with 3, 4 and 6 dedicated nodes, corre-
sponding to a 20:1, 15:1 and 10:1 V-to-D ratios.
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Fig. 6. Compare impacts of different replication policies for intermediate data on execution time.

TABLE II
EXECUTION PROFILE OF DIFFERENT REPLICATION POLICIES AT0.5 UNAVAILABILITY RATE .

sort word count
Policy VO-V1 VO-V3 VO-V5 HA-V1 VO-V1 VO-V3 VO-V5 HA-V1
Avg Map Time (s) 21.25 42 71.5 41.5 100 110.75 113.5 112
Avg Shuffle Time (s) 1150.25 528 563 210.5 752.5 596.25 584 559
Avg Reduce Time (s) 155.25 84.75 116.25 74.5 50.25 28 28.5 31
Avg #Killed Maps 1389 55.75 31.25 18.75 292.25 32.5 30.5 23
Avg #Killed Reduces 59 47.75 55.25 34.25 18.25 18 15.5 12.5

The intermediate data is replicated with the HA
approach using{1, 1} as the replication factor. As
shown in Figure 7, MOON clearly outperforms
Hadoop-VO for 0.3 and 0.5 unavailable rates and is
competitive at a 0.1 unavailability rate, even for a
20:1 V-to-D ratio. For sort, MOON outperforms
Hadoop-VO by a factor of 1.8, 2.2 and 3 with 3,
4 and 6 dedicated nodes, respectively, when the
unavailability rate is 0.5. Forword count, the
MOON performance is slightly better than aug-
mented Hadoop, delivering a speedup factor of 1.5
compared to Hadoop-VO. The only case where
MOON performs worse than Hadoop-VO is for the
sort application at the 0.1 unavailability rate and
the V-to-D node ratio is 20:1. This is due to the
fact that the aggregate I/O bandwidth on dedicated
nodes is insufficient to quickly absorb all of the
intermediate and output data.

VII. RELATED WORK

Several storage systems have been designed to
aggregate idle disk spaces on desktop computers
within local area network environments [18], [19],
[20], [21]. Farsite [18] aims at building a secure file
system service equivalent to centralized file system
on top of untrusted PCs. It adopts replication to en-
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Fig. 7. Overall performance of MOON vs. Hadoop with VO
replication



sure high data reliability, and is designed to reduce
the replication cost by placing data replicas based
on the knowledge of failure correlation between in-
dividual machines. Glacier [19] is a storage system
that can deliver high data availability under large-
scale correlated failures. It does not assume any
knowledge of the machine failure patterns and uses
erasure code to reduce the data replication overhead.
Both Farsite and Glacier are designed for typical
I/O activities on desktop computers and are not
sufficient for high-performance data-intensive com-
puting. Freeloader [20] provides a high-performance
storage system. However, it aims at providing a
read-only caching space and is not suitable for
storing mission critical data. The BitDew frame-
work [21] intends to provide data management
for computational grids, but is currently limited to
applications with little or zero data dependencies
between tasks.

There have been studies in executing MapReduce
on grid systems, such as GridGain [22]. There
are two major differences between GridGain and
MOON. First, GridGain only provides computing
service and relies on other data grid systems for
its storage solution, whereas MOON provides an
integrated computing and data solution by extending
Hadoop. Second, unlike MOON, GridGain is not
designed to provide high QoS on opportunistic
environments where machines will be frequently
unavailable. Sun Microsystems’ Compute Server
technology is also capable of executing MapReduce
jobs on a grid by creating a master-worker task pool
where workers iteratively grab tasks to execute [23].
However, based on information gleaned from [23],
it appears that this technology is intended for use
on large dedicated resources, similarly to Hadoop.

When executing Hadoop in heterogenous envi-
ronments, Zaharia et. al. discovered several limita-
tions of the Hadoop speculative scheduling algo-
rithm and developed the LATE (Longest Approxi-
mate Time to End) scheduling algorithm [16]. LATE
aims at minimizing Hadoop’s job response time by
always issuing a speculative copy for the task that
is expected to finish last. LATE was designed on
heterogeneous,dedicatedresources, assuming the
task progress rate is constant on a node. LATE
is not directly applicable to opportunistic environ-
ments where a high percentage of tasks can be

frequently suspended or interrupted, and in turn
the task progress rate is not constant on a node.
Currently, the MOON design focuses on environ-
ments with homogeneous computers. In the future,
we plan to explore the possibility of combining the
MOON scheduling principles with LATE to support
heterogeneous, opportunistic environments.

Finally, Ko et al. discovered that the loss of
intermediate data may result in considerable per-
formance penalty in Hadoop even under dedi-
cated computing environments [24]. Their prelim-
inary studies suggested that simple replication ap-
proaches, such as relying on HDFS’s replication
service used in our paper, could incur high repli-
cation overhead and is impractical in dedicated,
cluster environments. In our study, we show that
in opportunistic environments, the replication over-
head for intermediate data can be well paid off by
the performance gain resulted from the increased
data availability. Future studies in more efficient
intermediate data replication will of course well
complement the MOON design.

VIII. C ONCLUSION AND FUTURE WORK

In this paper, we presented MOON, an adaptive
system that supports MapReduce jobs on oppor-
tunistic environments, where existing MapReduce
run-time policies fail to handle frequent node out-
ages. In particular, we demonstrated the benefit of
MOON’s data and task replication design to greatly
improve the QoS of MapReduce when running on
a hybrid resource architecture, where a large group
of volatile, volunteer resources is supplemented by
a small set of dedicated nodes.

Due to testbed limitations in our experiments, we
used homogeneous configurations across the nodes
used. Although node unavailability creates natural
heterogeneity, it did not create disparity in hardware
speed (such as disk and network bandwidth speeds).
In our future work, we plan to evaluate and further
enhance MOON in heterogeneous environments.
Additionally, we would like to deploy MOON on
various production systems with different degrees
of volatility and evaluate a variety of applications in
use on these systems. Lastly, this paper investigated
single-job execution, and it would be interesting
future work to study the scheduling and QoS issues



of concurrent MapReduce jobs on opportunistic
environments.
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