13,610 research outputs found

    Design and enhanced evaluation of a robust anaphor resolution algorithm

    Get PDF
    Syntactic coindexing restrictions are by now known to be of central importance to practical anaphor resolution approaches. Since, in particular due to structural ambiguity, the assumption of the availability of a unique syntactic reading proves to be unrealistic, robust anaphor resolution relies on techniques to overcome this deficiency. This paper describes the ROSANA approach, which generalizes the verification of coindexing restrictions in order to make it applicable to the deficient syntactic descriptions that are provided by a robust state-of-the-art parser. By a formal evaluation on two corpora that differ with respect to text genre and domain, it is shown that ROSANA achieves high-quality robust coreference resolution. Moreover, by an in-depth analysis, it is proven that the robust implementation of syntactic disjoint reference is nearly optimal. The study reveals that, compared with approaches that rely on shallow preprocessing, the largely nonheuristic disjoint reference algorithmization opens up the possibility/or a slight improvement. Furthermore, it is shown that more significant gains are to be expected elsewhere, particularly from a text-genre-specific choice of preference strategies. The performance study of the ROSANA system crucially rests on an enhanced evaluation methodology for coreference resolution systems, the development of which constitutes the second major contribution o/the paper. As a supplement to the model-theoretic scoring scheme that was developed for the Message Understanding Conference (MUC) evaluations, additional evaluation measures are defined that, on one hand, support the developer of anaphor resolution systems, and, on the other hand, shed light on application aspects of pronoun interpretation

    Proceedings of the 2nd IUI Workshop on Interacting with Smart Objects

    Get PDF
    These are the Proceedings of the 2nd IUI Workshop on Interacting with Smart Objects. Objects that we use in our everyday life are expanding their restricted interaction capabilities and provide functionalities that go far beyond their original functionality. They feature computing capabilities and are thus able to capture information, process and store it and interact with their environments, turning them into smart objects

    Recent Advances of Local Mechanisms in Computer Vision: A Survey and Outlook of Recent Work

    Full text link
    Inspired by the fact that human brains can emphasize discriminative parts of the input and suppress irrelevant ones, substantial local mechanisms have been designed to boost the development of computer vision. They can not only focus on target parts to learn discriminative local representations, but also process information selectively to improve the efficiency. In terms of application scenarios and paradigms, local mechanisms have different characteristics. In this survey, we provide a systematic review of local mechanisms for various computer vision tasks and approaches, including fine-grained visual recognition, person re-identification, few-/zero-shot learning, multi-modal learning, self-supervised learning, Vision Transformers, and so on. Categorization of local mechanisms in each field is summarized. Then, advantages and disadvantages for every category are analyzed deeply, leaving room for exploration. Finally, future research directions about local mechanisms have also been discussed that may benefit future works. To the best our knowledge, this is the first survey about local mechanisms on computer vision. We hope that this survey can shed light on future research in the computer vision field

    MMFL-Net: Multi-scale and Multi-granularity Feature Learning for Cross-domain Fashion Retrieval

    Full text link
    Instance-level image retrieval in fashion is a challenging issue owing to its increasing importance in real-scenario visual fashion search. Cross-domain fashion retrieval aims to match the unconstrained customer images as queries for photographs provided by retailers; however, it is a difficult task due to a wide range of consumer-to-shop (C2S) domain discrepancies and also considering that clothing image is vulnerable to various non-rigid deformations. To this end, we propose a novel multi-scale and multi-granularity feature learning network (MMFL-Net), which can jointly learn global-local aggregation feature representations of clothing images in a unified framework, aiming to train a cross-domain model for C2S fashion visual similarity. First, a new semantic-spatial feature fusion part is designed to bridge the semantic-spatial gap by applying top-down and bottom-up bidirectional multi-scale feature fusion. Next, a multi-branch deep network architecture is introduced to capture global salient, part-informed, and local detailed information, and extracting robust and discrimination feature embedding by integrating the similarity learning of coarse-to-fine embedding with the multiple granularities. Finally, the improved trihard loss, center loss, and multi-task classification loss are adopted for our MMFL-Net, which can jointly optimize intra-class and inter-class distance and thus explicitly improve intra-class compactness and inter-class discriminability between its visual representations for feature learning. Furthermore, our proposed model also combines the multi-task attribute recognition and classification module with multi-label semantic attributes and product ID labels. Experimental results demonstrate that our proposed MMFL-Net achieves significant improvement over the state-of-the-art methods on the two datasets, DeepFashion-C2S and Street2Shop.Comment: 27 pages, 12 figures, Published by <Multimedia Tools and Applications

    Human Perceptions of Fairness in Algorithmic Decision Making: A Case Study of Criminal Risk Prediction

    Full text link
    As algorithms are increasingly used to make important decisions that affect human lives, ranging from social benefit assignment to predicting risk of criminal recidivism, concerns have been raised about the fairness of algorithmic decision making. Most prior works on algorithmic fairness normatively prescribe how fair decisions ought to be made. In contrast, here, we descriptively survey users for how they perceive and reason about fairness in algorithmic decision making. A key contribution of this work is the framework we propose to understand why people perceive certain features as fair or unfair to be used in algorithms. Our framework identifies eight properties of features, such as relevance, volitionality and reliability, as latent considerations that inform people's moral judgments about the fairness of feature use in decision-making algorithms. We validate our framework through a series of scenario-based surveys with 576 people. We find that, based on a person's assessment of the eight latent properties of a feature in our exemplar scenario, we can accurately (> 85%) predict if the person will judge the use of the feature as fair. Our findings have important implications. At a high-level, we show that people's unfairness concerns are multi-dimensional and argue that future studies need to address unfairness concerns beyond discrimination. At a low-level, we find considerable disagreements in people's fairness judgments. We identify root causes of the disagreements, and note possible pathways to resolve them.Comment: To appear in the Proceedings of the Web Conference (WWW 2018). Code available at https://fate-computing.mpi-sws.org/procedural_fairness
    corecore