8,515 research outputs found

    Polyhedra, Complexes, Nets and Symmetry

    Full text link
    Skeletal polyhedra and polygonal complexes in ordinary Euclidean 3-space are finite or infinite 3-periodic structures with interesting geometric, combinatorial, and algebraic properties. They can be viewed as finite or infinite 3-periodic graphs (nets) equipped with additional structure imposed by the faces, allowed to be skew, zig-zag, or helical. A polyhedron or complex is "regular" if its geometric symmetry group is transitive on the flags (incident vertex-edge-face triples). There are 48 regular polyhedra (18 finite polyhedra and 30 infinite apeirohedra), as well as 25 regular polygonal complexes, all infinite, which are not polyhedra. Their edge graphs are nets well-known to crystallographers, and we identify them explicitly. There also are 6 infinite families of "chiral" apeirohedra, which have two orbits on the flags such that adjacent flags lie in different orbits.Comment: Acta Crystallographica Section A (to appear

    Polyhedral billiards, eigenfunction concentration and almost periodic control

    Full text link
    We study dynamical properties of the billiard flow on convex polyhedra away from a neighbourhood of the non-smooth part of the boundary, called ``pockets''. We prove there are only finitely many immersed periodic tubes missing the pockets and moreover establish a new quantitative estimate for the lengths of such tubes. This extends well-known results in dimension 22. We then apply these dynamical results to prove a quantitative Laplace eigenfunction mass concentration near the pockets of convex polyhedral billiards. As a technical tool for proving our concentration results on irrational polyhedra, we establish a control-theoretic estimate on a product space with an almost-periodic boundary condition. This extends previously known control estimates for periodic boundary conditions, and seems to be of independent interest.Comment: 32 pages, a few sections reorganised and a few results adde

    Periodic orbits from Δ-modulation of stable linear systems

    Get PDF
    The �-modulated control of a single input, discrete time, linear stable system is investigated. The modulation direction is given by cTx where c �Rn/{0} is a given, otherwise arbitrary, vector. We obtain necessary and sufficient conditions for the existence of periodic points of a finite order. Some concrete results about the existence of a certain order of periodic points are also derived. We also study the relationship between certain polyhedra and the periodicity of the �-modulated orbit

    Complexity in surfaces of densest packings for families of polyhedra

    Full text link
    Packings of hard polyhedra have been studied for centuries due to their mathematical aesthetic and more recently for their applications in fields such as nanoscience, granular and colloidal matter, and biology. In all these fields, particle shape is important for structure and properties, especially upon crowding. Here, we explore packing as a function of shape. By combining simulations and analytic calculations, we study three 2-parameter families of hard polyhedra and report an extensive and systematic analysis of the densest packings of more than 55,000 convex shapes. The three families have the symmetries of triangle groups (icosahedral, octahedral, tetrahedral) and interpolate between various symmetric solids (Platonic, Archimedean, Catalan). We find that optimal (maximum) packing density surfaces that reveal unexpected richness and complexity, containing as many as 130 different structures within a single family. Our results demonstrate the utility of thinking of shape not as a static property of an object in the context of packings, but rather as but one point in a higher dimensional shape space whose neighbors in that space may have identical or markedly different packings. Finally, we present and interpret our packing results in a consistent and generally applicable way by proposing a method to distinguish regions of packings and classify types of transitions between them.Comment: 16 pages, 8 figure

    Cubic Polyhedra

    Full text link
    A cubic polyhedron is a polyhedral surface whose edges are exactly all the edges of the cubic lattice. Every such polyhedron is a discrete minimal surface, and it appears that many (but not all) of them can be relaxed to smooth minimal surfaces (under an appropriate smoothing flow, keeping their symmetries). Here we give a complete classification of the cubic polyhedra. Among these are five new infinite uniform polyhedra and an uncountable collection of new infinite semi-regular polyhedra. We also consider the somewhat larger class of all discrete minimal surfaces in the cubic lattice.Comment: 18 pages, many figure
    • …
    corecore