352 research outputs found

    Uncooperative gait recognition by learning to rank

    Get PDF
    This work has partially been supported by projects CICYT TIN2009-14205-C04-04 from the Spanish Ministry of Innovation and Science, and P1-1B2012-22, PREDOC/2008/04 and E-2011-36 from Universitat Jaume I of Castellón

    Multi-view gait recognition on curved

    Get PDF
    Appearance changes due to viewing angle changes cause difficulties for most of the gait recognition methods. In this paper, we propose a new approach for multi-view recognition, which allows to recognize people walking on curved paths. The recognition is based on 3D angular analysis of the movement of the walking human. A coarse-to-fine gait signature represents local variations on the angular measurements along time. A Support Vector Machine is used for classifying, and a sliding temporal window for majority vote policy is used to smooth and reinforce the classification results. The proposed approach has been experimentally validated on the publicly available “Kyushu University 4D Gait Database”

    Appearance-based motion recognition of human actions

    Get PDF
    Thesis (M.S.)--Massachusetts Institute of Technology, Program in Media Arts & Sciences, 1996.Includes bibliographical references (leaves 52-53).by James William Davis.M.S

    New human action recognition scheme with geometrical feature representation and invariant discretization for video surveillance

    Get PDF
    Human action recognition is an active research area in computer vision because of its immense application in the field of video surveillance, video retrieval, security systems, video indexing and human computer interaction. Action recognition is classified as the time varying feature data generated by human under different viewpoint that aims to build mapping between dynamic image information and semantic understanding. Although a great deal of progress has been made in recognition of human actions during last two decades, few proposed approaches in literature are reported. This leads to a need for much research works to be conducted in addressing on going challenges leading to developing more efficient approaches to solve human action recognition. Feature extraction is the main tasks in action recognition that represents the core of any action recognition procedure. The process of feature extraction involves transforming the input data that describe the shape of a segmented silhouette of a moving person into the set of represented features of action poses. In video surveillance, global moment invariant based on Geometrical Moment Invariant (GMI) is widely used in human action recognition. However, there are many drawbacks of GMI such that it lack of granular interpretation of the invariants relative to the shape. Consequently, the representation of features has not been standardized. Hence, this study proposes a new scheme of human action recognition (HAR) with geometrical moment invariants for feature extraction and supervised invariant discretization in identifying actions uniqueness in video sequencing. The proposed scheme is tested using IXMAS dataset in video sequence that has non rigid nature of human poses that resulting from drastic illumination changes, changing in pose and erratic motion patterns. The invarianceness of the proposed scheme is validated based on the intra-class and inter-class analysis. The result of the proposed scheme yields better performance in action recognition compared to the conventional scheme with an average of more than 99% accuracy while preserving the shape of the human actions in video images

    Object detection and activity recognition in digital image and video libraries

    Get PDF
    This thesis is a comprehensive study of object-based image and video retrieval, specifically for car and human detection and activity recognition purposes. The thesis focuses on the problem of connecting low level features to high level semantics by developing relational object and activity presentations. With the rapid growth of multimedia information in forms of digital image and video libraries, there is an increasing need for intelligent database management tools. The traditional text based query systems based on manual annotation process are impractical for today\u27s large libraries requiring an efficient information retrieval system. For this purpose, a hierarchical information retrieval system is proposed where shape, color and motion characteristics of objects of interest are captured in compressed and uncompressed domains. The proposed retrieval method provides object detection and activity recognition at different resolution levels from low complexity to low false rates. The thesis first examines extraction of low level features from images and videos using intensity, color and motion of pixels and blocks. Local consistency based on these features and geometrical characteristics of the regions is used to group object parts. The problem of managing the segmentation process is solved by a new approach that uses object based knowledge in order to group the regions according to a global consistency. A new model-based segmentation algorithm is introduced that uses a feedback from relational representation of the object. The selected unary and binary attributes are further extended for application specific algorithms. Object detection is achieved by matching the relational graphs of objects with the reference model. The major advantages of the algorithm can be summarized as improving the object extraction by reducing the dependence on the low level segmentation process and combining the boundary and region properties. The thesis then addresses the problem of object detection and activity recognition in compressed domain in order to reduce computational complexity. New algorithms for object detection and activity recognition in JPEG images and MPEG videos are developed. It is shown that significant information can be obtained from the compressed domain in order to connect to high level semantics. Since our aim is to retrieve information from images and videos compressed using standard algorithms such as JPEG and MPEG, our approach differentiates from previous compressed domain object detection techniques where the compression algorithms are governed by characteristics of object of interest to be retrieved. An algorithm is developed using the principal component analysis of MPEG motion vectors to detect the human activities; namely, walking, running, and kicking. Object detection in JPEG compressed still images and MPEG I frames is achieved by using DC-DCT coefficients of the luminance and chrominance values in the graph based object detection algorithm. The thesis finally addresses the problem of object detection in lower resolution and monochrome images. Specifically, it is demonstrated that the structural information of human silhouettes can be captured from AC-DCT coefficients

    View-Invariance in Visual Human Motion Analysis

    Get PDF
    This thesis makes contributions towards the solutions to two problems in the area of visual human motion analysis: human action recognition and human body pose estimation. Although there has been a substantial amount of research addressing these two problems in the past, the important issue of viewpoint invariance in the representation and recognition of poses and actions has received relatively scarce attention, and forms a key goal of this thesis. Drawing on results from 2D projective invariance theory and 3D mutual invariants, we present three different approaches of varying degrees of generality, for human action representation and recognition. A detailed analysis of the approaches reveals key challenges, which are circumvented by enforcing spatial and temporal coherency constraints. An extensive performance evaluation of the approaches on 2D projections of motion capture data and manually segmented real image sequences demonstrates that in addition to viewpoint changes, the approaches are able to handle well, varying speeds of execution of actions (and hence different frame rates of the video), different subjects and minor variabilities in the spatiotemporal dynamics of the action. Next, we present a method for recovering the body-centric coordinates of key joints and parts of a canonically scaled human body, given an image of the body and the point correspondences of specific body joints in an image. This problem is difficult to solve because of body articulation and perspective effects. To make the problem tractable, previous researchers have resorted to restricting the camera model or requiring an unrealistic number of point correspondences, both of which are more restrictive than necessary. We present a solution for the general case of a perspective uncalibrated camera. Our method requires that the torso does not twist considerably, an assumption that is usually satisfied for many poses of the body. We evaluate the quantitative performance of the method on synthetic data and the qualitative performance of the method on real images taken with unknown cameras and viewpoints. Both these evaluations show the effectiveness of the method at recovering the pose of the human body

    Performance analysis of gait recognition with large perspective distortion

    No full text
    In real security scenarios, gait data may be highly distorted due to perspective effects and there may be significant change in appearance, orientation and occlusion between different measurements. To deal with this problem, a new identification technique is proposed by reconstructing 3D models of the walking subject, which are then used to identify subject images from an arbitrary camera. 3D models in one gait cycle are aligned to match silhouettes in a 2D gait cycle by estimating the positions of a 3D and 2D gait cycles in a 3D space. This allows the gait data in a gallery and probe share the same appearance, perspective and occlusion. Generic Fourier Descriptors are used as gait features. The performance is evaluated using a new collected dataset of 17 subjects walking in a narrow walkway. A Correct Classification Rate of 98:8% is achieved. This high recognition rate has still been achieved using a modest number of features. The analysis indicate that the technique can handle truncated gait cycles of different length and is insensitive to noisy silhouettes. However, calibration errors have a negative impact upon recognition performance

    Activity Representation from Video Using Statistical Models on Shape Manifolds

    Get PDF
    Activity recognition from video data is a key computer vision problem with applications in surveillance, elderly care, etc. This problem is associated with modeling a representative shape which contains significant information about the underlying activity. In this dissertation, we represent several approaches for view-invariant activity recognition via modeling shapes on various shape spaces and Riemannian manifolds. The first two parts of this dissertation deal with activity modeling and recognition using tracks of landmark feature points. The motion trajectories of points extracted from objects involved in the activity are used to build deformation shape models for each activity, and these models are used for classification and detection of unusual activities. In the first part of the dissertation, these models are represented by the recovered 3D deformation basis shapes corresponding to the activity using a non-rigid structure from motion formulation. We use a theory for estimating the amount of deformation for these models from the visual data. We study the special case of ground plane activities in detail because of its importance in video surveillance applications. In the second part of the dissertation, we propose to model the activity by learning an affine invariant deformation subspace representation that captures the space of possible body poses associated with the activity. These subspaces can be viewed as points on a Grassmann manifold. We propose several statistical classification models on Grassmann manifold that capture the statistical variations of the shape data while following the intrinsic Riemannian geometry of these manifolds. The last part of this dissertation addresses the problem of recognizing human gestures from silhouette images. We represent a human gesture as a temporal sequence of human poses, each characterized by a contour of the associated human silhouette. The shape of a contour is viewed as a point on the shape space of closed curves and, hence, each gesture is characterized and modeled as a trajectory on this shape space. We utilize the Riemannian geometry of this space to propose a template-based and a graphical-based approaches for modeling these trajectories. The two models are designed in such a way to account for the different invariance requirements in gesture recognition, and also capture the statistical variations associated with the contour data
    corecore