253 research outputs found

    Deep Learning for the Radiographic Detection of periodontal Bone Loss

    Get PDF
    We applied deep convolutional neural networks (CNNs) to detect periodontal bone loss (PBL) on panoramic dental radiographs. We synthesized a set of 2001 image segments from panoramic radiographs. Our reference test was the measured % of PBL. A deep feed-forward CNN was trained and validated via 10-times repeated group shuffling. Model architectures and hyperparameters were tuned using grid search. The final model was a seven-layer deep neural network, parameterized by a total number of 4,299,651 weights. For comparison, six dentists assessed the image segments for PBL. Averaged over 10 validation folds the mean (SD) classification accuracy of the CNN was 0.81 (0.02). Mean (SD) sensitivity and specificity were 0.81 (0.04), 0.81 (0.05), respectively. The mean (SD) accuracy of the dentists was 0.76 (0.06), but the CNN was not statistically significant superior compared to the examiners (p = 0.067/t-test). Mean sensitivity and specificity of the dentists was 0.92 (0.02) and 0.63 (0.14), respectively. A CNN trained on a limited amount of radiographic image segments showed at least similar discrimination ability as dentists for assessing PBL on panoramic radiographs. Dentists’ diagnostic efforts when using radiographs may be reduced by applying machine-learning based technologies

    방사선학적 골 소실량과 치주염 단계의 딥러닝 기반 컴퓨터 보조진단 방법: 다기기 연구

    Get PDF
    학위논문 (박사) -- 서울대학교 대학원 : 융합과학기술대학원 융합과학부(방사선융합의생명전공), 2021. 2. 이원진.Periodontal diseases, including gingivitis and periodontitis, are some of the most common diseases that humankind suffers from. The decay of alveolar bone in the oral and maxillofacial region is one of the main symptoms of periodontal disease. This leads to alveolar bone loss, tooth loss, edentulism, and masticatory dysfunction, which indirectly affects nutrition. In 2017, the American Academy of Periodontology and the European Federation of Periodontology proposed a new definition and classification criteria for periodontitis based on a staging system. Recently, computer-aided diagnosis (CAD) based on deep learning has been used extensively for solving complex problems in radiology. In my previous study, a deep learning hybrid framework was developed to automatically stage periodontitis on dental panoramic radiographs. This was a hybrid of deep learning architecture for detection and conventional CAD processing to achieve classification. The framework was proposed to automatically quantify the periodontal bone loss and classify periodontitis for each individual tooth into three stages according to the criteria that was proposed at the 2017 World Workshop. In this study, the previously developed framework was improved in order to classify periodontitis into four stages by detecting the number of missing teeth/implants using an additional convolutional neural network (CNN). A multi-device study was performed to verify the generality of the method. A total of 500 panoramic radiographs (400, 50, and 50 images for device 1, device 2, and device 3, respectively) from multiple devices were collected to train the CNN. For a baseline study, three CNNs, which were commonly used for segmentation tasks and the modified CNN from the Mask Region with CNN (R-CNN) were trained and tested to compare the detection accuracy using dental panoramic radiographs that were acquired from multiple devices. In addition, a pre-trained weight derived from the previous study was used as an initial weight to train the CNN to detect the periodontal bone level (PBL), cemento-enamel junction level (CEJL), and teeth/implants to achieve a high training efficiency. The CNN, trained with the multi-device images that had sufficient variability, can produce an accurate detection and segmentation for the input images with various aspects. When detecting the missing teeth on the panoramic radiographs, the values of the precision, recall, F1-score, and mean average precision (AP) were set to 0.88, 0.85, 0.87, and 0.86, respectively, by using CNNv4-tiny. As a result of the qualitative and quantitative evaluation for detecting the PBL, CEJL, and teeth/implants, the Mask R-CNN showed the highest dice similarity coefficients (DSC) of 0.96, 0.92, and 0.94, respectively. Next, the automatically determined stages from the framework were compared to those that were developed by three oral and maxillofacial radiologists with different levels of experience. The mean absolute difference (MAD) between the periodontitis staging that was performed by the automatic method and that by the radiologists was 0.31 overall for all the teeth in the whole jaw. The classification accuracies for the images from the multiple devices were 0.25, 0.34, and 0.35 for device 1, device 2, and device 3, respectively. The overall Pearson correlation coefficient (PCC) values between the developed method and the radiologists’ diagnoses were 0.73, 0.77, and 0.75 for the images from device 1, device 2, and device 3, respectively (p < 0.01). The final intraclass correlation coefficient (ICC) value between the developed method and the radiologists’ diagnoses for all the images was 0.76 (p < 0.01). The overall ICC values between the developed method and the radiologists’ diagnoses were 0.91, 0.94, and 0.93 for the images from device 1, device 2, and device 3, respectively (p < 0.01). The final ICC value between the developed method and the radiologists’ diagnoses for all the images was 0.93 (p < 0.01). In the Passing and Bablok analysis, the slopes were 1.176 (p > 0.05), 1.100 (p > 0.05), and 1.111 (p > 0.05) with the intersections of -0.304, -0.199, and -0.371 for the radiologists with ten, five, and three-years of experience, respectively. For the Bland and Altman analysis, the average of the difference between the mean stages that were classified by the automatic method and those diagnosed by the radiologists with ten-years, five-years, and three-years of experience were 0.007 (95 % confidence interval (CI), -0.060 ~ 0.074), -0.022 (95 % CI, -0.098 ~ 0.053), and -0.198 (95 % CI, -0.291 ~ -0.104), respectively. The developed method for classifying the periodontitis stages that combined the deep learning architecture and conventional CAD approach had a high accuracy, reliability, and generality when automatically diagnosing periodontal bone loss and the staging of periodontitis by the multi-device study. The results demonstrated that when the CNN used the training data sets with increasing variability, the performance also improved in an unseen data set.치주염과 치은염을 포함한 치주질환은 인류가 겪고 있는 가장 흔한 질환 중 하나이다. 구강 및 악안면 부위 치조골의 침하는 치주질환의 주요 증상이며, 이는 골 손실, 치아 손실, 치주염을 유발할 수 있으며, 이를 방치할 경우 저작 기능 장애로 인한 영양실조의 원인이 될 수 있다. 2017년 미국치주학회(American Academy of Periodontology)와 유럽치주학회(European Federation of Periodontology)는 공동 워크샵을 통해 치주염에 대한 새로운 정의와 단계 분류 및 진단에 관련된 기준을 발표하였다. 최근, 딥러닝을 기반으로 한 컴퓨터 보조진단 기술 (Computer-aided Diagnoses, CAD)이 의료방사선영상 분야에서 복잡한 문제를 해결하는 데 광범위하게 사용되고 있다. 선행 연구에서 저자는 파노라마방사선영상에서 치주염을 자동으로 진단하기 위한 딥러닝 하이브리드 프레임워크를 개발하였다. 이는 해부학적 구조물 분할을 위한 딥러닝 신경망 기술과 치주염의 단계 분류를 위한 컴퓨터 보조진단 기술을 융합하여 단일 프레임워크에서 치주염을 자동으로 분류, 진단하는 방법이다. 이를 통해 각 치아에서 방사선적 치조골 소실량을 자동으로 정량화하고, 2017년 워크샵에서 제안된 기준에 따라 치주염을 3단계로 분류하였다. 본 연구에서는 선행 개발된 방법을 개선하여 상실 치아와 식립된 임플란트의 수를 검출, 정량화하여 치주염을 4단계로 분류하는 방법을 개발하였다. 또한 개발된 방법의 일반화 정도를 평가하기 위해 서로 다른 기기를 통해 촬영된 영상을 이용한 다기기 연구를 수행하였다. 3개의 기기를 이용하여 총 500매의 파노라마방사선영상을 수집하여 CNN 학습을 위한 데이터셋을 구축하였다. 수집된 영상 데이터셋을 이용하여, 기존 연구에서 의료영상 분할에 일반적으로 사용되는 3개의 CNN 모델과 Mask R-CNN을 학습시킨 후, 해부학적 구조물 분할 정확도 비교 평가를 실시하였다. 또한 CNN의 높은 학습 효율성 확보와 및 다기기 영상에 대한 추가 학습을 위해 선행 연구에서 도출된 사전 훈련 가중치(pre-trained weight)를 이용한 CNN의 전이학습을 실시하였다. CNNv4-tiny를 이용하여 상실 치아를 검출한 결과, 0.88, 0.85, 0.87, 0.86, 0.85의 precision, recall, F1-score, mAP 정확도를 보였다. 해부학적 구조물 분할 결과, Mask R-CNN을 기반으로 수정된 CNN은 치조골 수준에 대해0.96, 백악법랑경계 수준에 대해 0.92, 치아에 대해 0.94의 분할정확도(DSC)를 보였다. 이어 개발된 방법을 이용하여 학습에 사용되지 않은 30매(기기 별 10매)에서 자동으로 결정된 치주염의 단계와 서로 다른 임상경험을 가진 3명의 영상치의학 전문의가 진단한 단계 간 비교 평가를 수행하였다. 평가 결과, 모든 치아에 대해 자동으로 결정된 치주염 단계와 전문의들이 진단한 단계 간 0.31의 오차(MAD)를 보였다. 또한 기기1, 2, 3의 영상에 대해 각각 0.25, 0.34, 0.35의 오차를 보였다. 개발된 방법을 이용한 결과와 방사선 전문의의 진단 사이의 PCC 값은 기기1, 2, 3의 영상에 대해 각각 0.73, 0.77, 0.75로 계산되었다 (p<0.01). 전체 영상에 대한 최종 ICC 값은 0.76 (p<0.01)로 계산되었다. 또한 개발된 방법과 방사선 전문의의 진단 사이의 ICC 값은 기기1, 2, 3의 영상에 대해 각각 0.91, 0.94, 0.93으로 계산되었다 (p <0.01). 마지막으로 최종 ICC 값은 0.93으로 계산되었다 (p<0.01). Passing 및 Bablok 분석의 경우 회귀직선의 기울기와 x축 절편은 교수, 임상강사, 전공의에 대해 각각 1.176 (p>0.05), 1.100 (p>0.05), 1.111 (p>0.05)와 -0.304, -0.199, -0.371로 나타났다. Bland와 Altman 분석의 경우 자동으로 결정된 영상 별 평균 단계와 영상치의학 전공 치과의사의 진단 결과 간 교수, 임상강사, 전공의에 대해 0.007 (95 % 신뢰 구간 (CI), -0.060 ~ 0.074), 각각 -0.022 (95 % CI, -0.098 ~ 0.053), -0.198 (95 % CI, -0.291 ~ -0.104)로 계산되었다. 결론적으로, 본 논문에서 개발된 딥러닝 하이브리드 프레임워크는 딥러닝 신경망 기술과 컴퓨터 보조 진단 기술을 융합하여 환자의 파노라마 방사선 영상에서 치주염을 4단계로 분류하였다. 본 방법은 높은 해부학적 구조물 및 상실 치아 검출 정확도를 보였으며, 자동으로 결정된 치주염 단계는 임상의의 진단 결과와 높은 일치율과 상관성을 보여주었다. 또한 다기기 연구를 통해 개발된 방법의 높은 정확성과 일반화 정도를 검증하였다.CONTENTS Abstract •••••••••••••••••••••••••••••••••••••••••••••••••••••••••• i Contents •••••••••••••••••••••••••••••••••••••••••••••••••••••••• vi List of figures ••••••••••••••••••••••••••••••••••••••••••••••••• viii List of tables •••••••••••••••••••••••••••••••••••••••••••••••••••• x List of abbreviations ••••••••••••••••••••••••••••••••••••••••• xii Introduction •••••••••••••••••••••••••••••••••••••••••••••••••••• 1 Materials and Methods •••••••••••••••••••••••••••••••••••••••• 5 Overall process for deep learning-based computer-aided diagnosis method ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 5 Data preparation of dental panoramic radiographs from multiple devices ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 7 Detection of PBL and CEJL structures and teeth using CNNs ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 10 Detection of the missing teeth using CNNs ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧14 Staging periodontitis by the conventional CAD method ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧17Evaluation of detection and classification performance ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧20 Results ••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 22 Detection performance for the anatomical structures ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 22 Detection performance for the missing teeth ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 26 Classification performance for the periodontitis stages ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 30 Classification performance of correlations, regressions, and agreements between the periodontitis stages ‧‧‧‧‧‧‧ 36 Discussion ••••••••••••••••••••••••••••••••••••••••••••••••••••• 42 References ••••••••••••••••••••••••••••••••••••••••••••••••••••• 55 Abstract in Korean ••••••••••••••••••••••••••••••••••••••••••• 73Docto

    A Novel Periodontal Disease Grade Classification Methodology using Convolutional Neural Network

    Get PDF
    With the advancement of artificial intelligence, the demand of automated assistance in the domain of medical imaging has become important to reduce time and inaccuracy in physical examination. Modern lifestyle choices are resulting in a variety of dental diseases which led to multiple researches challenges which are carried out for pre-emptive detection in order to deal with these diseases within time. Periodontal diseases (PD) is a type of dental disorder which is rapidly increasing and being the major cause of early teeth loss. The machine learning based convolutional neural network (CNN) model is carried out in detecting grade wise classification of the periodontal disease. A dataset containing 350 dental images in Radio Visio Graphy (RVG) format belonging to an age group of 18-75 years is used for both training as well as testing. This method has successfully detected mild periodontitis, moderate periodontitis and severe periodontitis by achieving a satisfactory accuracy of as high as 94% with minimum loss, precision value, recall and F1score of 0.41, 0.93-0.95 and 0.91-0.94 respectively for all the three classes of Periodontitis

    CONVOLUTIONAL NEURAL NETWORK (CNN) BASED ON ARTIFICIAL INTELLIGENCE IN PERIODONTAL DISEASES DIAGNOSIS

    Get PDF
    Introduction: The main problem by many clinicians is the correct diagnosis of periodontal disease. Usually, conventional clinical measurements such as measuring probing depth, attachment loss, presence of plaque and calculus are the way to diagnose and classify periodontal disease. However, clinical examination has limited reliability for periodontitis screening. Likewise, the ability of dentists to read radiographs using conventional methods increases the risk of misdiagnosis. Due to the diversity of existing clinical criteria and the increase in knowledge about human health, changes in the diagnostic criteria for periodontal disease that have occurred in recent decades have led to several updates. Recent research has focused on developing artificial intelligence tools to assist in diagnostic and therapeutic roles. This literature review aims to determine the use of artificial intelligence-based convolutional neural network (CNN) in diagnosing periodontal disease. Review: Artificial intelligence (AI) can make more accurate and efficient diagnoses, thereby reducing the workload of dentists. The use of the convolutional neural network (CNN) system in diagnosis and treatment planning allows dentists to reduce diagnostic errors that arise. Several studies have found that the CNN algorithm can assist in detecting alveolar bone loss, gingival abnormalities, and assisting early intervention in implantology. The CNN system can also capture details that dentists miss in diagnosis, especially radiographic diagnosis. Conclusion: Implementing an AI system is effective in helping to analyze periodontal disease. The CNN algorithm outperforms other AI techniques that can be used to facilitate diagnosis and treatment planning by dentists in the future

    Applications of artificial intelligence in dentistry: A comprehensive review

    Get PDF
    This work was funded by the Spanish Ministry of Sciences, Innovation and Universities under Projects RTI2018-101674-B-I00 and PGC2018-101904-A-100, University of Granada project A.TEP. 280.UGR18, I+D+I Junta de Andalucia 2020 project P20-00200, and Fapergs/Capes do Brasil grant 19/25510000928-3. Funding for open-access charge: Universidad de Granada/CBUAObjective: To perform a comprehensive review of the use of artificial intelligence (AI) and machine learning (ML) in dentistry, providing the community with a broad insight on the different advances that these technologies and tools have produced, paying special attention to the area of esthetic dentistry and color research. Materials and methods: The comprehensive review was conducted in MEDLINE/ PubMed, Web of Science, and Scopus databases, for papers published in English language in the last 20 years. Results: Out of 3871 eligible papers, 120 were included for final appraisal. Study methodologies included deep learning (DL; n = 76), fuzzy logic (FL; n = 12), and other ML techniques (n = 32), which were mainly applied to disease identification, image segmentation, image correction, and biomimetic color analysis and modeling. Conclusions: The insight provided by the present work has reported outstanding results in the design of high-performance decision support systems for the aforementioned areas. The future of digital dentistry goes through the design of integrated approaches providing personalized treatments to patients. In addition, esthetic dentistry can benefit from those advances by developing models allowing a complete characterization of tooth color, enhancing the accuracy of dental restorations. Clinical significance: The use of AI and ML has an increasing impact on the dental profession and is complementing the development of digital technologies and tools, with a wide application in treatment planning and esthetic dentistry procedures.Spanish Ministry of Sciences, Innovation and Universities RTI2018-101674-B-I00 PGC2018-101904-A-100University of Granada project A.TEP. 280.UGR18Junta de Andalucia P20-00200Fapergs/Capes do Brasil grant 19/25510000928-3Universidad de Granada/CBU

    Artificial Intelligence Aiding in the Periodontal Assessment

    Get PDF
    While manual probing is the gold standard for periodontal assessments, it can be time consuming. Patients can be wrongfully classified due to an inconsistency between examiners, the amount of time a clinician is given for an appointment, and human error. Artificial intelligence (AI) is implemented in other areas of healthcare, known as precision healthcare. A type of AI, convolutional neural networks (CNN), identifies portions of images with the use of an algorithm to identify the image. Radiographs are a vital part of the periodontal classification system. These images are read with the human eye, there is room for human error. CNN can aid the clinician in reading and identifying images to speed up this process, allotting more time in the appointment for services such as the cleaning and patient education. AI is currently being used in the dental field for the detection of pathology, dental charting, caries, plaque, and periodontitis using 2D and 3D imaging. CNN is showing promising results in dentistry by having the capability of interpreting radiographs using an algorithm to aid in the various classifications. Limitations of AI and CNN in the periodontal field include the need for further testing of this technology with 2D and 3D radiographs, protecting the patient’s confidentiality, and further exploration of the cost to integrate this system into a dental practice. While the use of AI and CNN technology may not replace the gold standard of periodontal assessment, it has the potential to aid clinicians in more effective and individualized patient care

    Künstliche Intelligenz in der Zahnheilkunde: Scoping-Review und Schließung beobachteter Wissenslücken durch eine methodische und eine klinische Studie

    Get PDF
    Objectives: The aims of this dissertation were to (1) conduct a scoping review of stud-ies on machine learning (ML) in dentistry and appraise their robustness, (2) perform a benchmarking study to systematically compare various ML algorithms for a specific dental task, and (3) evaluate the influence of a ML-based caries detection software on diagnostic accuracy and decision-making in a randomized controlled trial. Methods: The scoping review included studies using ML in dentistry published between 1st January 2015 and 31st May 2021 on MEDLINE, IEEE Xplore, and arXiv. The risk of bias and reporting quality were assessed with the QUADAS‐2 and TRIPOD checklists, respectively. In the benchmarking study, 216 ML models were built using permutations of six ML model architectures (U-Net, U-Net++, Feature Pyramid Networks, LinkNet, Pyramid Scene Parsing Network, and Mask Attention Network), 12 model backbones of varying complexities (ResNet18, ResNet34, ResNet50, ResNet101, ResNet152, VGG13, VGG16, VGG19, DenseNet121, DenseNet161, DenseNet169, and Dense-Net201), and three initialization strategies (random, ImageNet, and CheXpert weights). 1,625 dental bitewing radiographs were used for training and testing. Five-fold cross-validation was carried out and model performance assessed using F1-score. In the clin-ical trial, each one of 22 dentists examined 20 randomly selected bitewing images for proximal caries; 10 images were evaluated with ML and 10 images without ML. Accura-cy in lesion detection and the suggested treatment were evaluated. Results: The scoping review included 168 studies, describing different ML tasks, mod-els, input data, methods to generate reference tests, and performance metrics, imped-ing comparison across studies. The studies showed considerable risk of bias and mod-erate adherence to reporting standards. In the benchmarking study, more complex models only minimally outperformed their simpler counterparts, if at all. Models initial-ized by ImageNet or CheXpert weights outperformed those using random weights (p<0.05). The clinical trial demonstrated that dentists using ML showed increased accu-racy (area under the receiver operating characteristic [mean (95% confidence interval): 0.89 (0.87–0.90)]) compared with those not using ML [0.85 (0.83–0.86); p<0.05], pri-marily due to their higher sensitivity [0.81 (0.74–0.87) compared to 0.72 (0.64–0.79); p<0.05]. Notably, dentists using ML also showed a higher frequency of invasive treat-ment decisions than those not using it (p<0.05). Conclusion: To facilitate comparisons across ML studies in dentistry, a minimum (core) set of outcomes and metrics should be developed, and researchers should strive to improve robustness and reporting quality of their studies. ML model choice should be performed on an informed basis, and simpler models may often be similarly capable as more complex ones. ML can increase dentists’ diagnostic accuracy but also lead to more invasive treatment.Ziele: Die Ziele dieser Dissertation waren, (1) ein Scoping-Review von Studien über maschinelles Lernen (ML) in der Zahnmedizin, (2) eine Benchmarking-Studie zum systematischen Vergleich verschiedener ML-Algorithmen für eine bestimmte zahnmedizinische Aufgabe, und (3) eine randomisierte kontrollierte Studie zur Bewertung einer ML-basierten Karies-Erkennungssoftware bezüglich diagnostischer Genauigkeit und Einfluss auf den Entscheidungsprozess durchzuführen. Methoden: Das Scoping-Review umfasste Studien über ML in der Zahnmedizin, veröffentlicht vom 1. Januar 2015 bis 31. Mai 2021 auf MEDLINE, IEEE Xplore und arXiv. Bias-Risiko und Berichtsqualität wurden mit den Checklisten QUADAS-2 beziehungsweise TRIPOD bewertet. In der Benchmarking-Studie wurden 216 ML-Modelle durch Permutationen von sechs Architekturen (U-Net, U-Net++, Feature Pyramid Networks, LinkNet, Pyramid Scene Parsing Network und Mask Attention Network), 12 Backbones (Res-Net18, ResNet34, ResNet50, ResNet101, ResNet152, VGG13, VGG16, VGG19, DenseNet121, DenseNet161, DenseNet169 und DenseNet201) und drei Initialisierungsstrategien (zufällige-, ImageNet- und CheXpert-Gewichtungen) erstellt. Zum Training und Testen wurden 1.625 Bissflügel-Röntgenaufnahmen genutzt. Es wurde eine fünffache Kreuzvalidierung durchgeführt und die Modellleistung anhand des F1-Scores bewertet. In der klinischen Studie untersuchten 22 Zahnärzte jeweils 20 zufällig ausgewählte Bissflügelbilder auf Approximalkaries; 10 Bilder wurden mit und 10 Bilder ohne ML ausgewertet. Die Genauigkeit in der Erkennung von Läsionen sowie die abgeleitete Therapieempfehlung wurden bewertet. Ergebnisse: Das Scoping-Review schloss 168 Studien ein, in denen verschiedene ML-Aufgaben, Modelle, Eingabedaten, Methoden zur Generierung von Referenztests und Leistungsmetriken beschrieben wurden. Die Studien zeigten ein erhebliches Bias-Risiko und eine mäßige Einhaltung der Berichtsstandards. In der Benchmarking-Studie hatten komplexere Modelle gegenüber einfachen Modellen allenfalls geringe Vorteile. Mit ImageNet- oder CheXpert-Gewichtungen initialisierte Modelle übertrafen solche mit Zufallsgewichtungen (p<0,05). In der klinischen Studie erreichten Zahnärzte mit ML eine höhere Genauigkeit bei der Kariesdetektion (Receiver-Operating-Charakteristik [Mittelwert (95 % Konfidenzintervall) 0,89 (0,87–0,90)]) als ohne ML [0,85 (0,83–0,86); p<0,05], hauptsächlich aufgrund höherer Sensitivität [0,81 (0,74–0,87) verglichen mit 0,72 (0,64–0,79); p<0,05]. Zahnärzte mit ML wählten auffallend häufiger invasive Behandlungen als ohne ML (p<0,05). Schlussfolgerung: Zur besseren Vergleichbarkeit von ML-Studien in der Zahnmedizin, sollten Core Outcomes und Metriken definiert sowie Robustheit und Berichtsqualität verbessert werden. Die Entwicklung von ML-Modellen sollte auf informierter Basis erfolgen, bei oft ähnlicher Leistung von einfacheren und komplexeren Modellen. ML kann die diagnostische Genauigkeit erhöhen, aber auch zu mehr invasiven Behandlungen führen

    Odontology & artificial intelligence

    Get PDF
    Neste trabalho avaliam-se os três fatores que fizeram da inteligência artificial uma tecnologia essencial hoje em dia, nomeadamente para a odontologia: o desempenho do computador, Big Data e avanços algorítmicos. Esta revisão da literatura avaliou todos os artigos publicados na PubMed até Abril de 2019 sobre inteligência artificial e odontologia. Ajudado com inteligência artificial, este artigo analisou 1511 artigos. Uma árvore de decisão (If/Then) foi executada para selecionar os artigos mais relevantes (217), e um algoritmo de cluster k-means para resumir e identificar oportunidades de inovação. O autor discute os artigos mais interessantes revistos e compara o que foi feito em inovação durante o International Dentistry Show, 2019 em Colónia. Concluiu, assim, de forma crítica que há uma lacuna entre tecnologia e aplicação clínica desta, sendo que a inteligência artificial fornecida pela indústria de hoje pode ser considerada um atraso para o clínico de amanhã, indicando-se um possível rumo para a aplicação clínica da inteligência artificial.There are three factors that have made artificial intelligence (AI) an essential technology today: the computer performance, Big Data and algorithmic advances. This study reviews the literature on AI and Odontology based on articles retrieved from PubMed. With the help of AI, this article analyses a large number of articles (a total of 1511). A decision tree (If/Then) was run to select the 217 most relevant articles-. Ak-means cluster algorithm was then used to summarize and identify innovation opportunities. The author discusses the most interesting articles on AI research and compares them to the innovation presented during the International Dentistry Show 2019 in Cologne. Three technologies available now are evaluated and three suggested options are been developed. The author concludes that AI provided by the industry today is a hold-up for the praticioner of tomorrow. The author gives his opinion on how to use AI for the profit of patients

    A comprehensive artificial intelligence framework for dental diagnosis and charting

    Get PDF
    Background: The aim of this study was to develop artificial intelligence (AI) guided framework to recognize tooth numbers in panoramic and intraoral radiographs (periapical and bitewing) without prior domain knowledge and arrange the intraoral radiographs into a full mouth series (FMS) arrangement template. This model can be integrated with different diseases diagnosis models, such as periodontitis or caries, to facilitate clinical examinations and diagnoses. Methods: The framework utilized image segmentation models to generate the masks of bone area, tooth, and cementoenamel junction (CEJ) lines from intraoral radiographs. These masks were used to detect and extract teeth bounding boxes utilizing several image analysis methods. Then, individual teeth were matched with a patient’s panoramic images (if available) or tooth repositories for assigning tooth numbers using the multi-scale matching strategy. This framework was tested on 1240 intraoral radiographs different from the training and internal validation cohort to avoid data snooping. Besides, a web interface was designed to generate a report for different dental abnormalities with tooth numbers to evaluate this framework’s practicality in clinical settings. Results: The proposed method achieved the following precision and recall via panoramic view: 0.96 and 0.96 (via panoramic view) and 0.87 and 0.87 (via repository match) by handling tooth shape variation and outperforming other state-of-the-art methods. Additionally, the proposed framework could accurately arrange a set of intraoral radiographs into an FMS arrangement template based on positions and tooth numbers with an accuracy of 95% for periapical images and 90% for bitewing images. The accuracy of this framework was also 94% in the images with missing teeth and 89% with restorations. Conclusions: The proposed tooth numbering model is robust and self-contained and can also be integrated with other dental diagnosis modules, such as alveolar bone assessment and caries detection. This artificial intelligence-based tooth detection and tooth number assignment in dental radiographs will help dentists with enhanced communication, documentation, and treatment planning accurately. In addition, the proposed framework can correctly specify detailed diagnostic information associated with a single tooth without human intervention
    corecore