4,476 research outputs found

    Axiomatizations of signed discrete Choquet integrals

    Get PDF
    We study the so-called signed discrete Choquet integral (also called non-monotonic discrete Choquet integral) regarded as the Lov\'asz extension of a pseudo-Boolean function which vanishes at the origin. We present axiomatizations of this generalized Choquet integral, given in terms of certain functional equations, as well as by necessary and sufficient conditions which reveal desirable properties in aggregation theory

    Pseudorandom Generators for Width-3 Branching Programs

    Full text link
    We construct pseudorandom generators of seed length O~(log(n)log(1/ϵ))\tilde{O}(\log(n)\cdot \log(1/\epsilon)) that ϵ\epsilon-fool ordered read-once branching programs (ROBPs) of width 33 and length nn. For unordered ROBPs, we construct pseudorandom generators with seed length O~(log(n)poly(1/ϵ))\tilde{O}(\log(n) \cdot \mathrm{poly}(1/\epsilon)). This is the first improvement for pseudorandom generators fooling width 33 ROBPs since the work of Nisan [Combinatorica, 1992]. Our constructions are based on the `iterated milder restrictions' approach of Gopalan et al. [FOCS, 2012] (which further extends the Ajtai-Wigderson framework [FOCS, 1985]), combined with the INW-generator [STOC, 1994] at the last step (as analyzed by Braverman et al. [SICOMP, 2014]). For the unordered case, we combine iterated milder restrictions with the generator of Chattopadhyay et al. [CCC, 2018]. Two conceptual ideas that play an important role in our analysis are: (1) A relabeling technique allowing us to analyze a relabeled version of the given branching program, which turns out to be much easier. (2) Treating the number of colliding layers in a branching program as a progress measure and showing that it reduces significantly under pseudorandom restrictions. In addition, we achieve nearly optimal seed-length O~(log(n/ϵ))\tilde{O}(\log(n/\epsilon)) for the classes of: (1) read-once polynomials on nn variables, (2) locally-monotone ROBPs of length nn and width 33 (generalizing read-once CNFs and DNFs), and (3) constant-width ROBPs of length nn having a layer of width 22 in every consecutive polylog(n)\mathrm{poly}\log(n) layers.Comment: 51 page

    Algorithms for the workflow satisfiability problem engineered for counting constraints

    Get PDF
    The workflow satisfiability problem (WSP) asks whether there exists an assignment of authorized users to the steps in a workflow specification that satisfies the constraints in the specification. The problem is NP-hard in general, but several subclasses of the problem are known to be fixed-parameter tractable (FPT) when parameterized by the number of steps in the specification. In this paper, we consider the WSP with user-independent counting constraints, a large class of constraints for which the WSP is known to be FPT. We describe an efficient implementation of an FPT algorithm for solving this subclass of the WSP and an experimental evaluation of this algorithm. The algorithm iteratively generates all equivalence classes of possible partial solutions until, whenever possible, it finds a complete solution to the problem. We also provide a reduction from a WSP instance to a pseudo-Boolean SAT instance. We apply this reduction to the instances used in our experiments and solve the resulting PB SAT problems using SAT4J, a PB SAT solver. We compare the performance of our algorithm with that of SAT4J and discuss which of the two approaches would be more effective in practice

    Contributions to the mathematical modeling of estimation of distribution algorithms and pseudo-boolean functions

    Get PDF
    134 p.Maximice o minimice una función objetivo definida sobre un espacio discreto. Dado que la mayoría de dichos problemas no pueden ser resueltos mediante una búsqueda exhaustiva, su resolución se aproxima frecuentemente mediante algoritmos heurísticos. Sin embargo, no existe ningún algoritmo que se comporte mejor que el resto de algoritmos para resolver todas las instancias de cualquier problema. Por ello, el objetivo ideal es, dado una instancia de un problema, saber cuál es el algoritmo cuya resoluciones más eficiente. Las dos líneas principales de investigación para lograr dicho objetivo son estudiar las definiciones de los problemas y las posibles instancias que cada problema puede generar y el estudio delos diseños y características de los algoritmos. En esta tesis, se han tratado ambas lineas. Por un lado,hemos estudiado las funciones pseudo-Booleanas y varios problemas binarios específicos. Por otro lado,se ha presentado un modelado matemático para estudiar Algoritmos de Estimación de Distribuciones diseñados para resolver problemas basados en permutaciones. La principal motivación ha sido seguir progresando en este campo para comprender mejor las relaciones entre los Problemas de Optimización Combinatoria y los algoritmos de optimización

    Towards a Theory-Guided Benchmarking Suite for Discrete Black-Box Optimization Heuristics: Profiling (1+λ)(1+\lambda) EA Variants on OneMax and LeadingOnes

    Full text link
    Theoretical and empirical research on evolutionary computation methods complement each other by providing two fundamentally different approaches towards a better understanding of black-box optimization heuristics. In discrete optimization, both streams developed rather independently of each other, but we observe today an increasing interest in reconciling these two sub-branches. In continuous optimization, the COCO (COmparing Continuous Optimisers) benchmarking suite has established itself as an important platform that theoreticians and practitioners use to exchange research ideas and questions. No widely accepted equivalent exists in the research domain of discrete black-box optimization. Marking an important step towards filling this gap, we adjust the COCO software to pseudo-Boolean optimization problems, and obtain from this a benchmarking environment that allows a fine-grained empirical analysis of discrete black-box heuristics. In this documentation we demonstrate how this test bed can be used to profile the performance of evolutionary algorithms. More concretely, we study the optimization behavior of several (1+λ)(1+\lambda) EA variants on the two benchmark problems OneMax and LeadingOnes. This comparison motivates a refined analysis for the optimization time of the (1+λ)(1+\lambda) EA on LeadingOnes
    corecore