669 research outputs found

    Deterministic characterization of stochastic genetic circuits

    Full text link
    For cellular biochemical reaction systems where the numbers of molecules is small, significant noise is associated with chemical reaction events. This molecular noise can give rise to behavior that is very different from the predictions of deterministic rate equation models. Unfortunately, there are few analytic methods for examining the qualitative behavior of stochastic systems. Here we describe such a method that extends deterministic analysis to include leading-order corrections due to the molecular noise. The method allows the steady-state behavior of the stochastic model to be easily computed, facilitates the mapping of stability phase diagrams that include stochastic effects and reveals how model parameters affect noise susceptibility, in a manner not accessible to numerical simulation. By way of illustration we consider two genetic circuits: a bistable positive-feedback loop and a negative-feedback oscillator. We find in the positive feedback circuit that translational activation leads to a far more stable system than transcriptional control. Conversely, in a negative-feedback loop triggered by a positive-feedback switch, the stochasticity of transcriptional control is harnessed to generate reproducible oscillations.Comment: 6 pages (Supplementary Information is appended

    Data based identification and prediction of nonlinear and complex dynamical systems

    Get PDF
    We thank Dr. R. Yang (formerly at ASU), Dr. R.-Q. Su (formerly at ASU), and Mr. Zhesi Shen for their contributions to a number of original papers on which this Review is partly based. This work was supported by ARO under Grant No. W911NF-14-1-0504. W.-X. Wang was also supported by NSFC under Grants No. 61573064 and No. 61074116, as well as by the Fundamental Research Funds for the Central Universities, Beijing Nova Programme.Peer reviewedPostprin

    5th EUROMECH nonlinear dynamics conference, August 7-12, 2005 Eindhoven : book of abstracts

    Get PDF

    Dynamics of biologically informed neural mass models of the brain

    Get PDF
    This book contributes to the development and analysis of computational models that help brain function to be understood. The mean activity of a brain area is mathematically modeled in such a way as to strike a balance between tractability and biological plausibility. Neural mass models (NMM) are used to describe switching between qualitatively different regimes (such as those due to pharmacological interventions, epilepsy, sleep, or context-induced state changes), and to explain resonance phenomena in a photic driving experiment. The description of varying states in an ordered sequence gives a principle scheme for the modeling of complex phenomena on multiple time scales. The NMM is matched to the photic driving experiment routinely applied in the diagnosis of such diseases as epilepsy, migraine, schizophrenia and depression. The model reproduces the clinically relevant entrainment effect and predictions are made for improving the experimental setting.Die vorliegende Arbeit stellt einen Beitrag zur Entwicklung und Analyse von Computermodellen zum Verständnis von Hirnfunktionen dar. Es wird die mittlere Aktivität eines Hirnareals analytisch einfach und dabei biologisch plausibel modelliert. Auf Grundlage eines Neuronalen Massenmodells (NMM) werden die Wechsel zwischen Oszillationsregimen (z.B. durch pharmakologisch, epilepsie-, schlaf- oder kontextbedingte Zustandsänderungen) als geordnete Folge beschrieben und Resonanzphänomene in einem Photic-Driving-Experiment erklärt. Dieses NMM kann sehr komplexe Dynamiken (z.B. Chaos) innerhalb biologisch plausibler Parameterbereiche hervorbringen. Um das Verhalten abzuschätzen, wird das NMM als Funktion konstanter Eingangsgrößen und charakteristischer Zeitenkonstanten vollständig auf Bifurkationen untersucht und klassifiziert. Dies ermöglicht die Beschreibung wechselnder Regime als geordnete Folge durch spezifische Eingangstrajektorien. Es wird ein Prinzip vorgestellt, um komplexe Phänomene durch Prozesse verschiedener Zeitskalen darzustellen. Da aufgrund rhythmischer Stimuli und der intrinsischen Rhythmen von Neuronenverbänden die Eingangsgrößen häufig periodisch sind, wird das Verhalten des NMM als Funktion der Intensität und Frequenz einer periodischen Stimulation mittels der zugehörigen Lyapunov-Spektren und der Zeitreihen charakterisiert. Auf der Basis der größten Lyapunov-Exponenten wird das NMM mit dem Photic-Driving-Experiment überein gebracht. Dieses Experiment findet routinemäßige Anwendung in der Diagnostik verschiedener Erkrankungen wie Epilepsie, Migräne, Schizophrenie und Depression. Durch die Anwendung des vorgestellten NMM wird der für die Diagnostik entscheidende Mitnahmeeffekt reproduziert und es werden Vorhersagen für eine Verbesserung der Indikation getroffen

    5th EUROMECH nonlinear dynamics conference, August 7-12, 2005 Eindhoven : book of abstracts

    Get PDF

    Fourth SIAM Conference on Applications of Dynamical Systems

    Get PDF

    Sensitivity analysis of oscillator models in the space of phase-response curves: Oscillators as open systems

    Full text link
    Oscillator models are central to the study of system properties such as entrainment or synchronization. Due to their nonlinear nature, few system-theoretic tools exist to analyze those models. The paper develops a sensitivity analysis for phase-response curves, a fundamental one-dimensional phase reduction of oscillator models. The proposed theoretical and numerical analysis tools are illustrated on several system-theoretic questions and models arising in the biology of cellular rhythms
    corecore