2,296 research outputs found

    Cyanobacteria and microalgae in supporting human habitation on Mars

    Get PDF
    Establishing the first human presence on Mars will be the most technically challenging undertaking yet in the exploration beyond our planet. The remoteness of Mars from Earth, the inhospitable surface conditions including low atmospheric pressure and cold temperatures, and the need for basic resources including water, pose a formidable challenge to this endeavour. The intersection of multiple disciplines will be required to provide solutions for temporary and eventually permanent Martian habitation. This review considers the role cyanobacteria and eukaryotic microalgae (collectively referred to here as ‘microalgae’) may have in supporting missions to the red planet. The current research using these microorganisms in biological life support systems is discussed, with a systematic analysis of their usage in each system conducted. The potential of microalgae to provide astronauts with oxygen, food, bio-polymers and pharmaceuticals is considered. An overview of microalgal experiments in space missions across the last 60 years is presented, and the research exploring the technical challenges of cultivation on Mars is discussed. From these findings, an argument for culturing microalgae in subterranean bioreactors is proposed. Finally, future synthetic biology approaches for enhancing the cyanobacterial/microalgal role in supporting human deep-space exploration are presented. We show that microalgae hold significant promise for providing solutions to many problems faced by the first Martian settlers, however these can only be realised with significant infrastructure and a reliable power source

    Chronic health effects of sulphur mustard exposure with special reference to Iranian veterans

    Get PDF
    The widespread use of sulphur mustard (SM) as an incapacitating chemical warfare agent in the past century has proved its long-lasting toxic effects. It may also be used as a chemical terrorist agent. Therefore, all health professionals should have sufficient knowledge and be prepared for any such chemical attack. SM exerts direct toxic effects on the eyes, skin, and respiratory tissue, with subsequent systemic action on the nervous, immunological, haematological, digestive, and reproductive systems. SM is an alkylating agent that affects DNA synthesis, and, thus, delayed complications have been seen since the First World War. Cases of malignancies in the target organs, particularly in haematopoietic, respiratory, and digestive systems, have been reported. Important delayed respiratory complications include chronic bronchitis, bronchiectasis, frequent bronchopneumonia, and pulmonary fibrosis, all of which tend to deteriorate with time. Severe dry skin, delayed keratitis, and reduction of natural killer cells with subsequent increased risk of infections and malignancies are also among the most distressing long-term consequences of SM intoxication. However, despite a lot of research over the past decades on Iranian veterans, there are still major gaps in the SM literature. Immunological and neurological dysfunction, as well as the relationship between SM exposure and mutagenicity, carcinogenicity, and teratogenicity are important fields that require further studies, particularly on Iranian veterans with chronic health effects of SM poisoning. There is also a paucity of information on the medical management of acute and delayed toxic effects of SM poisoning—a subject that greatly challenges health care specialists

    The role of metal ions in metal-on-metal total hip replacement

    Get PDF
    Abstract Role of Metal Ions in Metal on Metal Total Hip Replacement Metal-on-metal (MoM) total hip replacement (THR) offered theoretical advantages of decreased wear and increased functional outcomes. MoM bearings have been associated with sterile inflammatory masses and significant soft tissue destruction with poorer outcomes following revision surgery. The natural history of adverse reactions to metal debris (ARMD) is unknown, but may represent contributions from bearing surface wear, taper junction wear, and corrosion. Immunological and genetic factors may influence susceptibility to development of ARMD. Between 1997 and 2004, 652 Ultima TPS THRs (DePuy) were implanted in 545 patients who went on to experience a high rate of early implant failure (13.8%). Management of these patients has evolved beyond regular clinical follow up with plain radiographs to include surveillance monitoring of trends in levels of blood metal ions and staging of disease using metal artefact reduction (MAR) MRI. This study investigated

    Vitamin D in Space

    Get PDF
    Mankind has explored space since many years ago for distinct purposes. The space environment has its special features including microgravity (weightlessness), radiation, vacuum, and extreme temperature. It is fascinating to hear space traveling or even living on another planet, but it may cause dramatic changes in the human body. The skeleton has the primary role for the human body on the Earth and also in space. Osteoporosis is the principal feature in spaceflights occurring sooner or later. It will pose health risks. The aging of the population is the cause for osteoporosis to be more prevalent in the future. It seems that aging will happen sooner in space for human beings that are accustomed to living on the Earth. A complex of all reported changes that would occur in space, the picture of a closely resembling aged man emerges. Vitamin D can be synthesized and acts as a hormone. Its receptors are evident in more than 30 human tissues. Vitamin D has positive effects on the skeleton and other systems of the body in many regards. Multiple actions have been claimed for vitamin D (real or false), many aspects of which are not fully understood. The issue applies more about the vitamin and space, which has been tried to describe in this chapter

    The Second Conference on Lunar Bases and Space Activities of the 21st Century, volume 2

    Get PDF
    These 92 papers comprise a peer-reviewed selection of presentations by authors from NASA, the Lunar and Planetary Institute (LPI), industry, and academia at the Second Conference on Lunar Bases and Space Activities of the 21st Century. These papers go into more technical depth than did those published from the first NASA-sponsored symposium on the topic, held in 1984. Session topics included the following: (1) design and operation of transportation systems to, in orbit around, and on the Moon; (2) lunar base site selection; (3) design, architecture, construction, and operation of lunar bases and human habitats; (4) lunar-based scientific research and experimentation in astronomy, exobiology, and lunar geology; (5) recovery and use of lunar resources; (6) environmental and human factors of and life support technology for human presence on the Moon; and (7) program management of human exploration of the Moon and space

    Frusemide in the horse and its effects on the metabolism, pharmacokinetics and detectability of co-administered drugs

    Get PDF
    Imperial Users onl

    Evidence Report: Risk of Crew Adverse Health Event Due to Altered Immune Response

    Get PDF
    The Risk of Crew Adverse Health Event Due to Altered Immune Response is identified by the National Aeronautics and Space Administration (NASA) Human Research Program (HRP) as a recognized risk to human health and performance in space. The HRP Program Requirements Document (PRD) defines these risks. This Evidence Report provides a summary of the evidence that has been used to identify and characterize this risk. It is known that human immune function is altered in and postflight, but it is unclear at present if such alterations lead to increased susceptibility to disease. Reactivation of latent viruses has been documented in crewmembers, although this reactivation has not been directly correlated with immune changes or with observed diseases. As described in this report, further research is required to better characterize the relationships between altered immune response and susceptibility to disease during and after spaceflight. This is particularly important for future deepspace exploration missions

    Aerospace medicine and biology: A continuing bibliography with indexes, supplement 164

    Get PDF
    This bibliography lists 275 reports, articles, and other documents introduced into the NASA scientific and technical information system in January 1977

    Aerospace medicine and biology: A continuing bibliography with indexes (supplement 338)

    Get PDF
    This bibliography lists 139 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during June 1990. Subject coverage includes: aerospace medicine and psychology, life support systems and controlled environments, safety equipment, exobiology and extraterrestrial life, and flight crew behavior and performance

    Risk of Crew Adverse Health Event Due to Altered Immune Response

    Get PDF
    Determining the effect of space travel on the human immune system has proven to be extremely challenging. Limited opportunities for in-flight studies, varying mission durations, technical and logistical obstacles, small subject numbers, and a broad range of potential assays have contributed to this problem. Additionally, the inherent complexity of the immune system, with its vast array of cell populations, sub-populations, diverse regulatory molecules, and broad interactions with other physiological systems, makes determining precise variables to measure very difficult. There is also the challenge of determining the clinical significance of any observed immune alterations. Will such a change lead to disease, or is it a transient subclinical observation related to short-term stress? The effect of this problem may be observed by scanning publications associated with immunity and spaceflight, which began to appear during the 1970s. Although individually they are each valid studies, the comprehensive literature to date suffers from widely varying sampling methods and assay techniques, low subject counts, and sometimes a disparate focus on narrow aspects of immunity. The most clinically relevant data are derived from in-flight human studies, which have demonstrated altered cell-mediated immunity and reactivation of latent herpes viruses. Much more data are available from post-flight testing of humans, with clear evidence of altered cytokine production patterns, altered leukocyte distribution, continued latent viral reactivation, and evidence of dramatically altered virus-specific immunity. It is unknown if post-flight assessments relate to the in-flight condition or are a response to landing stress and readaptation. In-flight culture of cells has clearly demonstrated that immune cells are gravity-sensitive and display altered functional characteristics. It is unknown if these data are related to in vivo immune cell function or are an artifact of microgravity culture. Ground analog testing of humans and animals, as well as microgravity-analog cell culture, has demonstrated utility. However, in all cases, it is not known with certainty if these data would reflect similar testing during space travel. Given their ready availability, ground analogs may be extremely useful for assay development and the evaluation of potential countermeasures. In general, the evidence base suffers from widely disparate studies on small numbers of subjects that do not directly correlate well with each other or spaceflight itself. Also lacking are investigations of the effect of gender on adaption to spaceflight. This results in significant knowledge 'gaps' that must be filled by future studies to completely determine any clinical risk related to immunity for human exploration-class space missions. These gaps include a significant lack of in-flight data, particularly during long-duration space missions. The International Space Station represents an excellent science platform with which to address this knowledge gap. Other knowledge gaps include lack of a single validated ground analog for the phenomenon and a lack of flight-compatible laboratory equipment capable of monitoring astronauts (for either clinical or research purposes). However, enough significant data exist, as described in this manuscript, to warrant addressing this phenomenon during the utilization phase of the ISS. A recent Space Shuttle investigation has confirmed the 31 in-flight nature of immune dysregulation, demonstrating that it is not merely a post-flight phenomenon. Several current studies are ongoing onboard the ISS that should thoroughly characterize the phenomenon. NASA recognizes that if spaceflight-associated immune dysregulation persists during exploration flights in conjunction with other dangers, such as high-energy radiation, the result may be a significant clinical risk. This emphasizes the need for a continued integrated comprehensive approach to determining the effect of prolonged spaceflight, separated from transient launch and landing stresses, on human immunity. After such studies, the phenomenon will be understood, and, hopefully, a monitoring strategy will have been developed that could be used to monitor the effectiveness of countermeasur
    • …
    corecore