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ABSTRACT 

 

A Deep Learning-based Computer-

aided Diagnosis Method for 

Radiographic Bone Loss and 

Periodontitis Stage: A Multi-device 

Study 

 

Sang-Jeong Lee 

Department of Biomedical Radiation Sciences 

Graduate School of Convergence Science and 

Technology 

Seoul National University 

 

Periodontal diseases, including gingivitis and periodontitis, are some of 

the most common diseases that humankind suffers from. The decay of alveolar 

bone in the oral and maxillofacial region is one of the main symptoms of 
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periodontal disease. This leads to alveolar bone loss, tooth loss, edentulism, and 

masticatory dysfunction, which indirectly affects nutrition. In 2017, the 

American Academy of Periodontology and the European Federation of 

Periodontology proposed a new definition and classification criteria for 

periodontitis based on a staging system. Recently, computer-aided diagnosis 

(CAD) based on deep learning has been used extensively for solving complex 

problems in radiology.  

In my previous study, a deep learning hybrid framework was developed 

to automatically stage periodontitis on dental panoramic radiographs. This was 

a hybrid of deep learning architecture for detection and conventional CAD 

processing to achieve classification. The framework was proposed to 

automatically quantify the periodontal bone loss and classify periodontitis for 

each individual tooth into three stages according to the criteria that was 

proposed at the 2017 World Workshop. In this study, the previously developed 

framework was improved in order to classify periodontitis into four stages by 

detecting the number of missing teeth/implants using an additional 

convolutional neural network (CNN). A multi-device study was performed to 

verify the generality of the method. 

A total of 500 panoramic radiographs (400, 50, and 50 images for device 

1, device 2, and device 3, respectively) from multiple devices were collected to 

train the CNN. For a baseline study, three CNNs, which were commonly used 

for segmentation tasks and the modified CNN from the Mask Region with CNN 

(R-CNN) were trained and tested to compare the detection accuracy using 
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dental panoramic radiographs that were acquired from multiple devices. In 

addition, a pre-trained weight derived from the previous study was used as an 

initial weight to train the CNN to detect the periodontal bone level (PBL), 

cemento-enamel junction level (CEJL), and teeth/implants to achieve a high 

training efficiency. The CNN, trained with the multi-device images that had 

sufficient variability, can produce an accurate detection and segmentation for 

the input images with various aspects.  

When detecting the missing teeth on the panoramic radiographs, the 

values of the precision, recall, F1-score, and mean average precision (AP) were 

set to 0.88, 0.85, 0.87, and 0.86, respectively, by using CNNv4-tiny. As a result 

of the qualitative and quantitative evaluation for detecting the PBL, CEJL, and 

teeth/implants, the Mask R-CNN showed the highest dice similarity 

coefficients (DSC) of 0.96, 0.92, and 0.94, respectively.  

Next, the automatically determined stages from the framework were 

compared to those that were developed by three oral and maxillofacial 

radiologists with different levels of experience. The mean absolute difference 

(MAD) between the periodontitis staging that was performed by the automatic 

method and that by the radiologists was 0.31 overall for all the teeth in the 

whole jaw. The classification accuracies for the images from the multiple 

devices were 0.25, 0.34, and 0.35 for device 1, device 2, and device 3, 

respectively.  

The overall Pearson correlation coefficient (PCC) values between the 

developed method and the radiologists’ diagnoses were 0.73, 0.77, and 0.75 for 
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the images from device 1, device 2, and device 3, respectively (p < 0.01). The 

final intraclass correlation coefficient (ICC) value between the developed 

method and the radiologists’ diagnoses for all the images was 0.76 (p < 0.01). 

The overall ICC values between the developed method and the radiologists’ 

diagnoses were 0.91, 0.94, and 0.93 for the images from device 1, device 2, and 

device 3, respectively (p < 0.01). The final ICC value between the developed 

method and the radiologists’ diagnoses for all the images was 0.93 (p < 0.01).  

In the Passing and Bablok analysis, the slopes were 1.176 (p > 0.05), 

1.100 (p > 0.05), and 1.111 (p > 0.05) with the intersections of -0.304, -0.199, 

and -0.371 for the radiologists with ten, five, and three-years of experience, 

respectively. For the Bland and Altman analysis, the average of the difference 

between the mean stages that were classified by the automatic method and those 

diagnosed by the radiologists with ten-years, five-years, and three-years of 

experience were 0.007 (95 % confidence interval (CI), -0.060 ~ 0.074), -0.022 

(95 % CI, -0.098 ~ 0.053), and -0.198 (95 % CI, -0.291 ~ -0.104), respectively.  

The developed method for classifying the periodontitis stages that 

combined the deep learning architecture and conventional CAD approach had 

a high accuracy, reliability, and generality when automatically diagnosing 

periodontal bone loss and the staging of periodontitis by the multi-device study. 

The results demonstrated that when the CNN used the training data sets with 

increasing variability, the performance also improved in an unseen data set. 
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INTRODUCTION 

 

Periodontitis is one of the most common diseases that humankind 

suffers from, and it is the sixth most prevalent disease in the world. The decay 

of alveolar bone is one of the main symptoms of periodontitis and this leads to 

tooth loss, edentulism, and masticatory dysfunction [1].  

In 1989, the need for a classification system for periodontitis was felt, 

to provide a standard for studying the pathogenesis, etiology, and treatment of 

the disease, and a simple classification criterion was established in 1993 [2]. 

Subsequently, the classification systems for periodontitis have been 

continuously revised according to the newly identified scientific and clinical 

evidence [3]. In 2017, a new classification system for periodontitis based on a 

staging and grading strategy was proposed at the World Workshop on the 

Classification of Periodontal and Peri‐Implant Diseases and Conditions. The 

stage of periodontitis is determined by its severity, complexity, and other factors, 

and it is divided into four levels [4]. 

In general, the clinical attachment loss (CAL) is measured with a 

periodontal probe, and it is used to evaluate the periodontal health. However, 

this method is limited in terms of its reliability, and it can be replaced with the 

radiographic bone loss (RBL) that is measured in radiographic images [4].  

Conventional computer-aided diagnosis (CAD) systems can support the 

clinicians’ decision-making process by extracting the significant features from 
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medical images that are produced by various modalities [5]. However, the 

conventional CAD approach has limitations such as difficulty in extraction due 

to the diversity of the disease patterns and it is a time-consuming process [6]. 

Machine learning based CAD methods can be applied to analyze the 

retrospective medical data of patients and produce the extracted features with 

certain disease outcomes [5]. Recent methods that are based on deep learning, 

which is a subset of machine learning, can automatically extract the relevant 

features during training, and it uses the whole image directly without the best-

feature representation [7-9]. Deep convolutional neural network (CNN), a form 

of deep learning, is the most commonly used method for segmentation [10, 11], 

classification [12, 13], and detection [14, 15] of organs and related diseases in 

medical imaging. For the detection and classification, a variety of studies have 

been conducted to determine the specific categorical features of the target 

organs or the intended regions [16].  

In the oral and maxillofacial field, CAD approaches that are integrated 

with CNNs have been used widely to solve complex clinical problems such as 

detecting landmarks in cephalograms [17], detecting teeth and classification 

[18-20], diagnosing cavities [21-25], and detecting maxillary sinusitis [26]. 

These can provide dental professionals with a second opinion that are 

automatically derived by CAD with deep learning approaches. In regard to 

periodontal diseases, several related methods that use a large number of images 

based on the CNNs have been trained to detect RBL on dental panoramic 



3 

 

radiographs without quantification of the loss and classification of the 

periodontitis stages [27, 28].  

In a previous study, a deep learning hybrid framework was developed 

to automatically classify periodontitis of the individual teeth on the dental 

panoramic radiographs for the first time. The deep learning architecture was 

combined with the conventional CAD approach to detect and classify the 

periodontitis into three stages according to the 2017 World Workshop criteria. 

However, the previous method was not able to diagnose periodontitis stage four 

because it could not detect and quantify the locations of the missing teeth. In 

addition, this method only uses images that are acquired from a single modality, 

thus, resulting in poor dataset diversity and vendor dependent problems of the 

CNN. The detection accuracy of the CNN might degrade if the method was 

directly applied to the images that are collected from different centers or 

vendors [29]. To overcome this limitation, a CNN that uses transfer learning 

was developed to improve the detection accuracy of periodontal bone loss on 

the panoramic radiographs [30]. 

In this study, a deep learning-based CAD method was developed to 

classify periodontitis into four stages by using dental panoramic radiographs. 

This was achieved by implementing an additional CNN to the previously 

developed method [31]. To segment the anatomical structures on the multi-

device images, transfer learning was performed by using the weights derived 

from the previous study [31] to train the Mask R-CNN. The trained CNN 

automatically detected and quantified the missing teeth to classify between 
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periodontitis stages three and four as per the 2017 World Workshop criteria. In 

addition, a multi-device study was performed to address the generality issue of 

the developed framework that used the dental panoramic radiographs, acquired 

with multiple devices from different vendors. 
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MATERIALS AND METHODS 

 

Overall process for deep learning-based computer-aided diagnosis method 

Figure 1 shows the overall process for a deep learning-based CAD 

method for measuring the RBL and determining the periodontitis stage. All 

panoramic radiographs that were used in this study were collected 

retrospectively after removing the identifiable patient information. The study 

was approved by the Institutional Review Board (IRB) of the Seoul National 

University Dental Hospital (ERI18001) with a waiver of informed consent. The 

data collection and all the experiments were performed in accordance to the 

relevant guidelines and regulations.  
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Figure 1. Overall process for a developed deep learning-based computer-aided 

diagnosis (CAD) method for radiographic bone loss and periodontitis stage on 

dental panoramic radiographs. 
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 Data preparation of dental panoramic radiographs from multiple devices 

The panoramic radiographs of each patient were acquired with three 

dental panoramic x-ray machines from three devices. A total of 410 panoramic 

radiographs of the patients were acquired by using device 1, an 

orthopantomograph OP 100 (Instumentarium corporation, Tuusula, Finland). A 

total of 60 panoramic radiographs of the patients for devices 2 and 3 were 

acquired using PaX-i3D Smart (Vatech, Seoul, Korea) and Point3D Combi 

(PointNix, Seoul, Korea), respectively. A total of 530 panoramic radiographs, 

excluding the images of the patients with primary or mixed dentition, were 

collected to prepare the datasets for training and testing the CNNs and the 

descriptions are summarized in Table 1. With regard to the panoramic image 

dataset, 500, 500, and 300 images were used to detect the anatomical structures, 

such as the periodontal bone level (PBL), cementoenamel junction level (CEJL), 

and teeth/implants, respectively. In addition, three configurations of the dataset 

were made for a multi-device study. The first dataset contained all the images 

from the three devices, and the images in the dataset were also randomly 

separated into a training set (90 %) and a test set (10 %). In the second dataset, 

the images from devices 1 and 2 were used as the training set, and images from 

device 3 were used as the test set. Similarly, for the third dataset, images from 

devices 1 and 3 were used as the training set, and the images from device 2 

were used as the test set. For all the datasets, the number of images that were 

included in the training set and the test set remained the same. 
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To detect the location of the missing teeth and to quantify their number, 

the image of the patient with the missing teeth was selected and classified into 

two types according to the number of missing teeth. The loss of one non-

contiguous tooth was classified as type 1, and loss of two consecutive teeth was 

classified as type 2. As a result of the selection, 147 and 62 images were used 

for detecting and quantifying the missing teeth for type 1 and type 2, 

respectively. The images in the dataset were also randomly separated into a 

training set (90 %) and a test set (10 %).  

The training set was used for CNN detection training, and the testing set 

was used to evaluate the final trained model. Data augmentation was performed 

to increase the number of images in the training set. The images were flipped 

horizontally, rotated, and translated, and their gray values were transformed by 

contrast-normalization. Therefore, the number of images increased by 64 times 

in comparison to the original amount. After training the CNNs, thirty 

panoramic radiographs (ten images for each device), which were not used for 

the detection, were used to evaluate the classification performance for 

diagnosing the RBL and the periodontitis stage. 
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Table 1. The descriptions of the dental panoramic X-ray machines used for 

collecting the patient’s dental panoramic radiographs. 

Vendors Modalities 
Number of 

images 

Image size 

(pixels) 

Field of view 

(cm) 

Instumenta

rium Corp. 

Orthopantomogra

ph OP 100 
400 1,976 x 976 30 x 15 

Vatech PaX-i3D Smart 50 2,752 x 1,372 20.20 x 10.5 

PointNix Point3D Combi 50 2,000 x 1,152 31.25 x 10 
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Detection of PBL and CEJL structures and teeth using CNNs  

By using a similar procedure in a previous study [31], the PBL was 

annotated as one simple structure for the whole jaw on the panoramic 

radiograph; the CEJL of the teeth (the fixture top level of implants) was 

annotated as one structure that included the crowns of the teeth and implants at 

the maxilla and the mandible, respectively. In addition, the boundary of each 

tooth and implant was independently annotated as one structure. All the 

annotation processes were performed using the open source labeling software, 

LabelBox (Labelbox Inc, CA). The oral and maxillofacial (OMF) radiologists 

also reviewed and corrected the annotated images before training the CNNs. 

A baseline study was performed to compare the accuracy with the CNNs 

that mainly used medical image segmentation technology. To compare the 

segmentation accuracy, U-Net [32], Dense U-Net [33], SegNet [34], and Mask 

R-CNN [35], which was used in a previous study, were trained with the same 

dataset to detect the PBL, CEJL, and teeth/implants on the panoramic 

radiograph. In addition, Mask R-CNN was trained for detecting the PBL, CEJL, 

and teeth/implants by using three dataset configurations for the multi-device 

study. After training all the CNNs, the segmentation accuracy of each CNN was 

calculated using the images in the test set. All the CNNs were implemented by 

using Python with the Keras and TensorFlow libraries. The input resolution of 

the images was modified from the original sizes of the multi-device images to 

1024 × 1024 pixels to improve the training efficiency. The developed CNN was 
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trained by applying the transfer learning method based on the weights that were 

calculated in the previous study. Table 2 shows the strategies for training each 

CNN for the baseline study on GeForce GTX 1080 Ti (NVIDIA, Santa Clara, 

USA). 

After training, the CNNs produced a segmentation mask of the 

anatomical structures for the input panoramic image. A binary image of the 

structure that was enclosed by the periodontal bone levels was produced via the 

binarization of the segmentation mask area and the remaining area. The 

periodontal bone levels were then detected by extracting the edge of the binary 

image (Figure 2a-c). The same process was applied for the detection of the 

CEJL (Figure 2d-f), teeth, and implants from their segmentation mask (Figure 

2g-i).  
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Table 2. The detailed strategies for training the CNNs to detect the periodontal 

bone level (PBL), the cemento-enamel junction level (CEJL), and the 

teeth/implants.  

Model U-Net Dense U-Net SegNet Mask R-CNN 

Epoch 100 100 100 300 

Learning 

rate 
0.001 0.00001 0.001 

0.01  

(1/10 per 100 epoch) 

Batch 

size 
4 4 4 2 

Number 

of GPU 
1 1 1 2 
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Figure 2. Detection results for the periodontal bone level (PBL) (a-c), the cemento-enamel junction level (CEJL) (d-f), and the teeth/implants 

(g-i) by the Mask R-CNN. The first, second, and third rows are images from the device 1, device 2, and device 3, respectively.
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Detection of the missing teeth using the CNNs 

Each image was manually labeled by drawing rectangular bounding 

boxes around the location of the missing teeth with a labeling software for the 

bounding box detection task named the YOLO mark [36]. The OMF 

radiologists also reviewed and corrected the annotated images before training 

the CNNs. Four modified CNNs from the YOLOv3 [37] and YOLOv4 [38] 

networks named CNNv3, CNNv3-tiny, CNNv4, and CNNv4-tiny were used for 

detecting and quantifying the missing teeth on the panoramic radiographs. 

YOLOv4 was designed by replacing YOLOv3's backbone network from 

DarkNet [39] to DarkNet with Cross-Stage-Partial-connections (CSP) [40], 

followed by adding spatial pyramid pooling (SPP) [41] and path aggregation 

network (PAN) [42] modules. Using the same dataset, the detection accuracy 

of four CNNs with a different number of parameters and layer depths were 

compared to each other. A hypothesis that the change in the number of 

parameters and layer depth affects the accuracy of detecting the missing teeth 

on the panoramic radiographs was demonstrated through this evaluation. Table 

3 shows the detailed configurations of the CNNs.  

To detect the missing teeth, the CNNs predicted the bounding boxes, 

confidence, and classes through a logistic regression [43]. The CNNs were 

trained using the images with different scales that consisted of 320 × 320, 416 

× 416, and 608 × 608 pixels, which made it possible to predict the locations of 

the smaller region. The network was trained on a total of 2,000 epochs with a 

64-batch size and one- or two-stride sizes. The network outputted bounding 
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boxes and the confidence (probability) that the bounding box enclosed a lesion 

for the input panoramic image after training.  
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Table 3. The structural configurations and detailed strategies for training the 

CNNs to detect the missing teeth. 

Model CNNv3-tiny CNNv3 CNNv4-tiny CNNv4 

Backbone DarkNet DarkNet CSPDarkNet CSPDarkNet 

Layers 23 106 37 161 

Learning 

rate 
0.001 0.001 0.001 0.001 

Epoch 2,000 2,000 2,000 2,000 

Batch size 64 64 64 64 

Number 

of GPU 
2 2 2 2 
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Staging periodontitis by the conventional CAD method 

The method of automatically diagnosing the stage of periodontitis was 

the same as the method that was used in my previously published paper [31]. 

The principal axis of the tooth or the implant was determined by applying the 

principal axes of inertia to their boundary images [44-46]. The direction of the 

minor axis for the minimum moment of inertia was defined as the long-axis 

orientation of the tooth/implant (Figure 3a-c). Then, two intersection points for 

the tooth/implant long-axis with the PBL and CEJL (the fixture top level for the 

implant) that was detected by the CNN was used to calculate the two tooth 

intersection lengths. These are the distances between the intersection points and 

the root apex point of the tooth for the maxillary and mandibular teeth, 

respectively.  

The percentage rate of the RBL for the tooth/implant was defined as the 

ratio of the intersection length of the PBL and the CEJL (Figure 3d-f). Based 

on the percentage rate, the periodontal bone loss of the tooth was automatically 

classified to identify the stage of periodontitis according to the criteria that was 

proposed at the 2017 World Workshop on the Classification of Periodontal and 

Peri-implant Diseases and Conditions [47] (Figure 3g-i). The staging criteria 

for periodontitis that is based on the RBL of the tooth are as follows. (1) If the 

RBL was < 15 % (in the coronal third of the root), the periodontitis was 

classified as stage one. (2) If the RBL was between 15 % and 33 % (in the 

coronal third of the root), it was classified as stage two. (3) If the RBL was > 

33 % (extending to the middle third of the root and beyond), it was classified 
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as stage three. (4) If the sum of the number of detected missing teeth and 

implants was greater than four under the same condition as stage three, then it 

was classified as stage four [47]. 
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Figure 3. The long-axis orientations of the tooth and the implant (a-c), the intersection points of the tooth (implant) long-axis with the periodontal 

bone level (PBL) and the cemento-enamel junction level (CEJL) (fixture top level), the percentage rate of the radiographic bone loss (RBL) (d-

f), and the stages of the periodontitis for each tooth and implant (g-i). The first, second, and third rows are images from device 1, device 2, and 

device 3, respectively 
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Evaluation of the detection and classification performance 

To evaluate the detection performance of the PBL, CEJL, and 

teeth/implants, the dice similarity coefficient (DSC) (2|𝑆𝑔𝑡 ∩ 𝑆𝑑𝑒𝑡|/(|𝑆𝑔𝑡| +

|𝑆𝑑𝑒𝑡|)) was measured between the ground-truth (𝑆𝑔𝑡) and the detected (𝑆𝑑𝑒𝑡) 

structures [48-50]. Then, the precision (TP / (FP + TP)), recall (TP / (FN + TP)), 

F1-score (2 × precision × recall / (precision + recall)), and mean average 

precision (AP) values [51, 52] were measured to evaluate the detection 

performance for the missing teeth. The precision-recall (PR) curve was also 

computed from the model’s detection output by varying the confidence 

threshold that determined what was considered to be a model-predicted positive 

detection [51]. The AP was calculated as the average value of the precision 

across all the recall values. 

To evaluate the performance for classifying the periodontitis stages, the 

automatically determined stages by the developed method were compared to 

those that were determined by the three OMF radiologists (including a resident 

with three-years of experience, a fellow with five-years of experience, and a 

professor with ten-years of experience). The mean absolute difference (MAD) 

between the stage values that used the developed method and the radiologists’ 

diagnoses was calculated by performing the ANOVA test. In addition, when 

considering the characteristics of the panoramic radiographic images, such as 

an inconsistent image magnification and distortion, the teeth were classified by 

their position and their MAD was calculated. Finally, because alveolar bone 

loss does not occur independently in a single tooth, the mean stage was 
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calculated by averaging the automatically determined periodontitis stages for 

all the teeth in each image. Afterwards, the MAD was calculated by comparing 

it to the mean stage that was determined by the radiologists. 

For the correlation analysis, the Pearson correlation coefficients (PCC) 

and intraclass correlation coefficients (ICC) between the stage values were 

calculated to evaluate the correlativity and reliability, respectively using a 

statistical software program [53, 54] (SPSS, SPSS Inc., Chicago, IL, USA). The 

Bland and Altman plots [55] were computed to evaluate the degree of 

agreement between the mean stages that used the developed method and the 

radiologists’ diagnoses. A non-parametric regression analysis was also 

performed to see whether similar results were obtained between the two 

methods while applying the Passing–Bablok regression [56]. 
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RESULTS 

 

Detection performance for the anatomical structures 

Figures 4 and 5 show the best and worst cases for the detection results, 

respectively, for the PBL, CEJL, and teeth/implants. These were obtained by 

the CNNs that used the dental panoramic radiographs acquired through multiple 

devices. In regard to the images for the worst cases, excluding the Mask R-

CNN results, excessively (false positive) or insufficiently (false negative) 

detected regions were included in the results (Figure 5).  

For the baseline study, the DSC values for U-Net, Dense U-Net, SegNet, 

and Mask R-CNN were 0.86, 0.96, 0.96, and 0.96, respectively, for the 

detection of the PBL. For the detection of the CEJL, these values were 0.82, 

0.91, 0.92, and 0.92, respectively, and, for the detection of the teeth/implants, 

0.86, 0.88, 0.88, and 0.94, respectively (Table 4).  

For the multi-device study, the DSC values for Mask R-CNN were 0.96, 

0.86, and 0.81, for the first, second, and third dataset configurations, 

respectively, to detect the PBL. For the detection of the CEJL, these values were 

0.92, 0.79, and 0.78, respectively, and, for the detection of the teeth/implants, 

these values were 0.94, 0.79, and 0.75, respectively. The detection accuracies 

for the second and third dataset configurations did not achieve acceptable levels 

for use in the automatic diagnosis of the RBL and the periodontitis stage. 
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Figure 4. The best cases of detection results for the periodontal bone level (PBL) (a-e), the cemento-enamel junction level (CEJL) (f-j), and the 

teeth/implants (k-o) by the CNNs. 
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Figure 5. The worst cases of detection results for the periodontal bone level (PBL) (a-e), the cemento-enamel junction level (CEJL) (f-j), and 

the teeth/implants (k-o) by the CNNs. Locations of the false positive and negative errors are indicated in yellow and red by arrows, respectively. 
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Table 4. Dice similarity coefficient (DSC) values for detection performance of 

the periodontal bone level (PBL), the cemento-enamel junction level (CEJL), 

and the teeth/implants by the CNNs for the multi-device images. 

 U-Net 
Dense 

U-Net 
SegNet 

Mask 

R-CNN 

PBL 

Device1 0.88±0.02 0.98±0.02 0.96±0.01 0.95±0.01 

Device2 0.84±0.04 0.94±0.02 0.96±0.01 0.96±0.04 

Device3 0.85±0.03 0.97±0.02 0.95±0.01 0.97±0.01 

Total 0.86±0.03 0.96±0.03 0.96±0.03 0.96±0.01 

CEJL 

Device1 0.83±0.02 0.92±0.02 0.93±0.01 0.92±0.03 

Device2 0.81±0.02 0.91±0.04 0.91±0.02 0.91±0.10 

Device3 0.82±0.01 0.90±0.02 0.92±0.01 0.92±0.10 

Total 0.82±0.02 0.91±0.03 0.92±0.06 0.92±0.08 

Teeth/ 

Implants 

Device1 0.88±0.02 0.90±0.01 0.89±0.05 0.96±0.02 

Device2 0.85±0.01 0.91±0.01 0.87±0.04 0.95±0.01 

Device3 0.84±0.02 0.84±0.02 0.88±0.08 0.91±0.01 

Total 0.86±0.02 0.88±0.03 0.88±0.07 0.94±0.03 
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Detection performance for missing teeth 

Figure 6 shows the detection results for the missing teeth by using 

CNNv4-tiny, and these were obtained using the dental panoramic radiographs 

that were acquired with multiple devices from multiple vendors. The bounding 

boxes were drawn around the positions of the detected missing teeth and they 

were superimposed on the input images. To quantitatively evaluate the 

performance of the CNNs, the precision, recall, F1-score, and mean AP values 

were calculated for the detection of the missing teeth (Table 5). The precision 

values for CNNv3-tiny, CNNv3, CNNv4-tiny, and CNNv4 were 0.85, 0.85, 

0.88, and 0.85, respectively (Table 5). The recall values for CNNv3-tiny, 

CNNv3, CNNv4-tiny, and CNNv4 were 0.66, 0.83, 0.85, and 0.85, respectively 

(Table 5). The F1-score values for CNNv3-tiny, CNNv3, CNNv4-tiny, and 

CNNv4 were 0.74, 0.84, 0.87, and 0.85, respectively (Table 5). The mean of 

the AP values for CNNv3-tiny, CNNv3, CNNv4-tiny, and CNNv4 were 0.76, 

0.83, 0.86, and 0.82, respectively (Table 5). Figure 6 shows the precision-recall 

(PR) curves for detecting the missing teeth with the CNNs. CNNv4-tiny 

showed the highest accuracy for detecting the missing teeth on the panoramic 

radiographs. 
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Figure 6. The detection results for the missing teeth by the CNNv4-tiny using 

dental panoramic radiographs acquired from multiple devices. The detected 

bounding boxes of the locations of the missing teeth were superimposed on the 

input images for type 1 (a-c) and type 2 (d-f). The first, second, and third rows 

are the images from the device 1, device 2, and device 3, respectively. 
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Table 5. Precision, recall, F1-score, and mean average precision (AP), for 

detecting the missing teeth on the multi-device images by the CNNs.  

 CNNv3-tiny CNNv3 CNNv4-tiny CNNv4 

Precision 0.85 0.85 0.88 0.85 

Recall 0.66 0.83 0.85 0.85 

F1-score 0.74 0.84 0.87 0.85 

Mean AP 0.76 0.83 0.86 0.82 
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Figure 7. Precision-recall (PR) curves from automatic detection of the misiing 

teeth with CNNv3-tiny, CNNv3, CNNv4-tiny, and CNNv4. 
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Classification performance for the periodontitis stages 

Figure 3 shows the long-axis orientations of the tooth and the implant 

that was determined by the principal axes of inertia and the intersection points 

of the tooth’s (implant) long-axis with the PBL and CEJL (fixture top level). 

Figure 3 also shows the percentage rate of the RBL and the completely 

classified stages of the periodontitis for the teeth/implants according to the 

criteria that was proposed at the 2017 World Workshop on the Classification of 

Periodontal and Peri-implant Diseases and Conditions [47]. Figure 8 shows the 

completely classified stages of the periodontitis for the teeth/implants using the 

multi-device images. Figures 8e, j, and o show the images of the teeth that are 

classified as stage four periodontitis because the total number of missing teeth 

and implants was five or more. 

 To evaluate the classification performance of the periodontal bone loss, 

the mean absolute differences (MAD) between the stages that were classified 

by the automatic method and the radiologists’ diagnoses were compared. These 

MAD values were 0.26, 0.31, and 0.35 for the radiologists with ten-years, five-

years, and three-years of experience, respectively, for the teeth of the whole jaw 

(Table 6). The overall MAD between the stages with the automatic method and 

the radiologists while using all the images was 0.31. For the images from 

multiple devices, the MAD values were 0.25, 0.34, and 0.35 for device 1 [31], 

device 2, and device 3, respectively, for the teeth/implants for the whole jaw 

(Table 6). Table 7 shows the MAD values with respect to the types of teeth. 
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These overall MAD values for the incisors, canines, premolars, and molars 

were 0.37 ± 0.44, 0.30 ± 0.40, 0.30 ± 0.45, and 0.31 ± 0.44, respectively. 

The MAD for the incisors was slightly higher than those for the rest of the types 

of teeth, but there were no significant statistical differences (p > 0.05). Table 8 

shows the MAD values of the difference between the average stages for one 

image. These MAD values were 0.13, 0.16, and 0.25 for the radiologists with 

ten-years, five-years, and three-years of experience, respectively, for all the 

images, and 0.10, 0.21, and 0.24 for the device 1, device 2, and device 3 images, 

respectively. The overall MAD value between the average stages of the images 

obtained by the automatic method and by all the radiologists was 0.18. The 

stages that were classified by the automatic method were not significantly 

different from those that were diagnosed by the radiologists (p > 0.05).
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Figure 8. The stages of the periodontitis for each tooth and implant on the dental panoramic radiographs acquired from multiple devices. The 

automatic diagnosis results by the developed method on the images. The first, second, and third rows are the images from the device 1, device 

2, and device 3, respectively.
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Table 6. The mean absolute differences (MADs) between periodontitis stages 

obtained using the automatic method and those diagnosed by the radiologists 

(with ten-years, five-years, and three-years of experience) using the multi-

device images. 

Device1 [31] 

 Maxilla Mandible Whole jaw 

Rad. - 10yrs  0.23±0.19 0.19±0.12 0.21±0.12 

Rad. - 5yrs 0.26±0.17 0.25±0.13 0.25±0.11 

Rad. - 3yrs 0.29±0.10 0.21±0.11 0.25±0.07 

Mean 0.27±0.45 0.23±0.43 0.25±0.44 

Device2 

Rad. - 10yrs  0.26±0.13 0.31±0.16 0.30±0.13 

Rad. - 5yrs 0.33±0.19 0.26±0.11 0.38±0.20 

Rad. - 3yrs 0.39±0.15 0.49±0.24 0.37±0.14 

Mean 0.33±0.13 0.35±0.13 0.34±0.10 

Device3 

Rad. - 10yrs  0.34±0.13 0.25±0.11 0.28±0.13 

Rad. - 5yrs 0.44±0.21 0.31±0.19 0.29±0.15 

Rad. - 3yrs 0.35±0.15 0.42±0.27 0.45±0.25 

Mean 0.37±0.14 0.33±0.16 0.35±0.09 

Overall 

Rad. - 10yrs  0.27±0.16 0.25±0.14 0.26±0.14 

Rad. - 5yrs 0.34±0.20 0.27±0.14 0.31±0.18 

Rad. - 3yrs 0.34±0.14 0.37±0.24 0.35±0.19 

Mean 0.32±0.17 0.30±0.19 0.31±0.18 

Rad. = radiologist; yrs = years of experience 
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Table 7. The mean absolute differences (MADs) between periodontitis stages 

for types of teeth obtained using the automatic method and those diagnosed by 

the radiologists (with ten-years, five-years, and three-years of experience) using 

the multi-device images. 

Device1 

 Incisors Canines Premolars Molars 

Rad. - 10yrs  0.23±0.30 0.28±0.35 0.18±0.36 0.26±0.37 

Rad. - 5yrs 0.29±0.40 0.18±0.31 0.21±0.36 0.39±0.51 

Rad. - 3yrs 0.26±0.39 0.20±0.27 0.27±0.47 0.32±0.43 

Mean 0.26±0.36 0.22±0.31 0.22±0.40 0.32±0.44 

Device2 

Rad. - 10yrs  0.38±0.48 0.20±0.35 0.26±0.48 0.28±0.42 

Rad. - 5yrs 0.33±0.48 0.30±0.50 0.21±0.42 0.35±0.45 

Rad. - 3yrs 0.41±0.48 0.35±0.46 0.53±0.60 0.41±0.57 

Mean 0.37±0.48 0.28±0.44 0.33±0.50 0.35±0.48 

Device3 

Rad. - 10yrs  0.45±0.52 0.30±0.40 0.31±0.48 0.38±0.50 

Rad. - 5yrs 0.45±0.41 0.38±0.38 0.39±0.52 0.28±0.47 

Rad. - 3yrs 0.56±0.52 0.53±0.56 0.38±0.38 0.15±0.23 

Mean 0.49±0.48 0.40±0.45 0.36±0.46 0.23±0.37 

Overall 

Rad. - 10yrs  0.35±0.43 0.26±0.37 0.25±0.44 0.28±0.41 

Rad. - 5yrs 0.35±0.43 0.28±0.40 0.27±0.43 0.34±0.48 

Rad. - 3yrs 0.41±0.46 0.36±0.43 0.39±0.48 0.29±0.41 

Mean 0.37±0.44 0.30±0.40 0.30±0.45 0.31±0.44 

Rad. = radiologist; yrs = years of experience 
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Table 8. The mean absolute differences (MADs) between mean periodontitis 

stage of image obtained using the automatic method and those diagnosed by the 

radiologists (with ten-years, five-years, and three-years of experience) using the 

multi-device images. 

 Device1 Device2 Device3 Overall 

Rad. - 10yrs  0.06±0.07 0.15±0.11 0.20±0.13 0.13±0.12 

Rad. - 5yrs 0.11±0.09 0.19±0.12 0.19±0.14 0.16±0.12 

Rad. - 3yrs 0.12±0.09 0.30±0.18 0.34±0.22 0.25±0.19 

Mean 0.10±0.05 0.21±0.09 0.24±0.10 0.18±0.10 

Rad. = radiologist; yrs = years of experience 
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Classification performance of the correlations, regressions, and agreements 

between the periodontitis stages 

Table 9 shows the PCC values of the automatic method and the 

radiologists’ diagnoses. The overall PCC values between the developed method 

and the radiologists’ diagnoses were 0.73, 0.77, and 0.75 for the images from 

device 1 [31], device 2, and device 3, respectively (p < 0.01). The final ICC 

value between the developed method and the radiologists’ diagnoses for all the 

images was 0.76 (p < 0.01). The PCC between the diagnoses of the automatic 

method and the radiologist with ten-years of experience showed the highest 

correlation. This PCC showed a strong correlation between the radiologists and 

the automatic diagnoses.  

Table 10 shows the ICC values of the automatic method and the 

radiologists’ diagnoses. The ICC between the diagnoses of the automatic 

method and the radiologist with ten-years of experience showed the highest 

correlation. The automatic classification in the developed method had a high 

reliability with the radiologists’ diagnoses. The overall ICC values between the 

developed method and the radiologists’ diagnoses were 0.91, 0.94, and 0.93 for 

the images from device 1 [31], device 2, and device 3, respectively (p < 0.01). 

The final ICC value between the developed method and the radiologists’ 

diagnoses for all the images was 0.93 (p < 0.01). This ICC value indicated an 

excellent reliability of the automatic diagnoses for the RBL and the 

periodontitis stage.  
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Figures 9 and 10 show the results of the Passing and Bablok regression 

analysis and the Bland and Altman analysis, respectively. For the Passing and 

Bablok analysis, the closer the slope of the regression line is to one (identity), 

the higher the agreement between the two methods. In the Passing and Bablok 

plots, the slopes were 1.176 (p > 0.05), 1.100 (p > 0.05), and 1.111 (p > 0.05) 

with the intersections of -0.304, -0.199, -0.371 for the radiologists with ten-

years, five-years, and three-years of experience, respectively. In the Bland and 

Altman plots, the average of the difference between the mean stages that were 

classified by the automatic method and those that were diagnosed by the 

radiologists with ten-years, five-years, and three-years of experience were 

0.007 (95 % confidence interval (CI), -0.060 ~ 0.074), -0.022 (95 % CI, -0.098 

~ 0.053), and -0.198 (95 % CI, -0.291 ~ -0.104), respectively. These values 

indicated that the mean stages that were classified by the automatic method 

were not significantly different from those that were diagnosed by the 

radiologists (p > 0.05). 
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Table 9. The Pearson correlation coefficient (PCC) between stages obtained 

using the automatic method and those diagnosed by the radiologists (with ten-

years, five-years, and three-years of experience) using the multi-device images. 

Device1 [31] 

 
Automatic 

method 
Rad. - 10yrs Rad. - 5yrs Rad. - 3yrs 

Automatic 

method 
1 0.76* 0.73* 0.70* 

Rad. - 10yrs  0.76* 1 0.72* 0.70* 

Rad. - 5yrs 0.73* 0.72* 1 0.70* 

Rad. - 3yrs 0.70* 0.70* 0.70* 1 

Device2 

Automatic 

method 
1 0.82* 0.77* 0.73* 

Rad. - 10yrs  0.82* 1 0.85* 0.81* 

Rad. - 5yrs 0.77* 0.85* 1 0.86* 

Rad. - 3yrs 0.73* 0.81* 0.86* 1 

Device3 

Automatic 

method 
1 0.77* 0.72* 0.77* 

Rad. - 10yrs  0.77* 1 0.79* 0.80* 

Rad. - 5yrs 0.72* 0.79* 1 0.75* 

Rad. - 3yrs 0.77* 0.80* 0.75* 1 

Overall 

Automatic 

method 
1 0.80* 0.75* 0.74* 

Rad. - 10yrs  0.80* 1 0.81* 0.78* 

Rad. - 5yrs 0.75* 0.81* 1 0.79* 

Rad. - 3yrs 0.74* 0.78* 0.79* 1 

* = significant at p < 0.01; Rad. = radiologist; yrs = years of experience 
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Table 10. The intraclass correlation coefficient (ICC) between stages obtained 

using the automatic method and those diagnosed by the radiologists (with ten-

years, five-years, and three-years of experience) using the multi-device images. 

Device1 [31] 

 
Automatic 

method 
Rad. - 10yrs Rad. - 5yrs Rad. - 3yrs 

Automatic 

method 
1 0.86* 0.84* 0.82* 

Rad. - 10yrs  0.86* 1 0.84* 0.82* 

Rad. - 5yrs 0.84* 0.84* 1 0.82* 

Rad. - 3yrs 0.82* 0.82* 0.82* 1 

Device2 

Automatic 

method 
1 0.90* 0.87* 0.84* 

Rad. - 10yrs  0.90* 1 0.92* 0.90* 

Rad. - 5yrs 0.87* 0.92* 1 0.92* 

Rad. - 3yrs 0.84* 0.90* 0.92* 1 

Device3 

Automatic 

method 
1 0.87* 0.83* 0.87* 

Rad. - 10yrs  0.87* 1 0.88* 0.86* 

Rad. - 5yrs 0.83* 0.88* 1 0.86* 

Rad. - 3yrs 0.87* 0.86* 0.86* 1 

Overall 

Automatic 

method 
1 0.89* 0.86* 0.85* 

Rad. - 10yrs  0.89* 1 0.89* 0.88* 

Rad. - 5yrs 0.86* 0.89* 1 0.88* 

Rad. - 3yrs 0.85* 0.88* 0.88* 1 

* = significant at p < 0.01; Rad. = radiologist; yrs = years of experience 
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Figure 9. Scatter plots with Passing and Bablock regression of mean periodontitis stages obtained using the automatic method and those 

diagnosed by the radiologists with ten-years (a), five-years (b), and three-years (c) of experience.  
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Figure 10. Bland and Altman plots of mean periodontitis stages obtained using the automatic method and those diagnosed by the radiologists 

with ten-years (a), five-years (b), and three-years (c) of experience.  
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DISCUSSION 

 

CAD is a computerized method that can provide a second objective 

opinion to medical staff because of its ability to interpret medical images [57]. 

Recent CAD approaches were combined with deep learning, a subset of 

machine learning, to extract the relevant features from the images without using 

cropped patches [7]. The CNN, which is one of the most established algorithms 

for deep learning, automatically and adaptively learns the spatial configurations 

of the image features by using multiple types of layers. [7-9]. During medial 

image analysis, the CNNs were mainly implemented on a variety of CAD 

applications to classify, detect, and segment the features. 

One key task for radiologists is to make an appropriate differential 

diagnosis using each patient’s medical images. This classification task includes 

a wide range of applications from determining the presence or absence of a 

disease to identifying the type of malignancy. One early application was 

introduced to classify the lung nodules on the chest X-rays by using a simple 

CNN with two hidden layers [58]. With the development of computing power, 

deeper and more complex CNN models have been introduced to solve the 

classification problems in medical imaging analysis. A variety of modified 

applications that are based on the networks with convolutional layers, such as 

LeNet [59], ImageNet [60], GoogLeNet [61], visual geometry group (VGG) 

Net [62], DenseNet [63], ResNet [64], and their derivatives [65-67] were 
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developed to solve the classification problems for medical images with 

different modalities. 

Automatic detection is performed to identify and localize the regions 

with diseases, lesions, or anatomical structures in medical imaging analysis [68]. 

CNNs for the detection tasks are basically similar to those that are used for 

classification tasks. However, several layers with additional functions, such as 

a region proposal or regression, were added to the CNNs for detecting diseases 

or lesions. A variety of models, such as a simple structured CNN with a support 

vector machine (SVM) [69] to GoogLeNet [61], Inception [70], DetectNet [71], 

and YOLO [36] were used to detect diseases from the medical images.  

CNNs have been used to segment different anatomical structures or 

lesions in images with a variety of imaging modalities, which includes single-

view X-ray, CT, MR, and ultrasound images [72]. Regions with CNN (R-CNN) 

and its derivatives, such as Fast [73], Faster [74] and Mask R-CNN [35], are 

representative works for the region-based methods in medical image 

segmentation. Mask R-CNN is an extension of the Faster R-CNN, in which a 

branch is added that predicts the object mask in parallel with the existing branch 

for bounding box recognition [35]. Fully convolutional network (FCN)-based 

methods are able to learn mapping without extracting the region proposals [75]. 

The FCNs only had convolutional and pooling layers, which gave them the 

ability to make predictions on arbitrary-sized inputs [75]. The most popular 

network architecture for segmentation was U-net [32], which consisted of 

several convolution layers, followed by deconvolution layers with skip 
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connections. The derivatives of U-net, such as SegNet [34], V-Net [76], and 3D 

U-Net [77] have been used for multiple segmentation tasks on medical images. 

In dental imaging, various imaging modalities, such as periapical, 

cephalometric, panoramic radiographs, as well as cone-beam computed 

tomography (CBCT), have been used to detect and classify diseases with CNN-

based CAD approaches. A CNN named VGG-19 was trained to diagnose 

periodontally-compromised teeth on the periapical images [78]. Some CAD 

studies have used deep CNN analysis of the panoramic radiographs for the 

segmentation of teeth on panoramic images [20]. These studies also evaluated 

the root morphology of the mandibular first molar [25], detected sinusitis by 

learning the form of the maxillary sinus [26], and diagnosed osteoporosis by 

evaluating the cortical erosion of the mandibular inferior cortex [79].  

In 2017, the American Academy of Periodontology and the European 

Federation of Periodontology provided a new diagnostic framework for 

periodontitis based on a multidimensional stage and grade system [47]. The 

stage related to the severity and extent of periodontitis should be determined 

via the CAL, or the RBL if CAL is not available [47]. The stages from one to 

three can be determined from the four stages through CAL or RBL [47]. This 

grading also allowed for an assessment of the rate of periodontitis progression, 

which is mainly determined by the primary criteria that consists of direct and 

indirect evidence of progression [47]. The RBL evaluation is a highly valuable 

tool in assessing periodontal health [47, 80-82]. Panoramic radiographs and 

intra-oral periapical radiographs have been mainly used for RBL evaluation. 
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However, panoramic radiographs are the best modality to screen the lesions of 

the whole jaw. In addition, a previous study demonstrated a high level of 

agreement between intra-oral periapical and panoramic radiograph readings of 

the distances between the CEJL and the PBL as well as the proportional values 

in relation to the root length [83]. Manual measurement of the RBL for all teeth 

in a panoramic radiograph is very time-consuming and labor-intensive. In 

addition, the conventional intra-oral technique is expensive, time-consuming, 

and disagreeable to the patients, and the radiation doses in intra-oral 

radiography are not negligible. Therefore, an easy and automated method is 

essential to evaluate the RBL and to accurately stage the periodontitis on the 

panoramic radiographs. In the previous studies, the CNN based methods were 

proposed to detect the RBL on the dental panoramic radiographs without 

quantifying the RBL and classifying the periodontitis stage [27, 28]. In my 

previous study, an automatic method for diagnosing periodontal bone loss from 

dental panoramic radiographs was developed to stage the periodontitis [31] 

according to the new criteria that was proposed at the 2017 World Workshop 

[47] for the first time.  

In this study, a deep learning method was developed to automatically 

detect the anatomical structures, such as the PBL, CEJL, and teeth/implants. 

Then, the conventional CAD method was also developed to classify the 

periodontal bone loss by quantifying the number of missing teeth. 

The purpose of a baseline study is to determine the most suitable 

network (or model) for solving the target problem. In this study, three baseline 
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CNNs and Mask R-CNN were implemented to segment the anatomical 

structures. Regarding the quantitative results for detecting the PBL, CEJL, and 

teeth/implants from the baseline study, except for the results of U-Net, the DSC 

values of the CNNs were similar to each other (Table 4). Meanwhile, in the 

worst case for the qualitative evaluation results of the CNNs, excluding the 

developed CNN results, excessively or insufficiently detected regions were 

included in the results for the three remaining CNNs (Figure 5). Consequently, 

both false positive and negative errors were included in the results of the three 

CNNs that were used as the baseline. As a result of the baseline study, the Mask 

R-CNN was finally used for detecting the PBL, CEJL, and teeth/implants. 

To improve the generalization ability of the deep CNN for detecting the 

PBL, CEJL, and teeth/implants, a multi-device study was performed on an 

additional dataset [84]. A total of 500 panoramic radiographs (400, 50, and 50 

images for device 1, device 2, and device 3, respectively) from multiple devices 

were collected to train the CNN. Because the CNN learns statistical regularity 

that is specific to the training set, if the data for training the CNN are insufficient, 

the results show a low accuracy for a new data set [85]. The best solution to 

overcome this problem is to use a large amount of training images from multiple 

devices. However, in medical imaging, collecting and annotating a large dataset 

is not always easy. Transfer learning is the best solution to overcome this 

problem. Transfer learning is a machine learning method where a network that 

was developed for a former task is reused as the starting point for a network in 

a later task [86]. That is, the latter network uses a transferred weight (a pre-
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trained weight) that is gained while solving a former problem, as an initial 

weight for training to solve other related problems [87]. The former learning is 

called the source and the latter learning is called the target [88-90]. The method 

of training the network with pre-trained weights can result in a faster training 

time, and it helps to get a sufficient accuracy, even with a relatively small 

amount of data [87]. In recent times, transfer learning has included a state-of-

the-art multi-convolutional layer neural network, which is known as a CNN 

[91]. A CNN uses transfer learning to improve the detection accuracy of 

periodontal bone loss on the panoramic radiographs [28]. In this study, a pre-

trained weight that was derived from the previous study [31] was used as an 

initial weight when training the CNN for detecting the PBL, CEJL, and 

teeth/implants to achieve a high training efficiency. By training the CNN with 

transfer learning, the CNN can produce accurate detection outputs for the multi-

device images with various aspects.  

In a previous study, a CNN named DeNTNet that used 12,179 

panoramic radiographs had a DSC of 0.75 for the direct detection of periodontal 

bone loss areas after segmenting the region of interest (ROI) for detection [28]. 

In another study, Krois et al. used 2,001 cropped image segments of teeth to 

train a CNN to detect periodontal bone loss for an individual tooth, and it 

obtained a F1-score of 0.78. Meanwhile in my previous study, for the detection 

accuracies with the Mask R-CNN, the values of the dice coefficient were 0.93, 

0.91, and 0.91 for the PBL, CEJL, and teeth, respectively, while using 330 

panoramic radiographs [31]. In this study, by increasing the number of training 
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images from 330 to 500, for the same CNN, the values of the dice coefficient 

improved to 0.96, 0.92, and 0.94 for the PBL, CEJL, and teeth/implants, 

respectively by using the images of the first dataset configuration. These values 

were obtained without preprocessing the images, which slightly improved the 

results. However, for the second and third dataset configurations, the detection 

accuracies did not achieve acceptable levels for use in the automatic diagnosis 

of the RBL and the periodontitis stage. Therefore, additional images must be 

acquired from devices 2 and 3 and they should be used to train the CNNs. In 

addition, by collecting more images with different devices and training the 

CNNs, a sufficient detection accuracy can be obtained for use in the automatic 

diagnosis of the RBL and the periodontitis stage. 

Despite a relatively small number of panoramic radiographs to train the 

CNNs, the developed method can achieve a high detection performance of the 

images from all the devices. Considering that the PBL is a simple closed-curve 

structure for the whole jaw according to a previous study [31], this decreases 

the complexity of the alveolar bone destruction patterns of the tooth. This 

method allows the detection of the PBL by ignoring a variety of destructive 

structures (laterals) such as the horizontal bone loss, vertical/angular defects, 

osseous craters, and furcation involvement [92]. Using a similar process for 

detecting the CEJLs (fixture top of the implants), the simple closed-curve 

structures of the CEJLs were detected at the maxilla and the mandible. Through 

this process, it was possible to reduce the diversity of the anatomical structures 

of the multi-device images of the patients. In addition, the alveolar bone 
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(periodontal bone) has a clear boundary in the panoramic radiograph; thus, it is 

easy to distinguish it from the oral cavity. In other words, the borderline 

between the alveolar bone and the oral cavity can be clearly distinguished, even 

in images that are obtained under different conditions in various devices. 

Similarly, a tooth (implant) and its anatomical components can be clearly 

distinguished in the panoramic radiograph. From this, the CEJLs and the 

teeth/implants can easily be distinguished by their structures. As a result, the 

CNN learned the simplified and clearly distinguishable anatomical structures 

with a lower variation and it obtained high detection accuracies. In other words, 

the CNN accurately performed the detection tasks regardless of the different 

imaging conditions, pre-processing methods, and contrasts. Despite the false 

negative errors that mainly occurred along both lateral sides of the enclosed 

oral cavity when detecting the PBL and CEJLs, both sides were irrelevant areas 

for determining the true PBL and CEJL and diagnosing the RBL. 

The former method in my previous study automatically classified the 

periodontal bone loss of the individual tooth in order to identify the 

periodontitis stage based on the percentage rate analysis through conventional 

CAD processing [31]. The percentage rate of the RBL for each tooth (implant) 

was computed by calculating the ratio of the intersection length of the PBL and 

the CEJL for each tooth. The tooth intersection lengths are defined by the 

distances from the root apex point of the tooth to the two intersection points of 

the tooth’s (implant) long-axis with the periodontal bone and the CEJL (the 

fixture top level for the implant). The long-axis orientation of the tooth, or the 
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implant, was determined by applying the principal axes of inertia to their 

boundary images. According to the periodontitis stage definition that was 

proposed at the 2017 World Workshop, periodontitis is classified into four 

stages. However, the previous method was unable to diagnose periodontitis 

stage four because it could not detect and quantify the locations of the missing 

teeth. Presently, no studies have been able to detect and quantify the missing 

teeth on the panoramic radiographs. In this study, four CNNs that were 

modified from the YOLOv3 [37] and YOLOv4 [38] networks were 

implemented to detect and quantify the missing teeth on the panoramic 

radiographs. CNNv4-tiny, which has 37 layers, achieved a mean AP value of 

0.86, which was the best performance on the test set. That is, for simple tasks 

like performing a single-class detection, it might be more efficient to use a 

network with fewer parameters and layers in terms of speed and accuracy [93, 

94].  

The MAD between the periodontitis staging that was performed by the 

automatic method and the radiologists was 0.31 overall for all the teeth in the 

jaw. The classification accuracies for the images from multiple devices were 

0.25, 0.34, and 0.35 for device 1 [31], device 2, and device 3, respectively. The 

imbalanced dataset was used to train the developed CNN for detecting the PBL, 

CEJL, and teeth/implants. To overcome the dataset imbalance problem, the 

developed CNN was trained using transfer learning, and the CNN achieved a 

high detection accuracy (Table 4). However, the errors that are caused by the 

imbalance of the amount of data could not be completely solved, and this must 
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be overcome by performing further research. In addition, the classification 

accuracy for the incisors and molars was lower than the canines and premolars 

(p < 0.05). This is because the incisor roots were blurred by their overlapping 

with the vertebrae (Table 7). 

The correlation analysis was performed to evaluate the diagnostic 

correlativity and reliability of the developed method. The PCC values between 

the automatic method and the radiologists were 0.73, 0.77, and 0.75 for device 

1 [31], device 2, and device 3, respectively, overall for the whole jaw (Table 9). 

The ICC values were 0.91, 0.94, and 0.93 for device 1 [31], device 2, and device 

3, respectively, overall for the whole jaw (Table 10). These correlation values 

were highest between the automatic method and the radiologist with the most 

experience. Therefore, the automatic method for staging periodontitis had a 

high accuracy and an excellent diagnostic reliability. In other words, it was 

demonstrated that the method of training the developed CNN with transfer 

learning contributed to the improvement of the accuracy and reliability of the 

automatic diagnosis. 

The regression and difference analyses were also performed to evaluate 

the agreement between the mean periodontitis stages of an image that is 

classified by the automatic method and diagnosed by the radiologists. Passing 

and Bablok proposed a regression model to compare the methods that fit the 

regression line from two data sets [56]. The result of the regression can be 

interpreted to evaluate the agreement of the two methods. The result consists of 

a scatter diagram and a regression line that enables the visual inspection of the 
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agreement. The equation (y = a + bx) of the regression line means a constant 

(regression line’s intercept (a)) and a proportional (regression line’s slope (b)) 

difference with confidence intervals (95 % CI) [95].  

Figure 9 shows the results of the Passing and Bablock regression 

analysis. The slope coefficients of the regression lines were 1.176, 1.100, and 

1.111, with the intersections of -0.304, -0.199, -0.371 for the radiologists with 

ten-years, five-years, and three-years of experience, respectively. The 

agreement with the radiologist with five-years of experience was slightly higher 

than that with the radiologist with ten-years of experience according to the 

coefficients and intersections. However, the deviations between the upper and 

lower bounds of the slope coefficient were 0.237, 0.294, 0.429, for the 

radiologists with ten-years, five-years, and three-years of experience, 

respectively. This means that the deviations were the lowest between the mean 

stages that were determined by the automatic method and by the most 

experienced radiologist.  

Bland and Altman developed a scattered plot to compute the difference 

between two quantitative measurements by constructing the limits of agreement 

[55, 96]. The difference between the paired results was computed and plotted 

against the mean of the paired measurements. If the difference was close to zero, 

this indicates that the methods are systematically producing similar results [96]. 

In the Bland and Altman plots (Figure 10), the average of the difference 

between the mean stages that are classified by the automatic method and those 

diagnosed by the radiologists with ten-years, five-years, and three-years of 
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experience were 0.007, -0.022, and -0.198, respectively. Therefore, the results 

indicate that the mean stages that were determined by the developed method 

showed a high level of agreement with those that were diagnosed by the 

radiologists. In addition, the automatically determined mean periodontitis 

stages showed the highest level of agreement with the most experienced 

radiologist. 

The developed method used the percentage rate of the periodontal bone 

loss to automatically and classify the periodontitis into four stages of the whole 

jaw according to the renewed criteria that was proposed at the 2017 World 

Workshop [47]. The method achieved a high detection performance of the PBL 

(or the CEJL) by simplifying the complexity of the bone destruction patterns. 

There was also a high classification performance for automatic periodontitis 

staging by using the conventional CAD approach. The framework that 

combined the deep learning architecture and conventional CAD approaches 

demonstrated a high accuracy, reliability, and agreement in the automatic and 

complete diagnosis of staging the periodontitis. Consequently, this approach 

will help dental professionals to definitively diagnose and treat periodontitis. 

However, this method cannot provide the absolute value of the periodontal bone 

loss because of the inconsistent image magnification and distortion in dental 

panoramic radiography. In addition, according to the criteria that was proposed 

in the 2017 workshop, the stage of periodontitis was diagnosed by considering 

the severity and complexity [4]. However, the developed method classified the 

periodontitis stage by considering only the severity factors. Finally, the 
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classification accuracy for the incisors and molars was lower than the other 

types of teeth. In future investigations, the method must be improved to 

diagnose the stage of periodontitis while considering both the severity and 

complexity factors. In addition, the deep learning-based method for the 

elimination of the cervical vertebrae will be developed to improve the 

classification accuracy for the incisors. 

In conclusion, the developed method can help dental professionals to 

diagnose and monitor periodontitis systematically and precisely on panoramic 

radiographs. This may substantially improve the performance of dental 

professionals when diagnosing and treating periodontitis. 
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방사선학적 골 소실량과 치주염 

단계의 딥러닝 기반 컴퓨터 

보조진단 방법: 다기기 연구 

 

이상정 

융합과학부 방사선융합의생명전공 

서울대학교 융합과학기술대학원 

 

치주염과 치은염을 포함한 치주질환은 인류가 겪고 있는 

가장 흔한 질환 중 하나이다. 구강 및 악안면 부위 치조골의 침하는 

치주질환의 주요 증상이며, 이는 골 손실, 치아 손실, 치주염을 
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유발할 수 있으며, 이를 방치할 경우 저작 기능 장애로 인한 

영양실조의 원인이 될 수 있다. 2017 년 미국치주학회(American 

Academy of Periodontology)와 유럽치주학회(European 

Federation of Periodontology)는 공동 워크샵을 통해 치주염에 

대한 새로운 정의와 단계 분류 및 진단에 관련된 기준을 

발표하였다. 최근, 딥러닝을 기반으로 한 컴퓨터 보조진단 기술 

(Computer-aided Diagnoses, CAD)이 의료방사선영상 분야에서 

복잡한 문제를 해결하는 데 광범위하게 사용되고 있다.  

선행 연구에서 저자는 파노라마방사선영상에서 치주염을 

자동으로 진단하기 위한 딥러닝 하이브리드 프레임워크를 

개발하였다. 이는 해부학적 구조물 분할을 위한 딥러닝 신경망 

기술과 치주염의 단계 분류를 위한 컴퓨터 보조진단 기술을 

융합하여 단일 프레임워크에서 치주염을 자동으로 분류, 진단하는 

방법이다. 이를 통해 각 치아에서 방사선적 치조골 소실량을 

자동으로 정량화하고, 2017 년 워크샵에서 제안된 기준에 따라 

치주염을 3 단계로 분류하였다.  

본 연구에서는 선행 개발된 방법을 개선하여 상실 치아와 

식립된 임플란트의 수를 검출, 정량화하여 치주염을 4 단계로 

분류하는 방법을 개발하였다. 또한 개발된 방법의 일반화 정도를 

평가하기 위해 서로 다른 기기를 통해 촬영된 영상을 이용한 
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다기기 연구를 수행하였다. 3 개의 기기를 이용하여 총 500 매의 

파노라마방사선영상을 수집하여 CNN 학습을 위한 데이터셋을 

구축하였다. 수집된 영상 데이터셋을 이용하여, 기존 연구에서 

의료영상 분할에 일반적으로 사용되는 3 개의 CNN 모델과 Mask 

R-CNN 을 학습시킨 후, 해부학적 구조물 분할 정확도 비교 평가를 

실시하였다. 또한 CNN 의 높은 학습 효율성 확보와 및 다기기 

영상에 대한 추가 학습을 위해 선행 연구에서 도출된 사전 훈련 

가중치(pre-trained weight)를 이용한 CNN 의 전이학습을 

실시하였다. 

CNNv4-tiny 를 이용하여 상실 치아를 검출한 결과, 0.88, 

0.85, 0.87, 0.86, 0.85 의 precision, recall, F1-score, mAP 

정확도를 보였다. 해부학적 구조물 분할 결과, Mask R-CNN 을 

기반으로 수정된 CNN 은 치조골 수준에 대해 0.96, 백악법랑경계 

수준에 대해 0.92, 치아에 대해 0.94의 분할정확도(DSC)를 보였다.  

이어 개발된 방법을 이용하여 학습에 사용되지 않은 

30 매(기기 별 10 매)에서 자동으로 결정된 치주염의 단계와 서로 

다른 임상경험을 가진 3 명의 영상치의학 전문의가 진단한 단계 간 

비교 평가를 수행하였다. 평가 결과, 모든 치아에 대해 자동으로 

결정된 치주염 단계와 전문의들이 진단한 단계 간 0.31 의 

오차(MAD)를 보였다. 또한 기기 1, 2, 3 의 영상에 대해 각각 0.25, 
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0.34, 0.35 의 오차를 보였다. 개발된 방법을 이용한 결과와 방사선 

전문의의 진단 사이의 PCC 값은 기기 1, 2, 3 의 영상에 대해 각각 

0.73, 0.77, 0.75 로 계산되었다 (p<0.01). 전체 영상에 대한 최종 

ICC 값은 0.76 (p<0.01)로 계산되었다. 또한 개발된 방법과 방사선 

전문의의 진단 사이의 ICC 값은 기기 1, 2, 3 의 영상에 대해 각각 

0.91, 0.94, 0.93 으로 계산되었다 (p <0.01). 마지막으로 최종 ICC 

값은 0.93 으로 계산되었다 (p<0.01).  

Passing 및 Bablok 분석의 경우 회귀직선의 기울기와 x 축 

절편은 교수, 임상강사, 전공의에 대해 각각 1.176 (p>0.05), 1.100 

(p>0.05), 1.111 (p>0.05)와 -0.304, -0.199, -0.371로 나타났다. 

Bland 와 Altman 분석의 경우 자동으로 결정된 영상 별 평균 

단계와 영상치의학 전공 치과의사의 진단 결과 간 교수, 임상강사, 

전공의에 대해 0.007 (95 % 신뢰 구간 (CI), -0.060 ~ 0.074), 

각각 -0.022 (95 % CI, -0.098 ~ 0.053), -0.198 (95 % CI, -

0.291 ~ -0.104)로 계산되었다. 

결론적으로, 본 논문에서 개발된 딥러닝 하이브리드 

프레임워크는 딥러닝 신경망 기술과 컴퓨터 보조 진단 기술을 

융합하여 환자의 파노라마 방사선 영상에서 치주염을 4 단계로 

분류하였다.  본 방법은 높은 해부학적 구조물 및 상실 치아 검출 

정확도를 보였으며, 자동으로 결정된 치주염 단계는 임상의의 진단 
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결과와 높은 일치율과 상관성을 보여주었다. 또한 다기기 연구를 

통해 개발된 방법의 높은 정확성과 일반화 정도를 검증하였다. 

 

주요어 : 딥러닝, 컴퓨터 보조진단, 파노라마방사선영상, 방사선학적 

골 소실량, 치주염, 다기관 연구 
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