200,745 research outputs found

    A perspective on cortical layering and layer-spanning neuronal elements

    Get PDF
    This review article addresses the function of the layers of the cerebral cortex. We develop the perspective that cortical layering needs to be understood in terms of its functional anatomy, i.e., the terminations of synaptic inputs on distinct cellular compartments and their effect on cortical activity. The cortex is a hierarchical structure in which feed forward and feedback pathways have a layer-specific termination pattern. We take the view that the influence of synaptic inputs arriving at different cortical layers can only be understood in terms of their complex interaction with cellular biophysics and the subsequent computation that occurs at the cellular level. We use high-resolution fMRI, which can resolve activity across layers, as a case study for implementing this approach by describing how cognitive events arising from the laminar distribution of inputs can be interpreted by taking into account the properties of neurons that span different layers. This perspective is based on recent advances in measuring subcellular activity in distinct feed-forward and feedback axons and in dendrites as they span across layers

    What constitutes a nanoswitch? A Perspective

    Full text link
    Progress in the last two decades has effectively integrated spintronics and nanomagnetics into a single field, creating a new class of spin-based devices that are now being used both to Read (R) information from magnets and to Write (W) information onto magnets. Many other new phenomena are being investigated for nano-electronic memory as described in Part II of this book. It seems natural to ask whether these advances in memory devices could also translate into a new class of logic devices. What makes logic devices different from memory is the need for one device to drive another and this calls for gain, directionality and input-output isolation as exemplified by the transistor. With this in mind we will try to present our perspective on how W and R devices in general, spintronic or otherwise, could be integrated into transistor-like switches that can be interconnected to build complex circuits without external amplifiers or clocks. We will argue that the most common switch used to implement digital logic based on complementary metal oxide semiconductor (CMOS) transistors can be viewed as an integrated W-R unit having an input-output asymmetry that give it gain and directionality. Such a viewpoint is not intended to provide any insight into the operation of CMOS switches, but rather as an aid to understanding how W and R units based on spins and magnets can be combined to build transistor-like switches. Next we will discuss the standard W and R units used for magnetic memory devices and present one way to integrate them into a single unit with the input electrically isolated from the output. But we argue that this integrated W-R unit would not provide the key property of gain. We will then show that the recently discovered giant spin Hall effect could be used to construct a W-R unit with gain and suggest other possibilities for spin switches with gain.Comment: 27 pages. To appear in Emerging Nanoelectronic Devices, Editors: An Chen, James Hutchby, Victor Zhirnov and George Bourianoff, John Wiley & Sons (to be published

    Deep Learning Techniques for Music Generation -- A Survey

    Full text link
    This paper is a survey and an analysis of different ways of using deep learning (deep artificial neural networks) to generate musical content. We propose a methodology based on five dimensions for our analysis: Objective - What musical content is to be generated? Examples are: melody, polyphony, accompaniment or counterpoint. - For what destination and for what use? To be performed by a human(s) (in the case of a musical score), or by a machine (in the case of an audio file). Representation - What are the concepts to be manipulated? Examples are: waveform, spectrogram, note, chord, meter and beat. - What format is to be used? Examples are: MIDI, piano roll or text. - How will the representation be encoded? Examples are: scalar, one-hot or many-hot. Architecture - What type(s) of deep neural network is (are) to be used? Examples are: feedforward network, recurrent network, autoencoder or generative adversarial networks. Challenge - What are the limitations and open challenges? Examples are: variability, interactivity and creativity. Strategy - How do we model and control the process of generation? Examples are: single-step feedforward, iterative feedforward, sampling or input manipulation. For each dimension, we conduct a comparative analysis of various models and techniques and we propose some tentative multidimensional typology. This typology is bottom-up, based on the analysis of many existing deep-learning based systems for music generation selected from the relevant literature. These systems are described and are used to exemplify the various choices of objective, representation, architecture, challenge and strategy. The last section includes some discussion and some prospects.Comment: 209 pages. This paper is a simplified version of the book: J.-P. Briot, G. Hadjeres and F.-D. Pachet, Deep Learning Techniques for Music Generation, Computational Synthesis and Creative Systems, Springer, 201

    Implications of Globalization for the Output-inflation Relationship: An Assessment

    Get PDF
    During the past two decades, a growing body of research has explored the implications of increased trade and financial openness for the relationship between output and inflation. This paper reviews proposed theoretical channels through which the degree of openness might ultimately affect the output-inflation trade-off and surveys the empirical studies that have sought to determine the net effect of greater openness on this trade-off. In addition, the paper utilizes a single cross-country data set to evaluate, taking into account recent developments in the literature, the likely sign and significance of this net effect. In particular, we find current data imply that there is a negative and significant relationship between openness and the sacrifice ratio, regardless of the transmission channel that is proposed

    Exploring ‘events’ as an information systems research methodology

    Get PDF
    This paper builds upon existing research and commentary from a variety of disciplinary sources including Information Systems, Organisational and Management Studies, and the Social Sciences that focus upon the meaning, significance and impact of ‘events’ in both an organisational and a social sense. The aim of this paper is to define how the examination of the event is an appropriate, viable and useful Information Systems methodology. Our argument is that focusing on the ‘event’ enables the researcher to more clearly observe and capture the complexity, multiplicity and mundaneity of everyday lived experience. The use and notion of ‘event’ has the potential to reduce the methodological dilemmas associated with the micromanagement of the research process – an inherent danger of traditional and ‘virtual' ethnographic approaches. Similarly, this paper addresses the over-emphasis upon managerialist, structured and time-fixated praxis that is currently symptomatic of Information Systems research. All of these concerns are pivotal points of critique found within eventoriented literature. An examination of event-related theory within interpretative disciplines directs the focus of this paper towards the more specific realm of the ‘event scene’. The notion of the ‘event scene’ originated in the action based (and anti-academy) imperatives of the Situationists and emerged in an academic sense as critical situational analysis. Event scenes are a focus for contemporary critical theory where they are utilised as a means of representing theoried inquiry in order to loosen the restrictions that historical and temporally bound analysis imposes upon most interpretative approaches. The use of event scenes as the framework for critiquing established conceptual assumptions is exemplified by their use in CTheory. In this journal's version and articulation of the event scene poetry, commentary, multi-vocal narrative and other techniques are legitimated as academic forms. These various forms of multi-dimensional expression are drawn upon to enrich the understandings of the ‘event’, to extricate its meaning and to provide a sense of the moment from which the point of analysis stems. The objective of this paper is to advocate how Information Systems research can (or should) utilize an event scene oriented methodology

    Uniqueness Typing for Resource Management in Message-Passing Concurrency

    Get PDF
    We view channels as the main form of resources in a message-passing programming paradigm. These channels need to be carefully managed in settings where resources are scarce. To study this problem, we extend the pi-calculus with primitives for channel allocation and deallocation and allow channels to be reused to communicate values of different types. Inevitably, the added expressiveness increases the possibilities for runtime errors. We define a substructural type system which combines uniqueness typing and affine typing to reject these ill-behaved programs

    Analyzing the Characteristics of Plants Choosing to Opt-Out of the Large Combustion Plant Directive

    Get PDF
    The EU Large Combustion Plant Directive (LCPD) is a major but largely unstudied environmental regulation. Most of the 1585 large combustion plants in this analysis are electricity supply plants or combined heat and power plants. We find that, controlling for country characteristics and plant size, plants in the electricity supply, combined heat and power, district heating, and paper industries have a higher probability of being opted-out of the emission limit values (ELVs), which necessitates eventual plant closure. Controlling for plant size and industry, increasing the amount of solid fuel or natural gas utilized at a plant is associated with a decreased likelihood of being opted-out of the ELVs

    Propositional computability logic I

    Full text link
    In the same sense as classical logic is a formal theory of truth, the recently initiated approach called computability logic is a formal theory of computability. It understands (interactive) computational problems as games played by a machine against the environment, their computability as existence of a machine that always wins the game, logical operators as operations on computational problems, and validity of a logical formula as being a scheme of "always computable" problems. The present contribution gives a detailed exposition of a soundness and completeness proof for an axiomatization of one of the most basic fragments of computability logic. The logical vocabulary of this fragment contains operators for the so called parallel and choice operations, and its atoms represent elementary problems, i.e. predicates in the standard sense. This article is self-contained as it explains all relevant concepts. While not technically necessary, however, familiarity with the foundational paper "Introduction to computability logic" [Annals of Pure and Applied Logic 123 (2003), pp.1-99] would greatly help the reader in understanding the philosophy, underlying motivations, potential and utility of computability logic, -- the context that determines the value of the present results. Online introduction to the subject is available at http://www.cis.upenn.edu/~giorgi/cl.html and http://www.csc.villanova.edu/~japaridz/CL/gsoll.html .Comment: To appear in ACM Transactions on Computational Logi
    corecore