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Abstract

Gait is a useful biometric because it can operate from a distance and without sub-

ject cooperation. However, it is affected by changes in covariate conditions (carrying,

clothing, view angle, etc.). Existing methods suffer from lack of training samples,

can only cope with changes in a subset of conditions with limited success, and im-

plicitly assume subject cooperation. We propose a novel approach which casts gait

recognition as a bipartite ranking problem and leverages training samples from dif-

ferent people and even from different datasets. By exploiting learning to rank, the

problem of model over-fitting caused by under-sampled training data is effectively

addressed. This makes our approach suitable under a genuine uncooperative set-

ting and robust against changes in any covariate conditions. Extensive experiments

demonstrate that our approach drastically outperforms existing methods, achieving

up to 14-fold increase in recognition rate under the most difficult uncooperative

settings.
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1 Introduction

Gait can be used as a behavioral biometric. Compared to physiological bio-

metrics such as fingerprint, iris and face, it has a number of distinctive pros

and cons. The key advantage of gait for person identification is that it can op-

erate from a distance and without subject cooperation. This makes gait ideal

for situations where direct contact with or cooperation from a subject is not

possible, e.g. surveillance in a public space. However, having uncooperative

subjects also means that gait is susceptible to changes in various covariate

conditions, which are circumstantial and physical conditions that can affect

either gait itself or its perception. Examples of these conditions include cloth-

ing, surface, load carrying (e.g. carrying a bag), camera view angle, walking

speed, and footwear type. This problem is illustrated in Fig. 1, which shows

that due to significant changes in covariate conditions, especially view angle

and clothing, features of different people (Fig. 1 (a),(d)) can be more alike

than those of a same subject (Fig. 1 (a),(b),(c)).

Fig. 1. Comparison of gait representations of Subject A ((a): with a bag, (b): a
different viewpoint, and (c): wearing a bulking coat) and Subject B ((d): with a
bag). Among (b), (c), and (d), (d) appears to be the best match to (a), because
they share the same covariate conditions (view, carrying and clothing), which can
easily lead to a wrong match.

As a classification problem (i.e. each person being a different class), gait recog-

nition is challenging. This is not only due to the variable covariate conditions

mentioned above, but also because of the lack of training data to cope with

the large overlap between classes in the feature space. Specifically, each sub-

ject may be captured only in one sequence with a handful of gait cycles for

feature extraction, resulting in an extremely under-sampled class distribu-

tion. Most existing approaches focus on extracting and selecting the best gait

features that are invariable to different conditions [1,2,3]. However, they are

based on human a priori knowledge (e.g. the most reliable features are in the

most dynamic part of human body, i.e. legs) and select features in the highly
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overlapped original feature space, which only lead to very limited success. In

addition, these methods are designed for addressing specific types of covariate

conditions but none of them can cope with large view angle changes. On the

other hand, since gait features are particularly sensitive to view angle changes,

completely different approaches based on feature transformation [4,5] are de-

veloped to deal with the view problem, which in turn do not work on other

covariate conditions. Affine moment based features that are invariant to un-

known covariant condition changes is proposed in [6]. However, it requires a

cooperative setting, relies on clean silhouettes to be extracted from images,

and is unable to cope with drastic appearance changes. So far, none of the ex-

isting approaches can address all covariate conditions which typically co-exist

under an uncooperative setting.

Different from those feature selection and transformation-based methods, some

learning-based approaches are also proposed [7,8,9]. These methods attempt

to maximize the inter-class distance whilst minimizing intra-class variations,

and can be applied after feature selection/transformation. However, they as-

sume that the same classes/people must be present in both the training and

test sets and represented with sufficient samples. Both assumptions are often

not valid in practice. More importantly, most existing works use a gallery set

composed of gait sequences of people under similar covariate conditions and

evaluate their performance on a probe set of possibly different but fixed covari-

ate conditions. They therefore make the implicit assumption that the data are

collected in a cooperative manner so that the covariate conditions are known

a priori. This essentially deprives gait of its most useful characteristic as an

uncooperative and non-intrusive biometric.

In this paper, a novel approach is proposed which casts gait recognition as a

learning to rank problem - a completely different perspective from previous

approaches. More specifically, given a training and a test datasets consisting of

gait features of different people who may even be captured from a completely

different scene, we learn a bipartite ranking model. The model aims to learn

a ranking function in a higher dimensional space where true matches and

wrong matches become more separable than in the original space. The output

of the model is a ranking function which gives a higher score if a pair of

gait feature vectors belong to the same person than to different people. This

new formulation has three distinctive advantages over the previous ones: (1)
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This model is data-driven and can address all covariate conditions including

view, i.e. one model for all. (2) Critically, unlike most previous approaches,

it does not make any assumption about the gallery and probe sets having

the same covariate conditions, either within each set or across the two sets.

This makes it particularly suitable for uncooperative person identification,

where gait should be used. (3) It does not suffer from the class under-sampling

problem. Specifically, since it is based on bipartite ranking, there are only two

classes during training: true matches and wrong matches; this also means that

gait features from different people captured in different scenes/datasets can be

used for training. In essence, it performs cross-class and cross-dataset transfer

learning and is able to learn from an auxiliary dataset where plenty of data

are available. We assume those data contain the covariate conditions we are

modeling, but we do not assume that we know which particular gait sequence

contains which covariate (uncooperative setting).

Extensive experiments have been conducted on three benchmark large gait

datasets, covering both indoor and outdoor environments. They assess effects

of changes in a number of covariate conditions (view angle, surface, carrying

conditions and clothing changes) either alone or in combination under both

uncooperative and cooperative settings. Results probe that our approach sig-

nificantly outperforms other contemporary methods, especially under the most

demanding uncooperative gait recognition tasks, where an up to 14-fold in-

crease in recognition rate is observed. In addition, our framework is shown to

be effective regardless which gait representation is chosen.

2 Related Work

Gait Representations – Most existing gait recognition techniques extract

gait information from silhouettes obtained from video sequences. One of the

simplest yet effective representations is Gait Energy Image (GEI) [7] (see Fig.

1), which is obtained by averaging silhouettes across a gait cycle. However,

it has been shown to be sensitive to various covariate conditions [7,10]. To

overcome this problem, a number of variants of GEI have been proposed.

Yang et al. [3] propose to enhance the dynamic regions of GEI, which are lo-

cated by a variance analysis. Bashir et al. [1] present a method to distinguish
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the dynamic and static areas of GEI by using Shannon entropy at each GEI

pixel, resulting in a new gait representation called GEnI. Shing and Biswas [2]

improve the construction of GEI by using sway alignment instead of upper

body alignment, which favors the perception of dynamic information. The ba-

sic idea of these methods is to select GEI features from the most dynamic

areas of human body, i.e. legs and arms, which are less affected by changes

in carrying conditions, clothing, and surface. Various other silhouette-based

gait representations have been also developed, including Average Energy Im-

age (AEI) [11], Gait History Image (GHI) [12], and Frame Difference History

Image (FDHI) [13]. In addition, an optical flow based representation has been

also adopted [14] for a more descriptive representation of gait dynamics. Most

of the recently proposed gait representations are designed to be insensitive

against certain covariate condition changes. However, none of them is capable

of coping with all covariate conditions since there are so many of them and

each one has effects on different aspects of gait [14]. The framework proposed

in this paper can improve the recognition performance of any gait representa-

tion regardless whether they are designed to be invariant to different covariate

condition changes or not, as demonstrated by our experiments (Section 4.3.1).

Gait Feature Selection and Transformation – Given a gait representa-

tion, recognition can be performed by template matching, i.e. using the one-

nearest-neighbor (1NN) classifier based on a certain distance metric. However,

to alleviate the effects of various covariate conditions, existing approaches have

exploited feature selection and transformation. Feature selection methods such

as [1,2,3] select those features from a gait representation that are more invari-

ant to a given covariate condition. Nevertheless, selecting features in the highly

overlapped original feature space typically relies on human a priori knowledge

(e.g. the most reliable features are in the most dynamic parts of the human

body) which only leads to limited success. Others propose to transform the

features. On the one hand, some methods perform transformation to repre-

sent unknown gait conditions to recreate known covariate conditions. This is

usually the preferred method to deal with camera view angle changes [4,5].

Gait features from one view are mapped to another by a learned View Trans-

formation Model (VTM). Recognition is then performed after different views

are transformed to the same. A different method is proposed by Bashir et
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al. [15] which does not reconstruct gait features in different views, but mod-

els their correlation using Canonical Correlation Analysis (CCA) and uses

the correlation strength as similarity measure. The main limitation of these

transformation-based approaches is that the covariate condition(s) must be

first recognized to know how the features have to be transformed. Attempts

have been made to recognize clothing [16], load carrying [17] or camera view-

point [15,18]. However, recognizing these covariate conditions under uncon-

strained conditions is challenging and far from being solved. Furthermore, all

the previous feature selection and transformation methods were designed for

addressing specific types of covariate conditions and none of them can cope

with those combinations of conditions that typically occur in uncooperative

scenarios. Recently Iwashita et al. [6] propose a transformation-based method

designed to deal with any unknown covariate condition changes. It divides a

human body region in multiple areas from which affine moment invariants are

extracted as gait features and weighted according to its invariance to covari-

ate condition changes. To compute these weights it requires a gallery set with

image of the target subjects under their neutral appearance (e.g. wearing nor-

mal cloth and carrying no bag). This is essentially to assumpe a cooperative

setting. As demonstrated in our experiments (see Section 4), its performance

under uncooperative setting is much poored compared to ours.

Discriminative learning –Apart from feature selection/transformation and

covariate condition estimation, there exist other methods which are based on

discriminative learning and can be applied after feature selection/transformation.

They attempt to maximize the inter-class distance whilst minimizing the intra-

class variation. They range from Principal Component Analysis (PCA), combi-

nation of PCA with Linear Discriminant Analysis (LDA) [7], Marginal Fisher

Analysis (MFA) [8], to general tensor discriminant analysis (GTDA) [9,19,20].

However, in order to learn these discriminant models, one has to make two as-

sumptions: (1) sufficient training samples are available for each class/person;

and (2) the training set and the probe set must consist of the same set of peo-

ple, i.e. the training set needs to be the gallery set. However, these assumptions

are often invalid under a real-world setting. For example, there could be only

a single gait cycle captured for each person in the gallery set; in that case,

LDA, MFA, and GTDA cannot be used. On the other hand, there may be
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plenty of data from different people as an auxiliary training set but none of

the existing methods could benefit from them. Our ranking-based transfer

learning method does not make any of the two assumptions. Importantly, it

can leverage those auxiliary data to compensate for the lack of samples in the

gallery set.

Transfer Learning and Learning to Rank – Recently, cross-domain [21,22,23,24]

and cross-dataset [25] transfer learning have received an increasing interest in

computer vision. In these works, the auxiliary dataset and the target dataset

are assumed to have the same classes (such as news videos from different

countries or the same action classes captured in different scenes). The pro-

posed work differs fundamentally from these works in that the gait classes

in the auxiliary and target datasets are different (gait sequences belonging

to different people). In this sense, our work is related to existing works on

transferring knowledge between different but related classes (e.g. giraffes and

horses [26]). They attempt to transfer the knowledge about the shared aspects

between classes (e.g. both giraffes and horses have four legs). On the contrary,

in this work we wish to transfer the features that are invariant to covariate

condition changes across different classes/people. This is achieved by using

a bipartite ranking framework, not exploited by the works mentioned above.

Our method is inspired by the success of using learning to rank in document

retrieval [27] and computer vision [28]. There exist other ranking models such

as RankBoost [29] among others [30,31], but RankSVM is chosen because it

is more suitable for a large scale learning problem with a severely overlapped

feature space, as demonstrated in our experiments (see Section 4). To the

best of our knowledge, this is the first work on formulating a learning to rank

model for gait recognition. Note that transfer learning for gait recognition has

been attempted before by Liu and Sarkar [32]. However, they simply apply a

multi-class Linear Discriminant Analysis (LDA) model to transfer the learned

discriminant space from an auxiliary dataset to a target dataset, assuming

that it can be transferred across different classes. This is a very strong as-

sumption which can be invalid in practice, since the number and nature of

classes (people) might be completely different between the auxiliary training

set and the test set. We demonstrate that our ranking based transfer learning

approach outperforms their approach significantly (see Section 4.2.5).
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Contributions – The main contributions of this work are three-fold: (1) To

the best of our knowledge, gait recognition is for the first time formulated

as a bipartite ranking problem in order to leverage data outside the target

gallery set; (2) we introduce a novel solution to uncooperative gait recognition

able to deal with any changes from covariate conditions or combinations of

them without explicitly estimating them or manually designing appropiate

gait features; and (3) we provide extensive evaluation of the proposed model

against contemporary methods for a variety of public datasets under both

uncooperative and cooperative settings.

An earlier and preliminary version of this work was published in [33]. Com-

pared with [33], this paper provides a more systematic analysis of the ranking

models, with a discussion on alternative ranking or distanc-learning based ap-

proaches. Much more thorough evaluations are also carried out. These include

(1) additional experiments on a new dataset, (2) comparisons against a new

baseline [6], (3) validation of our approach using different gait representations,

(4) more insights into how our model works.

3 Methodology

3.1 Problem Formulation

Given a gallery set of gait sequences of different people with known identities,

the problem of gait recognition can be considered as a retrieval problem. That

is, given a probe gait sequence q of a walking subject s (which might be

affected by some unknown covariate conditions), we wish to find the most

relevant samples to q in the gallery set regardless the type of covariate factors

that might affect them. The retrieved gallery gait sequences can be ranked

according to a similarity/distance score. We propose to formulate this problem

as a learning to rank problem by learning a ranking function able to push the

correctly matched gait sequence (i.e. belonging to the same subject s) high on

the ranking list, and ideally at the top leading to correct recognition.

As in any learning to rank setting, the training data set T consists of lists of
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items with some internal order specified. This order is typically induced by a

relevance judgment for each pair of items (q, d), in such a way that the higher

the relevance score, the more relevant d is to q and it should be ranked at the

top of the corresponding list by the learned model. For instance, in document

retrieval, each document has a list of related documents that are relevant to it

with different degrees of relevance. In our case, we employ a bipartite ranking

model that uses a binary relevance judgment y(q, d), where y(q, d) = 1 is given

to two samples belonging to a same subject (true match), and y(q, d) = 0

is assigned otherwise (wrong match). Our learning to rank problem is thus a

simpler case in that there are only two ranks unlike the aforementioned case of

document retrieval. It is possible to introduce more ranks but this would mean

comparing the degree of similarity between different people which inevitably

would introduce subjectiveness and subsequently it would be subject to bias.

For instance, given Person A as the query q, in order to determine the ranks

among the gallery people consisting of Person A, B and C, one has to assess

whether Person B’s gait is less similar to that of Person A, compared to that of

Person C, in order to decide whether B should be given a rank 3 and C rank

2 or the opposite. In a bipartite ranking formulation, the problem is much

simpler: both B and C are given a rank 2.

Now the original multi-class identification problem is reformulated into a ver-

ification problem (genuine or impostor). The new verification task allows to

learn information about how to match people’s gait against various (unknown)

covariate conditions, which can then be used to solve the original gait recog-

nition problem. The reformulation into a two-class problem (true and wrong

matches) means that each sample in T is used as query q against all the re-

maining training samples, which are assigned to one of the following two sets

depending on its relevance indicator with respect to q:

• D(q)+ =
{
d+1 , d

+
2 , · · ·, d|D(q)+|

}
, with y(q, d+i ) = 1 for all d+i ∈ D(q)+, and

|D(q)+| representing the number of relevant sequences (true matches) for

the query sequence q.

• D(q)− =
{
d−1 , d

−
2 , · · ·, d|D(q)−|

}
, with y(q, d−i ) = 0 for all d−i ∈ D(q)−,

|D(q)−| representing the number of irrelevant sequences (wrong matches)

for the query sequence q.

After using every single sequence as query in turn, each pair (q, d+j ) or (q, d−j ) is
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represented by the entry-wise absolute difference between their feature vectors

zq and zd, i.e. x(q,d) = |zq − zd| and it has a binary relevance judgment y(q, d)

as explained before. We thus obtain a set of preference pairs P = {(D̂+, D̂−)},
where D̂+ = x(qi,d

+
j ) and D̂− = x(qi,d

−
j ) going through all queries qi as well

as their corresponding D(qi)
+ and D(qi)

−. It produces a really higher number

of new samples coming from the comparison of each possible pair of training

samples, with a number of resulting true matches D̂+ much smaller than the

number of wrong matches D̂−, since just a few samples per class (person) are

available in T and all the samples of other classes lead to wrong matches. In

this way, the original data sparsity problem is overcome and plenty of data are

provided for the learning phase even when T has a small number of people.

During the training phase, the aim is to learn a ranking score function (ranking

model) for each pair of query sample q and other training sample d in P as

follows:

δ(q, d) = wTx(q, d) (1)

where x(q, d) denotes the entry-wise absolute difference between the feature

vectors zq and zd. Note that q and d refer to samples in P , so it represents the

subtraction vector of a pair in P . The optimal w achieving the best agreement

between the ranking induced by the ranking score δ and that induced by the

relevance indicators y of the samples is sought, which assures that the score

for any true match is higher than that for any related wrong match. From a

different perspective, w can be considered as a weight vector that indicates

the importance of each feature dimension towards the ranking score returned

by δ. In other words, our ranking model performs implicit feature selection to

identify features that are robust against those covariate conditions present in

the training set.

In the test stage, we have a test set consisting of a probe/query set and a

gallery set. The test set has no overlap with the auxiliary training set T , i.e.

gallery and probe sets include samples from people different to those appearing

in T . Given a query q in the probe set, the learned ranking score function δ

is used to compute a score to each item d in the gallery set according to its

relevance to q, taking the entry-wise absolute difference between their two

feature vectors as input. Then the gallery items are sorted in descending order

according to their scores to obtain a ranked list. If the sample at the top of the
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ranking belongs to the same person as the probe one, it is considered a hit,

otherwise, a mistake. In essence, we are performing template matching using

the ranking score as a similarity measure.

An overview of the whole proposed framework is depicted in Fig. 2 as a sum-

mary of the previous explanation.

Each sample acts as query (q) 

TRAINING

Probe

Auxiliary

Each sample acts as query (q) 

against the others (d).

Get new pair-based samples

Probe

Auxiliary

non-target 

training set

Get new pair-based samples

Learn a ranking score function

0
w: importance of each feature 

towards the ranking score δ

0

Optimal w giving the best agreement 

0

Optimal w giving the best agreement 

between the ranking induced by δ

and that defined by уand that defined by у

TEST

Probe sample Compare q with all theProbe sample

(q)

Compare q with all the

gallery samples (d).

Get new pair-based samples

Gallery

Get new pair-based samples

Compute ranking score using w
0

Sort in the descending orderSort in the descending order

all the gallery samples

according to their scoresaccording to their scores

Results

0

Results

Correct Classification Rate (rank 1) 

CMS curve (x ranks)CMS curve (x ranks)

Fig. 2. Overview of our bipartite ranking based approach to gait recognition.

It is worth pointing out that: (1) After reformulating the gait recognition prob-

lem into a learning to rank problem, the learned knowledge is independent of

the identity of people and only depends on the combinations of covariate fac-

tors existing in the auxiliary training set. (2) Only a single model is needed to

cope with any covariate condition and combinations of them from those rep-

resented in the auxiliary training set. During testing, no assumption is made

about the covariate conditions in gallery and probe sets. Both can contain

variable unknown covariate factors. The only assumption is that those covari-

ate conditions have appeared in the auxiliary training set and thus the learned

model is robust against them. (2) Since the auxiliary training set contains dif-

ferent people/classes from the test set, cross-class and cross-dataset transfer

learning can be easily performed.

3.2 Ranking Support Vector Machines

Although any ranking model [31,29,30] could be used with this framework, the

primal-based Ranking Support Vector Machine (PrRankSVM) proposed by

Chapelle and Keerthi [34] is chosen because it is able to deal with a large scale
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and imbalanced learning problem with a severely overlapped feature space,

exactly the problems that we are trying to address. In particular, PrRankSVM

learns a ranking model w in a higher dimensional space where true matches

and wrong matches become more separable than in the original feature space.

Specifically, it aims to solve the following optimization problem:

w = argminw
1

2
‖w‖2 + C

|P |∑
t=1

`
(
wT

(
D̂+ − D̂−

))
(2)

where t is the index of the preference pairs, |P | is the total number of prefer-

ence pairs used for training, C is a positive importance weight on the ranking

performance and ` is the hinge loss function such as `(t) = max(0, 1− t)2. The

algorithm is computationally efficient, because it uses a Newton optimization

to solve the non-constraint model of Eq. (2). This optimization allows to re-

move the explicit computation of the (D̂+−D̂−) pairs by using a sparse matrix.

In this work, the C parameter is automatically selected by cross validation on

the training set.

Notice that there are other algorithms for learning a RankSVM. In particu-

lar, Tsochantaridis et al. [35] introduced a structured output learning frame-

work which achieves a similar level of computational efficiency as the primal

RankSVM used in this work.

3.3 Discussion on Alternative Models

Relation to Other Ranking Models – There are many alternative ranking

models; among them, the most noticeable one is perhaps RankBoost [29]. As

indicated by Eq. (1), our RankSVM model essentially learns a weighted L1

distance between two feature vectors representing a probe and a gallery gait

sequences respectively. It can thus be seen as a feature selection method by

assigning a continuously valued weight (element of w) to each feature dimen-

sion. All weights are learned simultaneously in our framework. RankBoost

can also be considered as a feature selection method, by which a feature is

removed (i.e. assigned a weight of zero) if the weak classifier learned based

on that feature alone can only achieve a classification accuracy (between true

and wrong matches) below a threshold (typically 50%). There is therefore a
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vital difference between these two ranking methods: in RankBoost, each fea-

ture is quantified independently and sequentially, i.e. selected locally, whilst

RankSVM quantifies the weights jointly and globally. The advantage of joint

and global feature weight learning is demonstrated in our experiments reported

later (Section 4.2.5).

Relation to Relative Distance Learning – As mentioned above, our

RankSVM model learns a weighted L1 distance. There is a vast literature on

distance/metric learning (see [36] for a review). Among the existing methods,

those focusing on relative distance learning [37,38,39,40] are relevant to our

problem, particularly the Probabilistic Relative Distance Comparison (PRDC)

model proposed in [40]. Given two gait sequences q and d, represented by their

entry-wise absolute difference vector x(q,d), a distance function is learned as:

f(q, d) = x(q,d)TMx(q,d) (3)

where the model parameter M is a semi-definite matrix. The task of distance

learning thus becomes estimating the optimal M such that the best agreement

can be achieved between the ranking induced by the distance function and that

induced by the relevance indicators of the training data, i.e. making sure that

the distance between a true match pair is smaller than that of a relevant wrong

match pair 1 . Comparing Eq. (3) with Eq. (1), a ranking model and a distance

learning model appear to have a similar goal – to maintain the correct ranking

order of the training data pairs as much as possible. The main difference is that

a relative distance comparison model such as PRDC is a second-order feature

quantification model able to take into account the joined effect between differ-

ent features, whilst a RankSVM model is a first order one. This is reflected by

the fact that the distance function f has a matrix M as parameters whilst the

ranking score function δ has a vector w as parameters. Therefore, the latter

has far fewer parameters (l2 vs. l with l being the feature dimensionality). A

second-order feature quantification model captures the correlations between

different feature dimensions explicitly, being thus theoretically superior to a

first-order one such as RankSVM. However, in practice, learning M with a

1 ’relevant’ in this context means that the person in the wrong match pair is the
same person in the true match pair.
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Fig. 3. Examples of GEIs with different covariate conditions.

high-dimensional input (typical in vision problems) is intractable and itera-

tive optimization algorithms with various approximations have to be deployed

[40], which makes the model vulnerable to local maximal and sensitive to fea-

ture noise. Our experiments in Section 4.2.5 show that a simpler model such

as RankSVM is more preferable in practice for gait recognition.

4 Experiments

4.1 Experimental Settings

Datasets – Extensive experiments have been conducted on three of the largest

benchmark gait datasets: CASIA [41], USF HumanID [42], and OU-ISIR [43]

which cover both indoor (CASIA, OU-ISIR) and outdoor environments (USF).

As Table 1 details and Fig. 3 illustrates, changes on different covariate condi-

tions (camera viewpoint, load carrying, clothing, surface, footwear and time)

either alone or in combination are the main obstacles to overcome.

Gait features – Unless otherwise stated, Gait Energy Image (GEI) [7] has
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been used. Each GEI is normalized to a fixed size of 64× 44 pixels using the

silhouettes provided by each dataset. Example GEIs are shown in Fig. 3, which

clearly show the more challenging nature of the outdoor environment in USF

indicated by much noisier silhouettes. In Section 4.3.1, Active Energy Image

(AEI) [11] has been used as an alternative gait representation to evaluate our

model given different gait representations. Figure 11 shows examples of both

gait signatures.

Settings – Firstly, the whole set of subjects considered in a particular ex-

periment was randomly and equally split into two subsets, one for training

(auxiliary set) and the other for testing (target set), in such a way that all

samples of a same subject were assigned to the same subset. Secondly, the test

set was further divided into a gallery set and a probe set. For an uncooperative

setting, this partition was done in such a way that (1) each subject had at least

a different covariate condition across the two subsets, and (2) both the gallery

and probe sets had a mix of different covariate conditions. It is a challenging

setting because for each probe sequence q of a subject s with a covariate type

k, the gallery only contains sequences of the same subject s with a different co-

variate condition type, and a number of other subjects with the same covariate

type k. On the contrary, when the test set is configured as a cooperative set-

ting, all the gallery data share fixed covariate condition(s), while the probe set

contains samples of different but also fixed covariate condition(s). All exper-

iments have been repeated five times with different training/testing splits to

mitigate the effects of subset singularities. We have made public details of our

partitions for all the experiments in http://www3.uji.es/~martinr/PR2013.

Competitors – Three baseline gait recognition methods have been compared

in all experiments. Note that all of them learn from the gallery set unlike our

approach that uses a non-target auxiliary training set. They are:

• 1NN. The k-Nearest Neighbor (1NN) classifier with k = 1 is used in the

original high dimensional feature space.

• 1NN PCA. The well-known Principal Component Analysis (PCA) technique

is used to only keep those principal components accounting for a 99% of the

variance.
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• 1NN PCA+LDA. As in [7,1], PCA is applied along with the Linear Dis-

criminant Analysis (LDA) technique to obtain both the best data represen-

tation and the best class separability respectively. After LDA, the number

of features become n = c − 1, with c being the number of classes (people

identities).

• Moments. The method proposed in [6] is designed to cope with unknown co-

variate changes. It extracts affine moment invariants from GEI areas which

are weighted according to its invariance to covariate condition changes to

give a final similarity measure. We use the parameters suggested in their

paper, i.e. we divide the human body in K = 17 horizontal areas, and we

extract M = 45 affine moment invariants from each area. Note that it is

not a transfer learning approach; thus no auxiliary dataset is required.

Other published methods have been also compared in individual experiments

whenever possible although a direct comparison with the published results is

always difficult. This is because as far as we know, only the work of Bashir et

al. [1] follows an uncooperative setting. Most previous works were evaluated

under a cooperative setting where all sequences in the gallery had the same

covariate conditions, which were a priori fixed so were those in the probe.

However, we have also conducted some cooperative-based experiments (Sec-

tion 4.3.2) to directly compare our method with them. In addition, a number

of transfer learning methods are introduced and compared in Section 4.2.5.

Performance Measures – Gait recognition performance is evaluated using

Cumulative Match Score (CMS) curves [44]. A CMS curve shows the percent-

age of probe sequences the identity of which has been correctly recognized

in the gallery among the top x matches. The averaged results from different

trials are depicted.

4.2 Experiments under Uncooperative Setting

4.2.1 Results on USF Dataset

We first report results on the most challenging dataset of the three, the USF

dataset. The USF HumanID Gait Dataset (USF) [42] is composed of videos
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Table 1
Description of experiments carried out on CASIA, USF and OU-ISIR gait datasets
under uncooperative settings. Covariate conditions: B-Carrying a briefcase or a bag,
C-Clothing changes, S-Surface, V-View, T-Time.

Experiment Covariate conditions Subsets #People #Sequences

USF Exp1 B {C A L NB M +N1, C A L BF M +N1} 121 242

USF Exp2 B S {C A L NB M +N1, G A L BF M +N1} 117 234

USF Exp3 B S V {C A L NB M +N1, G A R BF M +N1} 117 234

USF Exp4 B S V T {C A L NB M +N1, G A R BF N2} 34 68

CASIA Exp1 B {NM90◦ , BG90◦} 124 496

CASIA Exp2 C {NM90◦ , CL90◦} 124 496

CASIA Exp3 B C {NM90◦ , BG90◦ , CL90◦} 124 744

CASIA Exp4 V {NM90◦ , NMθ◦} 124 1488

θ◦ = 18◦ ·X with 0 ≤ X ≤ 5 ∈ Z+

OU-ISIR Exp1 C {5, 6, 9, A, B, C, J, K, L, M, P, R} 55 660

of 122 subjects captured in an outdoor uncontrolled environment, which com-

prises up to five covariate conditions: (1) surface: subjects walk in two different

surfaces, concrete (C) and grass (G); (2) footwear : two different shoe types

(A) and (B); (3) view angle: subjects were captured by two cameras located

in the left (L) and right (R) sides of the walking path yielding two view an-

gles both close to side view, i.e. view change between L and R is small; (4)

carrying condition: carrying a briefcase (BF) or not (NB); and 5) time: some

subjects were only recorded in November (N2), while others in both November

(N1) and May (M) which implies clothing changes among others. A total of 32

possible subsets can be obtained based on the different combinations of these

covariate conditions in the gallery and probe sets.

We only report results on four representative configurations due to space lim-

itation, resulting in four experiments as shown in Table 1. Starting from

the easiest one (USF Exp1), which copes with only one covariate condition

(load carrying), the experiments get more challenging, and the hardest one

(USF Exp4) deals with four covariate condition changes between the gallery

and probe at the same time (load carrying, surface, view angle, and time).

The results are shown in Fig. 4. It can be observed that: (1) The existing

template matching (1NN) and learning based (1NN PCA+LDA) approaches

yield very weak performances under an uncooperative setting. In addition, as

expected, their performances become worse as the experiment gets harder.
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Fig. 4. CMS curves for the four experiments in USF under an uncooperative setting.

For instance, the best rank 1 matching rate (the correct classification rate)

among the three drops from 15.8% in USF Exp1 to 3.8% in USF Exp4. (2)

The learning based method (1NN PCA+LDA) does not fare better. In fact,

its performance is even worse than the non-learning based methods in all

but one experiments (USF Exp4). This is because it suffers from the over-

fitting problem due to the lack of training data when it learns from the gallery

set. In addition, in these experiments, the intra-class variation for LDA is

larger than the inter-class variation due to changes of covariate conditions.

Under these conditions, LDA does not work as proven in [45]. (3) The affine

moment-based method (Moments) shows a really weak performance in all the

experiments, sometimes even worse than that of 1NN. This is caused by two

reasons. First, the moment-based gait representation is sensitive to silhouette

noise, which is a much severe problem for USF than the other two indoor

datasets primarily due to unstable lighting condition. Second, this method is

designed for cooperative setting, requiring that each target person must have

an image of neutral appearance in the gallery set. This condition is obviously

not met under our uncooperative setting. (4) Our approach (PrRankSVM)

significantly outperforms the compared ones (up to 14-fold in USF Exp4);

and even though the rank 1 result of our approach for USF Exp4 is poor, the

rank 10 result is almost 50%, which makes it of practical use for assisting a
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Fig. 5. CMS curves for the first three experiments with CASIA.

human operator in matching people (i.e. the operator does the final matching

from a list of candidates selected by the model).

4.2.2 Results on CASIA Dataset

Perhaps the most widely used gait dataset, the CASIA Gait Database - Dataset

B [41] contains 124 subjects captured under three different covariate condition

changes: load carrying, clothing, and view angle. Note that the view changes

are much bigger in CASIA than in USF - each subject was captured from

11 different view angles from frontal view (0◦) to back view (180◦) including

side-view (90◦). For each view, each subject has 10 gait sequences: six normal

(NM) where the person does not carry a bag or wears a coat, two carrying-bag

(BG) and two wearing-coat (CL). All the videos were recorded indoors with

a uniform background and controlled lighting.

Carrying and clothing condition changes – Three experiments were first

conducted to evaluate the different approaches under carrying and clothing

condition changes. As shown in Table 1, CASIA Exp1 focuses on carrying

conditions alone, CASIA Exp2 on clothing changes alone, and CASIA Exp3

explores both covariate conditions together. For all the three experiments, only

side view (90◦) gait sequences were used; the effect of view will be investigated

in a separate experiment later in this section. From the 10 side-view sequences

available for each subject in CASIA, two normal sequences (NM) out of six

were randomly selected along with the two in which the subject wears a coat

(CL), and the other two carrying a bag (BG). It gave a total of six sequences

per person, and 744 in total for CASIA Exp3. A lower number of sequences

were thereby chosen when only one covariate condition change is considered

in both CASIA Exp1 and CASIA Exp2 (see Table 1).
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From Fig. 5, similar observations can be made as those in the USF experi-

ments, although in general higher recognition rates were obtained for all meth-

ods because of the cleaner silhouettes as compared to the USF ones (see Fig. 3).

Specifically, the results show that: (1) Consistent to the results reported in

other works [1,10], clothing changes seem to affect gait more than carrying

condition changes, either alone (CASIA Exp2) or combined with other con-

dition (CASIA Exp3), for the three compared baseline approaches. However

it is not the case for our ranking approach, with which very similar results

were obtained for all three experiments. This is the strength of a data-driven

learning based approach – it quantifies the features and learn the optimal rank-

ing/distance function given any combination of covariate condition changes.

(2) Similarly to the results in USF experiments, 1NN PCA+LDA suffers from

over-fitting and its performance is the poorest among all compared methods.

(3) Comparing with the results in Fig. 4, The affine moment-based method

(Moments) has a much improved performance, significantly outperforming the

1NN based baselines. However, our method (PrRankSVM) still has a clear

margin over Moments. This result suggests that being able to obtain clean sil-

houettes is critical for Moments. Nevertheless, the intrinsic cooperative setting

assumption still leads to its inferior performance.

As mentioned before, due to the uncooperative setting we use, our results are

not directly comparable with most results published in the literature, which

were obtained under a cooperative setting. The only exception is [1], which

used a similar setting to our CASIA Exp3 with a gallery set also containing a

mix of NM, BG and CL sequences. Their rank 1 result of 53% is comparable

with our 58.9% in CASIA Exp3. However, there is still a number of vital

differences: (1) We used half of the 124 subjects for training whilst they used

all for gallery and probe. Importantly their model was learned using the gallery

set, thus using the same people as in the probe set; (2) they considered all the

NM sequences instead of only two per person in the gallery set to make sure

there were enough data in the gallery set to learn their model; and (3) they

need to re-learn the LDA model for each pair of gallery and probe sequences,

whilst our approach only learns the ranking model once and is able to very

efficiently compute the matching score during testing by using Eq. (1). Overall,

our method is more generally applicable (i.e. it can deal with any covariate

condition changes including view angle, and can work even with just a single
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Fig. 6. A subject from CASIA seen from different view angles.

Fig. 7. CMS curves for the cross view experiment (CASIA Exp4) in CASIA.

sequence per subject in the gallery set) and efficient for real-time applications

(see Section 4.2.5 for computation time).

View changes – The experiment CASIA Exp4 is designed to evaluate our

ranking approach under large view angle changes. It aims to match sequences

of people seen in their side view (90◦), which is considered the best angle for

gait to be effective, with respect to sequences in some of the other view angles

available in CASIA: θ = {0◦, 18◦, 36◦, 54◦, 72◦}. View angles greater than 90◦

are not reported because they tend to achieve performances similar to those of

their corresponding symmetrical angles [4,1], i.e., 108◦ is similar to 72◦, 126◦

to 54◦, and so on. For each possible pair (90◦, θi), an uncooperative setting was

adopted as follows. Only the six NM sequences of each subject were considered,

and all of them were assigned to either the training or test set. Thus, in the

training set, each selected person was represented by six NM sequences from

90◦ and other six from the other view angle θi. The test sequences were split

into gallery and test following the procedure explained in Section 4.1. Detailed

information of this experiment can be found in Table 1.

Figure 7 shows a comparison of the results of two baseline methods (1NN and

1NN PCA+LDA) and our approach. Each plot depicts the CMS curves for all

possible pairs (90◦, θi). It is clear that, under an uncooperative setting, both

non-learning based methods fail miserably when the view angle difference is

beyond 18◦. This is unsurprising because, as can be seen in Fig. 6, the GEIs
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Table 2
Description of clothing combinations used for OU-ISIR Exp1. Legend: RP-Regular
pants, BP-Baggy pants, SP-Short pants, RC-Rain coat, LC-Long coat, FS-Full shirt,
Pk-Parker, DJ-Down jacket, Mf-Muffler.

Clothing combinations 5 6 9 A B C J K L M P R

Upper-body RP RP RP RP RP RP BP BP BP BP SP RC

Lower-body LC LC FS Pk DJ DJ LC FS Pk DJ Pk RC

Complements - Mf - - - Mf - - - - - -
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Fig. 8. CMS curves for OU-ISIR Exp1

of a same subject under large view angle changes look completely different. In

addition, given a probe GEI qt of a subject s in a specific view angle θi, the

gallery contains samples of s but from a view angle different from θi, while it

also comprises plenty of other samples from other subjects in the same view

angle θi. Under this setting, the recognition rate could be worse than random

guess because it is almost certain that the probe sample qt will be matched

with a wrong subject with the same view angle θi. In comparison, our approach

gives much better results especially when the view angle difference becomes

larger owing to its ability to transfer useful information about the invariant

features under those view change from the auxiliary dataset.

4.2.3 Results on OU-ISIR Dataset

The OU-ISIR Gait Database [43] - Dataset B includes videos of 68 subjects

walking on a treadmill and captured from their side view in an indoor en-

vironment. Figure 3 shows that clean silhouettes can be obtained, similar

to those in CASIA. This dataset is ideal for studying the effects of clothing

changes on gait recognition; in particular, subjects were recorded under up to
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32 possible clothing combinations with variations in pants, shirts, skirts, hats,

among others. Note that not all combinations were recorded for all subjects.

In our experiment (OU-ISIR Exp1 in Table 1), only the clothing combinations

with most of the subjects represented were selected. As a result, 55 subjects

were chosen under the 12 clothing combinations summarized in Table 1. More

details about the clothing conditions are given in Table 2. We randomly se-

lected 24 subjects for the auxiliary training set. The remaining 31 subjects

were used for gallery/probe in the target set. The results in Fig. 8 show that

under drastic clothing changes, such as those shown in Fig. 3, our method

is able to correctly identify almost 70% of the subjects, with this recognition

rate increasing to more than 90% at rank 5. This results show the generali-

sation capability of our method – it learns a single model to deal with up to

12 clothing combinations in the probe images. Again, our method beats the

other compared methods by a large margin. In particular, it is noticed that

even with clean silhouettes, the performance of Moments is only at par with

the 1NN PCA+LDA method, as opposed the results on CASIA in Fig. 5. This

result suggests that the cooperative setting assumption is more problematic

given a larger variety of covariate condition changes.

4.2.4 Analysis on What Has Been Learned

The RankSVM model essentially learns a weighted L1 distance/similarity

function as the ranking function, with the weight w as its model parame-

ter. Since each feature correspond to one pixel on a GEI, we can visualize the

learned w as an image which tells us which part of the GEI is more invariant

than others under the covariate condition changes in an auxiliary dataset. Fig-

ure 9 shows what has been learned by the model in four experiments. It can be

seen from Fig. 9a that in the easiest experiment on CASIA (clean indoor back-

ground, one covariate condition change only), the high weight values distribute

evenly across the GEI with the exception of the center of the body where no

useful information exist either for gait itself or the body shape appearance.

The areas that are likely to be affected by carrying (see Fig. 1a) are also

largely given low weights. When both carrying and clothing condition changes

are introduced in CASIA Exp3, Fig. 9b shows that the important features

are now focused on a more narrow band, particularly surrounding the leg and

head area, where the effects of clothing and carrying conditions are minimal.
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Fig. 9. Visualization of the learned feature weight by RankSVM. a) CASIA Exp1,
b) CASIA Exp3, c) USF Exp4, and d) CASIA Exp4, θ = 36◦. The absolute weight
values are shown with higher values indicating high importance/more robust against
covariate changes.

As more covariate conditions (particularly surface and small view changes) are

added in USF Exp4, the high weight regions become even smaller and concen-

trated more on the outer boundary of human body (Fig. 9c). Therefore from

Fig. 9a to c, one can see clearly how less and less features are favored which

correspond to areas that are least affected by a combination of covariate con-

ditions. However, the large view change experiment CASIA Exp4 shows very

different characteristics in the selected features (Fig. 9d). Comparing a GEI

of θ = 36◦ with that of θ = 90◦ in Fig. 6, one can see that a large propor-

tion of the leg areas will not be useful to match subjects directly. Instead,

the model discovered that the head movements are more robust against view

change as reflected by the high weight values in the head area. Overall, the

results in Fig. 9 show that an intuitive and meaningful feature weighting has

been learned by the RankSVM model.

4.2.5 Comparison with Alternative Transfer Learning Methods

As discussed in Section 3.3, other transfer learning methods can be used in-

stead of RankSVM. These include alternative ranking methods, distance learn-

ing methods and other learning methods that can be trained on an auxiliary

dataset. In this experiment, the following approaches are compared:

• 1NN PCA+LDA Transfer Learning (1NN PCA+LDA TL) is the method in-

troduced in [32]. In this method, PCA and LDA transformations are learned

from the auxiliary set and then applied to the gallery and probe samples

before matching with 1NN.

• non-rankSVM Transfer Learning (non-rankSVM TL) is essentially a binary

linear SVM where the two relevance judgment values (true match and wrong
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match) are used as the class labels. Compared to the RankSVM, both mod-

els use the entry-wise absolute difference features as input and differ only

in the formulation of their cost functions.

• RankBoost [29] is a boosting-based learning to rank algorithm that selects a

subset of optimal features sequentially and independently from the original

feature space.

• Probabilistic Relative Distance Comparison (PRDC) [40] is a relative dis-

tance learning method which was originally formulated for solving the per-

son re-identification problem.

Among the four transfer learning methods, both RankBoost and PRDC are

similar to our RankSVM model in that all three can be considered as both

ranking and relative distance learning methods (see discussions in Section 3.3).

The differences lie on how the features are selected (globally in RankSVM and

PRDC vs. locally in RankBoost) and how the feature correlations are modeled

(explicitly in PRDC, implicitly in RankSVM, and none in RankBoost). The

other two compared methods, 1NN PCA+LDA TL and non-rankSVM TL are

both non-ranking based. However they differ significantly from each other

– non-rankSVM TL still aims to learn a distance/score function that best

separates two classes, the true matches and the wrong matches, whereas

1NN PCA+LDA TL learns an optimal subspace where the multiple classes/people

in the auxiliary set are most separable. In addition, non-rankSVM TL uses ab-

solute differences between feature pairs as input, while 1NN PCA+LDA TL

uses the original gait feature vectors as input. Therefore non-rankSVM TL is

much more similar to our RankSVM with the same input and output. The only

difference to RankSVM is that non-RankSVM TL employs a harder constraint

on maximizing the distance between the true and wrong match class samples

whilst RankSVM imposes a ‘soft’ constraint on maintaining the ranking order

– satisfying the former means automatically satisfying the latter, but not vice

versa.

A comparison of results from CASIA Exp3 and USF Exp4 is shown in Fig. 10

where the results of two non-transfer learning methods (1NN and 1NN PCA+LDA)

are also included. The key findings are:

• All the transfer learning approaches significantly outperform the compared

baseline approaches, which proves the benefits of this strategy.
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Fig. 10. Comparing different transfer learning approaches.

• 1NN PCA+LDA TL achieves an inferior performance to that of RankSVM

and PRDC. The main reason is that despite the learned discriminant sub-

space contains transferable information for achieving robustness against co-

variate condition changes (as stated in [32]), it also contains information

about how the gait of people in the auxiliary training set differs from each

other, and the latter information is non-transferable because the target test

set contains a completely different set of people.

• Converting the multiple class classification problem into a verification prob-

lem has some benefits as demonstrated by the performance of non-rankSVM TL.

However, its stronger constraint seems to have a negative effect leading to

clearly lower recognition rates than those of RankSVM and PRDC, partic-

ularly at low ranks.

• Among the compared transfer learning methods, RankBoost achieves the

lowest performance that demonstrates the importance of selecting features

globally. In particular, since the feature dimensionality is fairly high in our

case (2816 features), a weak ranker learned using a single feature as in

RankBoost would be too weak to be reliable.

• On the contrary, PRDC achieves the closest performance to RankSVM due

to the similar nature of the two models. The noticeable improvement of

RankSVM over PRDC can be attributed to the simpler formulation of the

cost function and the more numerically reliable solver available of the opti-

mization problem. The results suggest that this can more than compensate

for the lack of explicit modeling of the correlation between features.

Table 3 shows the training and testing time for different methods on CA-

SIA Exp3. It can be seen that in terms of testing time, RankSVM is identical

to non-rankSVM because both are doing weighted L1 distance during test-

ing. The testing time is fairly similar to 1NN which does a (unweighted) L2

distance. 1NN PCA+LDA and 1NN PCA+LDA TL have very similar test-
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Table 3
Comparison of training and testing time for the different methods on CASIA Exp3.

Methods Training time Test time (per image)

1NN 0 s 5.41 ms

1NN PCA+LDA 0.22 s 0.53 ms

1NN PCA+LDA TL 1.34 s 0.49 ms

non-rankSVM TL 123.71 s 7.05 ms

RankBoost 2735.20 s 7.50 ms

PRDC 1395.78 s 6.97 ms

PrRankSVM 1070.33 s 7.05 ms

ing time and are faster than 1NN. All three compute L2 distance, but the

two learning based methods operate in a much reduced PCA+LDA space. In

terms of training time, the ranking/distance learning based transfer learning

models are more expensive than the others, with the RankBoost being the

most costly one.

4.3 Further Evaluations

4.3.1 Effects of Different Gait Representations

Fig. 11. Examples of different gait representations (GEI and AEI) for different
experiments and datasets.

In this experiment, a different gait representation, Active Energy Image (AEI)

was used in CASIA Exp3 and USF Exp4. AEI was proposed in [11] for en-

hancing the dynamic characteristics of gait rather than the body shape. It was
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Fig. 12. Results on using AEI as gait representation.

designed to be more robust to carrying condition and clothing changes than

GEI, since dynamic characteristics of gait are less affected by those changes.

The results in Fig. 12 show that similar observations on the effectiveness

of ranking-based transfer learning can be made when a different gait rep-

resentation is used. Comparing Fig. 12 with Fig. 10, it can be seen that the

non-learning based methods (1NN and 1NN PCA+LDA) benefit greatly in

CASIA Exp3 but not in USF Exp4, whilst the transfer learning methods are

less affected by the change of gait representation. This is because CASIA Exp3

contains clothing and carrying condition changes – what AEI was designed for,

whilst USF Exp4 contains surface and viewpoint changes, which AEI cannot

cope with. These results demonstrate the weakness of the existing approaches

which address the gait covariate change problem by hand crafting representa-

tions, that is, one can never design a representation that works well for any

covariate condition changes. In contrast, when using a ranking/distance learn-

ing based transfer learning method, one does not need to worry about whether

the representation is suitable for the (unknown) covariate conditions one may

encounter – just leave the model to do the job.

4.3.2 Experiments under Cooperative Setting

As in the uncooperative experiments we used 50% of people with all their

sequences for training, and all the remaining ones for test in the experiments

under cooperative setting. The difference is that now the type of sequences

(covariate conditions) in gallery and probe are different and a priori known.

Figs. 13a and b show the results for the USF Exp1 following a cooperative

setting. This experiment involves two kinds of sequences (see Table 1): those

in which people carry a briefcase (C A L BF M +N1) and those in which they
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Fig. 13. CMS curves for cooperative experiments: a and b in USF dealing with
briefcase covariate, and c in CASIA coping with clothing changes.

do not (C A L NB M + N1). Thus, two different cooperative settings can be

considered where both the gallery and probe sets must be composed of only

a single type of sequences. The results in Figs. 13a and b show that our rank

1 recognition rates almost double those of the non-ranking methods in both

cases. Note that the affine moments-based method does not work even under

a cooperative setting here when the silhouettes are noisy.

The results of CASIA Exp2 using a cooperative setting are depicted in Fig. 13c.

Again, our approach gets about 3-fold improvement over the 1NN-based ap-

proaches. Note that Moments gets competitive results in this experiment, but

still around 10% lower than our result 2 . Under a similar setting, a rank 1

result of 32.7% and 44% are reported by [1,10] respectively, although their

experimental setting is still slightly different from ours with larger gallery and

probe sets (our learning based method needs to use part of the data for train-

ing whilst they do not). Nevertheless, compared with our rank 1 result of 70%,

this does give an indication that our model is superior even under cooperative

settings.

For cross view recognition, we also reproduced some of the experiments con-

ducted in [4]. In particular, we focused on various combinations of view angles

with 90◦ in the gallery set. Following their experimental settings, only the

six NM sequences of each subject were considered and 24 out of 124 subjects

were randomly chosen for training leaving all the remaining ones for test. The

rank 1 results obtained using our RankSVM model are 5%, 51% and 49% re-

spectively for the three view combinations. These results are comparable with

results of the typical SVD-based method [5] (9%,49%, and 52%) but worse

2 The results of Moments are different from the ones published in [6] because larger
gallery and probe sets were used in [6].
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Fig. 14. Cross-dataset experimental results.

than other approaches based on SVR [4] (25%,70%, and 78%). Nevertheless,

it is worth pointing out that: those methods are specifically designed for cross-

view gait recognition whilst our method can cope with any covariate condition

changes and even with a combination of them co-occurring. In addition, we

also found from our experiments that similar results can be obtained with the

same model but under an uncooperative setting. In contrast, the performance

of the methods in [5,4] will decrease under such a setting, because they must

first estimate the view angle in the probe, which can only give around 85%

accuracy as shown in [15], and then choose one from a set of models learned

according to the view estimation.

4.3.3 Cross-dataset Gait Recognition Experiments

So far our ranking model has been learned using different subjects from the

same dataset. In the next experiments, our model is learned using one dataset

and applied to another one. More specifically, two of the previous experiments

already discussed (OU-ISIR Exp1 and USF Exp4 from Table 1) were con-

ducted again with identical gallery and probe sets, but this time a different

auxiliary dataset, the one used in CASIA Exp2, was used to learn the trans-

fer learning models. Note that since both the auxiliary dataset and the two

target datasets contain clothing changes, there is transferable information to

be learned about gait features that are invariant to clothing changes. The ob-

jective is thus to compare the ability of different transfer learning models to

overcome the dataset bias [46] caused by the differences in the recording envi-

ronments (e.g. indoor vs. outdoor, natural walking vs. treadmill). The results

are shown in Fig. 14. The main findings are: (1) Our RankSVM-based trans-

fer learning model significantly outperforms the non-transfer learning based

methods (1NN and 1NN PCA+LDA), indicating that the model can success-
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fully learn transferable knowledge even from gait captured from a completely

different environment, such as indoors in CASIA and outdoors in USF. This

is a significant result as this means that it is not necessary to rely on data

collected in the same scene to learn our model. Instead, a large pool of ex-

isting labeled gait sequences from other scenes containing a large number of

covariate conditions either alone or in combination could be used to learn the

model. In a practical sense, our model seems not to need retraining/retuning

for a new scene as demonstrates results in Fig. 14, where the same model

learned from CASIA (indoors and people walking on a track) works on both

OU-ISIR (indoors and people walking on a treadmill) and USF (outdoors and

people walking on a track). (2) The RankSVM model also achieves better per-

formance than the alternative transfer learning models in both experiments.

In comparison, both RankBoost and PRDC lack consistency when they are

applied to different target datasets. Specifically, RankBoost fails completely

in OU ISIR Exp1 Cross-dataset, whilst it works reasonably well in USF Exp4

Cross-dataset. PRDC’s result is the opposite – fairly close to RankSVM in

OU ISIR Exp1, but very weak in USF Exp4. As we discussed before, both

models have some unreliabilities – RankBoost relies on the one feature/pixel

ranker to select features locally and sequentially, and PRDC employs a numer-

ically unstable iterative learning algorithm that is susceptible to local maxi-

mals. These unreliabilities explain their inconsistent performance when applied

to different datasets.

5 Conclusions and Future Work

We have proposed a novel gait recognition approach which differs significantly

from existing approaches in that the original multi-class classification or identi-

fication problem is reformulated into a bipartite ranking problem which learns

transferable information independent of the identity of people. In other words,

we turn a recognition problem into a verification problem (genuine or im-

poster) in order to learn features invariant to covariate condition changes

that can be generalized to new subjects even in a new dataset. This provides

a number of advantages including: (1) unlike most of the existing methods

which focus on treating a specific covariate, our approach only needs a single

model to cope with any possible covariate condition or even with a combi-
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nation of them co-existing; and (2) the model can be learned from different

classes/subjects as well as from a different dataset making it more generally

applicable with limited data per person in a gallery set (this model can be

used even when there is only a single gait sample available for each person in

the gallery set). Extensive experiments using three large public datasets have

validated the effectiveness of our approach particularly under challenging un-

cooperative settings.

We have also analyzed the connection between the ranking-based transfer

learning methods and relative distance learning-based transfer learning meth-

ods. In our context, both models try to achieve the same goal and they differ

only in the formulation. In particular, a ranking function is a distance/metric

function and a relative learning method also aims to maintain the ranking

order in an auxiliary dataset. In the meantime, both models also attempt

to quantify gait features to identify the most robust features under different

covariate conditions. Our results suggest that a global feature quantification

method (e.g. RankSVM, PRDC) is superior to a local one (e.g. RankBoost).

There are a couple of directions for further study: (1) differing from many

transfer learning works [21,22,23,24], our current model does not perform

model adaption given new data from the target gallery set. This makes the

model more vulnerable against dataset bias. Some ideas from the Adaptive

SVM [23] can be easily adopted here to make our RankSVM adaptive to

new data. In a similar direction, some regularization to the transfer learning

process might be included to improve the performance, as some works do in

other related areas [47,48]; and (2) we have identified the advantage of a rel-

ative distance learning method in terms of modeling the correlation between

features explicitly. However, this advantage did not materialize in our exper-

iments due to difficulties in solving the optimization problem. Developing a

better optimization solver is part of our ongoing work.
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