6,053 research outputs found

    Protecting the perimeter in extreme conditions, using sensot networks

    Get PDF
    Tato diplomová práce se zabývá teoretickým rozborem a úvodem do problematiky bezdrátových senzorových sítí, popisem vybraných typů senzorů, výčtem jejich vlastností a principů činnosti pro detekci narušení perimetru. Dále je zde popsán návrh a realizace bezdrátového senzorového uzlu pro detekci narušení perimetru využitelný v bezdrátových senzorových sítích.This master thesis deals with the theoretical analysis of wireless sensor networks, a description of selected types of sensors, listing their features and principle of operation for intrusion detection perimeter. Then there is described design and implementation of a wireless sensor node for intrusion detection perimeter usable in wireless sensor networks.

    Selecting source image sensor nodes based on 2-hop information to improve image transmissions to mobile robot sinks in search \& rescue operations

    Full text link
    We consider Robot-assisted Search &\& Rescue operations enhanced with some fixed image sensor nodes capable of capturing and sending visual information to a robot sink. In order to increase the performance of image transfer from image sensor nodes to the robot sinks we propose a 2-hop neighborhood information-based cover set selection to determine the most relevant image sensor nodes to activate. Then, in order to be consistent with our proposed approach, a multi-path extension of Greedy Perimeter Stateless Routing (called T-GPSR) wherein routing decisions are also based on 2-hop neighborhood information is proposed. Simulation results show that our proposal reduces packet losses, enabling fast packet delivery and higher visual quality of received images at the robot sink

    GEAMS: a Greedy Energy-Aware Multipath Stream-based Routing Protocol for WMSNs

    Full text link
    Because sensor nodes operate on power limited batteries, sensor functionalities have to be designed carefully. In particular, designing energy-efficient packet forwarding is important to maximize the lifetime of the network and to minimize the power usage at each node. This paper presents a Geographic Energy-Aware Multipath Stream-based (GEAMS) routing protocol for WMSNs. GEAMS routing decisions are made online, at each forwarding node in such a way that there is no need to global topology knowledge and maintenance. GEAMS routing protocol performs load-balancing to minimize energy consumption among nodes using twofold policy: (1) smart greedy forwarding and (2) walking back forwarding. Performances evaluations of GEAMS show that it can maximize the network lifetime and guarantee quality of service for video stream transmission in WMSNs

    Resilient networking in wireless sensor networks

    Get PDF
    This report deals with security in wireless sensor networks (WSNs), especially in network layer. Multiple secure routing protocols have been proposed in the literature. However, they often use the cryptography to secure routing functionalities. The cryptography alone is not enough to defend against multiple attacks due to the node compromise. Therefore, we need more algorithmic solutions. In this report, we focus on the behavior of routing protocols to determine which properties make them more resilient to attacks. Our aim is to find some answers to the following questions. Are there any existing protocols, not designed initially for security, but which already contain some inherently resilient properties against attacks under which some portion of the network nodes is compromised? If yes, which specific behaviors are making these protocols more resilient? We propose in this report an overview of security strategies for WSNs in general, including existing attacks and defensive measures. In this report we focus at the network layer in particular, and an analysis of the behavior of four particular routing protocols is provided to determine their inherent resiliency to insider attacks. The protocols considered are: Dynamic Source Routing (DSR), Gradient-Based Routing (GBR), Greedy Forwarding (GF) and Random Walk Routing (RWR)

    K-coverage in regular deterministic sensor deployments

    Get PDF
    An area is k-covered if every point of the area is covered by at least k sensors. K-coverage is necessary for many applications, such as intrusion detection, data gathering, and object tracking. It is also desirable in situations where a stronger environmental monitoring capability is desired, such as military applications. In this paper, we study the problem of k-coverage in deterministic homogeneous deployments of sensors. We examine the three regular sensor deployments - triangular, square and hexagonal deployments - for k-coverage of the deployment area, for k ≥ 1. We compare the three regular deployments in terms of sensor density. For each deployment, we compute an upper bound and a lower bound on the optimal distance of sensors from each other that ensure k-coverage of the area. We present the results for each k from 1 to 20 and show that the required number of sensors to k-cover the area using uniform random deployment is approximately 3-10 times higher than regular deployments

    Push & Pull: autonomous deployment of mobile sensors for a complete coverage

    Full text link
    Mobile sensor networks are important for several strategic applications devoted to monitoring critical areas. In such hostile scenarios, sensors cannot be deployed manually and are either sent from a safe location or dropped from an aircraft. Mobile devices permit a dynamic deployment reconfiguration that improves the coverage in terms of completeness and uniformity. In this paper we propose a distributed algorithm for the autonomous deployment of mobile sensors called Push&Pull. According to our proposal, movement decisions are made by each sensor on the basis of locally available information and do not require any prior knowledge of the operating conditions or any manual tuning of key parameters. We formally prove that, when a sufficient number of sensors are available, our approach guarantees a complete and uniform coverage. Furthermore, we demonstrate that the algorithm execution always terminates preventing movement oscillations. Numerous simulations show that our algorithm reaches a complete coverage within reasonable time with moderate energy consumption, even when the target area has irregular shapes. Performance comparisons between Push&Pull and one of the most acknowledged algorithms show how the former one can efficiently reach a more uniform and complete coverage under a wide range of working scenarios.Comment: Technical Report. This paper has been published on Wireless Networks, Springer. Animations and the complete code of the proposed algorithm are available for download at the address: http://www.dsi.uniroma1.it/~novella/mobile_sensors

    Wireless and Physical Security via Embedded Sensor Networks

    Full text link
    Wireless Intrusion Detection Systems (WIDS) monitor 802.11 wireless frames (Layer-2) in an attempt to detect misuse. What distinguishes a WIDS from a traditional Network IDS is the ability to utilize the broadcast nature of the medium to reconstruct the physical location of the offending party, as opposed to its possibly spoofed (MAC addresses) identity in cyber space. Traditional Wireless Network Security Systems are still heavily anchored in the digital plane of "cyber space" and hence cannot be used reliably or effectively to derive the physical identity of an intruder in order to prevent further malicious wireless broadcasts, for example by escorting an intruder off the premises based on physical evidence. In this paper, we argue that Embedded Sensor Networks could be used effectively to bridge the gap between digital and physical security planes, and thus could be leveraged to provide reciprocal benefit to surveillance and security tasks on both planes. Toward that end, we present our recent experience integrating wireless networking security services into the SNBENCH (Sensor Network workBench). The SNBENCH provides an extensible framework that enables the rapid development and automated deployment of Sensor Network applications on a shared, embedded sensing and actuation infrastructure. The SNBENCH's extensible architecture allows an engineer to quickly integrate new sensing and response capabilities into the SNBENCH framework, while high-level languages and compilers allow novice SN programmers to compose SN service logic, unaware of the lower-level implementation details of tools on which their services rely. In this paper we convey the simplicity of the service composition through concrete examples that illustrate the power and potential of Wireless Security Services that span both the physical and digital plane.National Science Foundation (CISE/CSR 0720604, ENG/EFRI 0735974, CIES/CNS 0520166, CNS/ITR 0205294, CISE/ERA RI 0202067

    1-D Coordinate Based on Local Information for MAC and Routing Issues in WSNs

    Get PDF
    More and more critical Wireless Sensor Networks (WSNs) applications are emerging. Those applications need reliability and respect of time constraints. The underlying mechanisms such as MAC and routing must handle such requirements. Our approach to the time constraint problem is to bound the hop-count between a node and the sink and the time it takes to do a hop so the end-to-end delay can be bounded and the communications are thus real-time. For reliability purpose we propose to select forwarder nodes depending on how they are connected in the direction of the sink. In order to be able to do so we need a coordinate (or a metric) that gives information on hop-count, that allows to strongly differentiate nodes and gives information on the connectivity of each node keeping in mind the intrinsic constraints of WSWs such as energy consumption, autonomy, etc. Due to the efficiency and scalability of greedy routing in WSNs and the financial cost of GPS chips, Virtual Coordinate Systems (VCSs) for WSNs have been proposed. A category of VCSs is based on the hop-count from the sink, this scheme leads to many nodes having the same coordinate. The main advantage of this system is that the hops number of a packet from a source to the sink is known. Nevertheless, it does not allow to differentiate the nodes with the same hop-count. In this report we propose a novel hop-count-based VCS which aims at classifying the nodes having the same hop-count depending on their connectivity and at differentiating nodes in a 2-hop neighborhood. Those properties make the coordinates, which also can be viewed as a local identifier, a very powerful metric which can be used in WSNs mechanisms.Comment: (2011
    corecore