335 research outputs found

    Accurate Pupil Features Extraction Based on New Projection Function

    Get PDF
    Accurate pupil features extraction is a key step for iris recognition. In this paper, we propose a new algorithm to extract pupil features precisely within gray level iris images. The angular integral projection function (AIPF) is developed as a general function to perform integral projection along angular directions, both the well known vertical and horizontal integral projection functions can be viewed as special cases of AIPF. Another implementation for AIPF based on localized Radon transform is also presented. First, the approximate position of pupil center is detected. Then, a set of pupil's radial boundary points are detected using AIPF. Finally, a circle to the detected boundary points is fitted. Experimental results on 2655 iris images from CASIA V3.0 show high accuracy with rapid execution time

    Features for Cross Spectral Image Matching: A Survey

    Get PDF
    In recent years, cross spectral matching has been gaining attention in various biometric systems for identification and verification purposes. Cross spectral matching allows images taken under different electromagnetic spectrums to match each other. In cross spectral matching, one of the keys for successful matching is determined by the features used for representing an image. Therefore, the feature extraction step becomes an essential task. Researchers have improved matching accuracy by developing robust features. This paper presents most commonly selected features used in cross spectral matching. This survey covers basic concepts of cross spectral matching, visual and thermal features extraction, and state of the art descriptors. In the end, this paper provides a description of better feature selection methods in cross spectral matching

    A Survey of Iris Recognition System

    Get PDF
    The uniqueness of iris texture makes it one of the reliable physiological biometric traits compare to the other biometric traits. In this paper, we investigate a different level of fusion approach in iris image. Although, a number of iris recognition methods has been proposed in recent years, however most of them focus on the feature extraction and classification method. Less number of method focuses on the information fusion of iris images. Fusion is believed to produce a better discrimination power in the feature space, thus we conduct an analysis to investigate which fusion level is able to produce the best result for iris recognition system. Experimental analysis using CASIA dataset shows feature level fusion produce 99% recognition accuracy. The verification analysis shows the best result is GAR = 95% at the FRR = 0.1

    Curvelet and Ridgelet-based Multimodal Biometric Recognition System using Weighted Similarity Approach

    Get PDF
    Biometric security artifacts for establishing the identity of a person with high confidence have evoked enormous interest in security and access control applications for the past few years. Biometric systems based solely on unimodal biometrics often suffer from problems such as noise, intra-class variations and spoof attacks. This paper presents a novel multimodal biometric recognition system by integrating three biometric traits namely iris, fingerprint and face using weighted similarity approach. In this work, the multi-resolution features are extracted independently from query images using curvelet and ridgelet transforms, and are then compared to the enrolled templates stored in the database containing features of each biometric trait. The final decision is made by normalizing the feature vectors, assigning different weights to the modalities and fusing the computed scores using score combination techniques. This system is tested with the public unimodal databases such as CASIA–Iris-V3-Interval, FVC2004, ORL and self-built multimodal databases. Experimental results obtained shows that the designed system achieves an excellent recognition rate of 98.75 per cent and 100 per cent for the public and self-built databases respectively and provides ultra high security than unimodal biometric systems.Defence Science Journal, 2014, 64(2), pp. 106-114. DOI: http://dx.doi.org/10.14429/dsj.64.346

    A multi-biometric iris recognition system based on a deep learning approach

    Get PDF
    YesMultimodal biometric systems have been widely applied in many real-world applications due to its ability to deal with a number of significant limitations of unimodal biometric systems, including sensitivity to noise, population coverage, intra-class variability, non-universality, and vulnerability to spoofing. In this paper, an efficient and real-time multimodal biometric system is proposed based on building deep learning representations for images of both the right and left irises of a person, and fusing the results obtained using a ranking-level fusion method. The trained deep learning system proposed is called IrisConvNet whose architecture is based on a combination of Convolutional Neural Network (CNN) and Softmax classifier to extract discriminative features from the input image without any domain knowledge where the input image represents the localized iris region and then classify it into one of N classes. In this work, a discriminative CNN training scheme based on a combination of back-propagation algorithm and mini-batch AdaGrad optimization method is proposed for weights updating and learning rate adaptation, respectively. In addition, other training strategies (e.g., dropout method, data augmentation) are also proposed in order to evaluate different CNN architectures. The performance of the proposed system is tested on three public datasets collected under different conditions: SDUMLA-HMT, CASIA-Iris- V3 Interval and IITD iris databases. The results obtained from the proposed system outperform other state-of-the-art of approaches (e.g., Wavelet transform, Scattering transform, Local Binary Pattern and PCA) by achieving a Rank-1 identification rate of 100% on all the employed databases and a recognition time less than one second per person

    The fundamentals of unimodal palmprint authentication based on a biometric system: A review

    Get PDF
    Biometric system can be defined as the automated method of identifying or authenticating the identity of a living person based on physiological or behavioral traits. Palmprint biometric-based authentication has gained considerable attention in recent years. Globally, enterprises have been exploring biometric authorization for some time, for the purpose of security, payment processing, law enforcement CCTV systems, and even access to offices, buildings, and gyms via the entry doors. Palmprint biometric system can be divided into unimodal and multimodal. This paper will investigate the biometric system and provide a detailed overview of the palmprint technology with existing recognition approaches. Finally, we introduce a review of previous works based on a unimodal palmprint system using different databases

    A Hand-Based Biometric Verification System Using Ant Colony Optimization

    Get PDF
    This paper presents a novel personal authentication system using hand-based biometrics, which utilizes internal (beneath the skin) structure of veins on the dorsal part of the hand and the outer shape of the hand. The hand-vein and the hand-shape images can be simultaneously acquired by using infrared thermal and digital camera respectively. A claimed identity is authenticated by integrating these two traits based on the score-level fusion in which four fusion rules are used for the integration. Before their fusion, each modality is evaluated individually in terms of error rates and weights are assigned according to their performance. In order to achieve an adaptive security in the proposed bimodal system, an optimal selection of fusion parameters is required. Hence, Ant Colony Optimization (ACO) is employed in the bimodal system to select the weights and also one out of the four fusion rules optimally for the adaptive fusion of the two modalities to meet the user defined security levels. The databases of hand-veins and the hand-shapes consisting of 150 users are acquired using the peg-free imaging setup. The experimental results show genuine acceptance rate (GAR) of 98% at false acceptance rate (FAR) of 0.001% and the system has the potential for any online personal authentication based application.

    A review on Person Authentication using Finger Vein Technique

    Get PDF
    Biometric system has been actively emerging in various industries and continuing to roll to provide higher security features for access control system. The proposed system simultaneously acquires the finger surface and subsurface features from finger-vein and finger print images. This paper reviews the acquired finger vein and finger texture images are first subjected to pre-processing steps, which extract the region-of-interest (ROI). The enhanced and normalized ROI images employed to extract features and generate matching score. For this I will develop and investigate two new score-level combinations i.e. Gabour filter, Repeated line Tracking and Neural network comparatively evaluate them more popular score-level fusion approaches to ascertain their effectiveness in the proposed system. MATLAB software will be using for proposed work
    • …
    corecore