1,736 research outputs found

    On the Compton clock and the undulatory nature of particle mass in graphene systems

    Get PDF
    In undulatory mechanics the rest mass of a particle is associated to a rest periodicity known as Compton periodicity. In carbon nanotubes the Compton periodicity is determined geometrically, through dimensional reduction, by the circumference of the curled-up dimension, or by similar spatial constraints to the charge carrier wave function in other condensed matter systems. In this way the Compton periodicity is effectively reduced by several order of magnitudes with respect to that of the electron, allowing for the possibility to experimentally test foundational aspects of quantum mechanics. We present a novel powerful formalism to derive the electronic properties of carbon nanotubes, in agreement with the results known in the literature, from simple geometric and relativistic considerations about the Compton periodicity as well as a dictionary of analogies between particle and graphene physics.Comment: 10 pages, 1 table, 1 figure. Published versio

    Quantum Walks and Reversible Cellular Automata

    Full text link
    We investigate a connection between a property of the distribution and a conserved quantity for the reversible cellular automaton derived from a discrete-time quantum walk in one dimension. As a corollary, we give a detailed information of the quantum walk.Comment: 15 pages, minor corrections, some references adde

    Models of Quantum Cellular Automata

    Full text link
    In this paper we present a systematic view of Quantum Cellular Automata (QCA), a mathematical formalism of quantum computation. First we give a general mathematical framework with which to study QCA models. Then we present four different QCA models, and compare them. One model we discuss is the traditional QCA, similar to those introduced by Shumacher and Werner, Watrous, and Van Dam. We discuss also Margolus QCA, also discussed by Schumacher and Werner. We introduce two new models, Coloured QCA, and Continuous-Time QCA. We also compare our models with the established models. We give proofs of computational equivalence for several of these models. We show the strengths of each model, and provide examples of how our models can be useful to come up with algorithms, and implement them in real-world physical devices

    Quasi-adiabatic Switching for Metal-Island Quantum-dot Cellular Automata

    Full text link
    Recent experiments have demonstrated a working cell suitable for implementing the Quantum-dot Cellular Automata (QCA) paradigm. These experiments have been performed using metal island clusters. The most promising approach to QCA operation involves quasi-adiabatically switching the cells. This has been analyzed extensively in gated semiconductor cells. Here we present a metal island cell structure that makes quasi-adiabatic switching possible. We show how this permits quasi-adiabatic clocking, and enables a pipelined architecture.Comment: 40 preprint-style double-spaced pages including 16 figure

    Quantum mechanics of lattice gas automata. I. One particle plane waves and potentials

    Full text link
    Classical lattice gas automata effectively simulate physical processes such as diffusion and fluid flow (in certain parameter regimes) despite their simplicity at the microscale. Motivated by current interest in quantum computation we recently defined quantum lattice gas automata; in this paper we initiate a project to analyze which physical processes these models can effectively simulate. Studying the single particle sector of a one dimensional quantum lattice gas we find discrete analogues of plane waves and wave packets, and then investigate their behaviour in the presence of inhomogeneous potentials.Comment: 19 pages, plain TeX, 14 PostScript figures included with epsf.tex (ignore the under/overfull \vbox error messages), two additional large figures available upon reques

    Physics as Quantum Information Processing: Quantum Fields as Quantum Automata

    Full text link
    Can we reduce Quantum Field Theory (QFT) to a quantum computation? Can physics be simulated by a quantum computer? Do we believe that a quantum field is ultimately made of a numerable set of quantum systems that are unitarily interacting? A positive answer to these questions corresponds to substituting QFT with a theory of quantum cellular automata (QCA), and the present work is examining this hypothesis. These investigations are part of a large research program on a "quantum-digitalization" of physics, with Quantum Theory as a special theory of information, and Physics as emergent from the same quantum-information processing. A QCA-based QFT has tremendous potential advantages compared to QFT, being quantum "ab-initio" and free from the problems plaguing QFT due to the continuum hypothesis. Here I will show how dynamics emerges from the quantum processing, how the QCA can reproduce the Dirac-field phenomenology at large scales, and the kind of departures from QFT that that should be expected at a Planck-scale discreteness. I will introduce the notions of linear field quantum automaton and local-matrix quantum automaton, in terms of which I will provide the solution to the Feynman's problem about the possibility of simulating a Fermi field with a quantum computer.Comment: This version: further improvements in notation. Added reference. Work presented at the conference "Foundations of Probability and Physics-6" (FPP6) held on 12-15 June 2011 at the Linnaeus University, Vaaxjo, Sweden. Many new results, e.g. Feynman problem of qubit-ization of Fermi fields solved
    • …
    corecore