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AXIOMATIZATIONS OF SIGNED DISCRETE CHOQUET

INTEGRALS

MARTA CARDIN, MIGUEL COUCEIRO, SILVIO GIOVE,
AND JEAN-LUC MARICHAL

Abstract. We study the so-called signed discrete Choquet integral
(also called non-monotonic discrete Choquet integral) regarded as the
Lovász extension of a pseudo-Boolean function which vanishes at the
origin. We present axiomatizations of this generalized Choquet integral,
given in terms of certain functional equations, as well as by necessary
and sufficient conditions which reveal desirable properties in aggregation
theory.

1. Introduction

This paper deals with the so-called “signed (discrete) Choquet integral”
(also called non-monotonic Choquet integral) which naturally generalizes the
Choquet integral [1]. Traditionally, the Choquet integral is defined in terms

of a capacity (also called fuzzy measure [10, 11]), i.e., a set function µ : 2[n] →
R such that µ(∅) = 0 and µ(S) 6 µ(T ) whenever S ⊆ T . Dropping the
monotonicity requirement in the definition of µ, we obtain what is referred to
as a signed capacity (also called non-monotonic fuzzy measure). The signed
Choquet integral is then defined exactly the same way but replacing the
underlying capacity by a signed capacity. This extension has been considered
by several authors, e.g., [3, 7, 8].

A convenient way to introduce the signed Choquet integral is via the no-
tion of Lovász extension. Indeed, the signed Choquet integral can be thought
of as the Lovász extension of a pseudo-Boolean function f : {0, 1}n → R

which vanishes at the origin. Moreover, we retrieve the classical Choquet
integral by further assuming that f : {0, 1}n → R is nondecreasing.

In this paper we consider the latter approach to the signed Choquet in-
tegral. In Section 2 we recall the basic notions and terminology concerning
Choquet integrals and Lovász esxtensions needed throughout the paper. In
Section 3 we present various characterizations of the signed Choquet inte-
gral. First, we recall the piecewise linear nature of Lovász extensions which
particularizes to the signed Choquet integral (Theorem 3.1). Then we gen-
eralize Schmeidler’s axiomatization of the signed discrete Choquet integral
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given in terms of continuity and comonotonic additivity, showing that pos-
itive homogeneity can be replaced for continuity (Theorem 3.2). The main
result of this paper, Theorem 3.3, presents a characterization of families
of signed Choquet integrals in terms of necessary and sufficient conditions
which:

(1) reveal the linear nature of these generalized Choquet integrals with
respect to the underlying signed capacities,

(2) express properties of the family members defined on the standard
basis of signed capacites, and

(3) make apparent the meaningfulness with respect to interval scales of
signed Choquet integrals.

We also discuss the independence of axioms given in Theorem 3.3.
Throughout this paper, the symbols ∧ and ∨ denote the minimum and

maximum functions, respectively.

2. Choquet integrals and Lovász extensions

A capacity on [n] is a set function µ : 2[n] → R such that µ(∅) = 0 and
µ(S) 6 µ(T ) whenever S ⊆ T . A capacity µ on [n] is said to be normalized

if µ([n]) = 1.

Definition 2.1. Let µ be a capacity on [n] and let x ∈ [0,∞[n. The Choquet
integral of x with respect to µ is defined by

Cµ(x) =
n
∑

i=1

(µπ
i − µπ

i+1)xπ(i),

where π is a permutation on [n] such that xπ(1) 6 · · · 6 xπ(n) and µπ
i =

µ({π(i), . . . , π(n)}) for i ∈ [n+ 1], with the convention that µπ
n+1 = µ(∅).

The concept of Choquet integral can be formally extended to more general
set functions and n-tuples of Rn as follows. A signed capacity (or game) on
[n] is a set function v : 2[n] → R such that v(∅) = 0.

Definition 2.2. Let v be a signed capacity on [n] and let x ∈ R
n. The

signed Choquet integral of x with respect to v is defined by

Cv(x) =

n
∑

i=1

(vπi − vπi+1)xπ(i),

where π is a permutation on [n] such that xπ(1) 6 · · · 6 xπ(n) and vπi =
v({π(i), . . . , π(n)}) for i ∈ [n+ 1], with the convention that vπn+1 = v(∅).

The more general concept of a set function v : 2[n] → R (without any
constraint) leads to the notion of the Lovász extension of a pseudo-Boolean
function, which we now briefly describe. For general background, see [4, 9].

Let Sn denote the symmetric group on [n] and, for each π ∈ Sn, define

Pπ = {x ∈ R
n : xπ(1) 6 · · · 6 xπ(n)}.
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Let v : 2[n] → R be a set function and let f : {0, 1}n → R be the correspond-
ing pseudo-Boolean function, that is, such that f(1S) = v(S). The Lovász

extension of f is the continuous function f̂ : Rn → R which is defined on
each Pπ as the unique affine function that coincides with f at the n + 1
vertices of the standard simplex [0, 1]n ∩ Pπ of [0, 1]n. In fact, f̂ can be
expressed as

(1) f̂(x) = f(0) +

n
∑

i=1

(fπ
i − fπ

i+1)xπ(i) (x ∈ Pπ).

where fπ
i = f(1{π(i),...,π(n)}) = v({π(i), . . . , π(n)}) for i ∈ [n] and fπ

n+1 =

f(0). Thus f̂ is a continuous function whose restriction to each Pπ is an
affine function.

It follows from (1) that the Lovász extension of a pseudo-Boolean function
f : {0, 1}n → R is a signed Choquet integral if and only if f(0) = 0. Its
restriction to [0,∞[n is a Choquet integral if, in addition, f is nondecreasing.

It was also shown [6] that the Lovász extension f̂ can also be written as

(2) f̂(x) =
∑

S⊆[n]

m(S)
∧

i∈S

xi (x ∈ R
n),

where the set function m : 2[n] → R is the Möbius transform of v, given by
m(S) =

∑

T⊆S(−1)|S|−|T | v(T ). Thus, a signed Choquet integral has the

form (2) with m(∅) = 0.

3. Axiomatizations of Lovász extensions

We have a first characterization that immediately follows from the defi-
nition of Lovász extensions.

Theorem 3.1. A function g : Rn → R is a Lovász extension if and only if

(3) g(λx+ (1− λ)x′) = λ g(x) + (1− λ) g(x′) (0 6 λ 6 1)

for all comonotonic vectors x,x′ ∈ R
n. The function g is a signed Choquet

integral if additionally g(0) = 0.

Proof. The condition stated in the theorem means that g is affine (since it
is both convex and concave) on each Pπ. Hence, it is continuous on R

n and
thus it is a Lovász extension. �

The following theorem is inspired from a characterization of the Choquet
integral by de Campos and Bolaños [2].

Theorem 3.2. A function g : Rn → R is a Lovász extension if and only if

the function h : Rn → R, defined by h = g − g(0),

(i) is comonotonic additive.

(ii) is continuous or satisfies h(rx) = rh(x) for all r > 0.

The function g is a signed Choquet integral if additionally g(0) = 0.
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Proof. It is not difficult to see that the conditions are necessary. So let us
prove the sufficiency. Fix π ∈ Sn and x ∈ Pπ. Then we have

x = xπ(1)1[n] +
n
∑

i=2

(xπ(i) − xπ(i−1))1{π(i),...,π(n)}.

By comonotonic additivity, we get

h(x) = h
(

xπ(1)1[n]
)

+
n
∑

i=2

h
(

(xπ(i) − xπ(i−1))1{π(i),...,π(n)}
)

.

Also by comonotonic additivity, we have

0 = h(0) = h
(

1[n] − 1[n]
)

= h
(

1[n]
)

+ h
(

−1[n]
)

and hence h
(

−1[n]
)

= −h
(

1[n]
)

. Moreover, if h(rx) = rh(x) for all r > 0

(and even for r = 0 since h(0) = 0), then h
(

r1[n]
)

= rh
(

1[n]
)

for all r ∈ R

and hence

h(x) = xπ(1) h
(

1[n]
)

+

n
∑

i=2

(xπ(i) − xπ(i−1))h
(

1{π(i),...,π(n)}
)

=

n
∑

i=1

(hπi − hπi+1)xπ(i)

where hπi = h(1{π(i),...,π(n)}) for i ∈ [n] and hπn+1 = h(1∅).
Let us now show that h satisfies the positive homogeneity property as soon

as it is continuous. Comonotonic additivity implies that g(nx) = ng(x) for
every x ∈ R

n and every positive integer n. For any positive integers n,m,
we then have

m

n
h(x) =

m

n
h
(

n
x

n

)

= mh
(x

n

)

= h
(m

n
x
)

which means that h(rx) = rh(x) for every positive rational r and even for
every positive real r by continuity. �

In the following characterization of the signed Choquet integral, we will
assume that the function to axiomatize is constructed from a signed capacity.
More precisely, denoting the set of signed capacities on [n] by Σn, we now
regard our function as a map f : Rn ×Σn → R, or equivalently, as the class
{fv : R

n → R : v ∈ Σn}. We will adopt the latter terminology to state our
result, which is inspired from a characterization given in [5].

For every T ⊆ [n], let vT ∈ Σn be the unanimity game defined by vT (S) =
1, if S ⊇ T , and 0, otherwise. Note that the vT (T ⊆ [n]) form a basis
(actually, the standard basis) for Σn. Indeed, for every v ∈ Σn, we have

v =
∑

T⊆[n]

mv(T ) vT ,

where mv is the Möbius transform of v.
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Theorem 3.3. If the class {fv : R
n → R : v ∈ Σn} satisfies the following

properties

(i) There exist 2n functions gT : Rn → R (T ⊆ [n]) such that

fv =
∑

T⊆[n]

v(T ) gT ;

(ii) For every S ⊆ [n], we have fvS (x) = 0 whenever xi = 0 for some

i ∈ S;
(iii) For every S ⊆ [n], r > 0, s ∈ R, and x ∈ R

n, we have

fvS (rx+ s1[n]) = rfvS(x) + s ;

then and only then fv = Cv for all v ∈ Σn.

Proof. The sufficiency is straightforward, so let us prove the necessity. Given
the relation between v and mv, condition (i) is equivalent to assuming the
existence of 2n functions hT : R

n → R (T ⊆ [n]) such that

fv =
∑

T⊆[n]

mv(T )hT .

Thus fvT = hT . Therefore, it suffices to prove the following claim.

Claim. For any fixed T ⊆ [n], if the function fvT : R
n → R satisfies condi-

tions (ii) and (iii), then fvT (x) = ∧i∈Txi for all x ∈ R
n.

Let x ∈ R
n. If x1 = · · · = xn, then

fvT (x) = fvT

(

(

∧

i∈[n]

xi
)

1[n]

)

=
∧

i∈[n]

xi ,

since fvT (0) = 0 by (iii).
Otherwise, if

∨

i∈[n] xi −
∧

i∈[n] xi 6= 0, then by (iii) we have

(4) fvT (x) =
(

∨

i∈[n] xi −
∧

i∈[n] xi

)

fvT (x
′) +

∧

i∈[n] xi,

where

x′ =
x−

(
∧

i∈[n] xi
)

1[n]
∨

i∈[n] xi −
∧

i∈[n] xi
∈ [0, 1]n.

By (iii) and (ii),

fvT (x
′) = fvT

(

x′ −
(
∧

i∈T x′i
)

1[n]

)

+
∧

i∈T x′i =
∧

i∈T x′i.

By (4), fvT (x) =
∧

i∈T xi. �

Note that the conditions of Theorem 3.3 are independent. Indeed,

(i), (iii) 6⇒ (ii): Consider the class {fv : R
n → R : v ∈ Σn} given by

the weighted arithmetic mean functions

fv(x) =
∑

T⊆[n]

mv(T )
( 1

|T |

∑

i∈T

xi

)

,

where mv is the Möbius transform of v.
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(i), (ii) 6⇒ (iii): Consider the class {fv : R
n → R : v ∈ Σn} given by

the multilinear polynomial functions

fv(x) =
∑

T⊆[n]

mv(T )
∏

i∈T

xi ,

where mv is the Möbius transform of v.
(ii), (iii) 6⇒ (i): Define the normalized capacity v∗ ∈ Σ3 by v

∗({1, 2}) =
v∗({3}) = 0 and v∗({1, 3}) = v∗({2, 3}) = 1/2 and consider the class
{fv : R

3 → R : v ∈ Σ3} given by fv = Cv for every v ∈ Σ3 \ {v∗},
and

fv∗(x1, x2, x3) =
(x1 + x2

2

)

∧ x3.

Remark 1. (a) The conditions in Theorem 3.3 can be justified as fol-
lows. Condition (i) expresses the fact that the aggregation model is
linear with respect to the underlying signed capacities. Condition
(ii) expresses minimal requirements on the functions defined on the
standard basis {vS : S ⊆ [n]} of Σn. Condition (iii) expresses the
fact that fvS is meaningful with respect to interval scales.

(b) The characterization given in Theorem 3.3 does not use the fact that
v(∅) = 0. Therefore they can be immediately adapted to Lovász
extensions by redefining Σn as the set of set functions on [n].
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