167 research outputs found

    Intelligent control and look-ahead energy management of hybrid electric vehicles

    Full text link
    A review of the state of knowledge in the field of control and energy management in HEVs is carried out. The key innovation of the project is the development of a model of a PHEV using the real road data with an intelligent look-ahead online controller. Another novelty of this work is the method of route planning. It combines the information of vehicle sensors such as accelerometer and speedometer with the data of a GPS to create a road grade map for use within the look-ahead energy management strategy in the vehicle. For the PHEV, an adaptive cruise controller is modelled and an optimisation method is applied to obtain the best speed profile during a trajectory. Finally, the nonlinear model of the vehicle is applied with the sliding mode controller. The effect of using this controller is compared with the universal cruise controller. The stability of the system is studied and proved

    Automated decision making and problem solving. Volume 2: Conference presentations

    Get PDF
    Related topics in artificial intelligence, operations research, and control theory are explored. Existing techniques are assessed and trends of development are determined

    Superheat control for air conditioning and refrigeration systems: Simulation and experiments

    Get PDF
    Ever since the invention of air conditioning and refrigeration in the late nineteenth century, there has been tremendous interest in increasing system efficiency to reduce the impact these systems have on global energy consumption. Efficiency improvements have been accomplished through component design, refrigerant design, and most recently control system design. The emergence of the electronic expansion valve and variable speed drives has made immense impacts on the ability to regulate system parameters, resulting in important strides towards efficiency improvement. This research presents tools and methodologies for model development and controller design for air conditioning and refrigeration systems. In this thesis, control-oriented nonlinear dynamic models are developed and validated with test data collected from a fully instrumented experimental system. These models enable the design of advanced control configurations which supplement the performance of the commonly used proportional-integral-derivative (PID) controller. Evaporator superheat is a key parameter considered in this research since precise control optimizes evaporator efficiency while protecting the system from component damage. The controllers developed in this thesis ultimately provide better transient and steady state performance which increases system efficiency through low superheat set point design. The developed controllers also address the classical performance versus robustness tradeoff through design which preserves transients while prolonging the lifetime of the electronic expansion valve. Another notable contribution of this thesis is the development of hardware-in-the-loop load emulation which provides a method to test component and software control loop performance. This method alleviates the costs associated with the current method of testing using environmental test chambers

    Fault tolerant control for nonlinear aircraft based on feedback linearization

    Get PDF
    The thesis concerns the fault tolerant flight control (FTFC) problem for nonlinear aircraft by making use of analytical redundancy. Considering initially fault-free flight, the feedback linearization theory plays an important role to provide a baseline control approach for de-coupling and stabilizing a non-linear statically unstable aircraft system. Then several reconfigurable control strategies are studied to provide further robust control performance:- A neural network (NN)-based adaption mechanism is used to develop reconfigurable FTFC performance through the combination of a concurrent updated learninglaw. - The combined feedback linearization and NN adaptor FTFC system is further improved through the use of a sliding mode control (SMC) strategy to enhance the convergence of the NN learning adaptor. - An approach to simultaneous estimation of both state and fault signals is incorporated within an active FTFC system.The faults acting independently on the three primary actuators of the nonlinear aircraft are compensated in the control system.The theoretical ideas developed in the thesis have been applied to the nonlinear Machan Unmanned Aerial Vehicle (UAV) system. The simulation results obtained from a tracking control system demonstrate the improved fault tolerant performance for all the presented control schemes, validated under various faults and disturbance scenarios.A Boeing 747 nonlinear benchmark model, developed within the framework of the GARTEUR FM-AG 16 project “fault tolerant flight control systems”,is used for the purpose of further simulation study and testing of the FTFC scheme developed by making the combined use of concurrent learning NN and SMC theory. The simulation results under the given fault scenario show a promising reconfiguration performance

    Analog controller based on sliding mode control for piezoelectric actuators

    Get PDF
    Today, the digital implementation of the controllers is mainly preferred from reprogrammability point of view. Many important control problems can be effectively solved using a digital architecture in conjunction with analog-to-digital (ADC) and/or digital-to-analog conversion (DAC). Digital solutions offer two very attractive advantages: (1)-promise to shorten design cycles, and (2)-provide the freedom to reprogram the design in simple ways. This ease-of-change stands in sharp contrast to the great effort required to redesign a typical hard-wired analog implementation. However, depending on the complexity of the plant and the degrees of freedom (DOF) to be controlled, digital implementation of an algorithm may be demanding due to the high computational power requirement to run in real time. The necessity for the acquisition of the analog signals on the other hand requires ADC and DAC conversions that compel extra conditions on the system. Hence, multi-DOF systems may require either diminish in the systems operation frequency or additional hardware to run the algorithm in parallel for each DOF. This work aims to develop an analog motion controller for single input single output (SISO) plants of complex nature. As the control algorithm, Sliding Mode Control (SMC) like the well known robust nonlinear controller is selected as a design framework. Originally designed as a system motion for dynamic systems whose essential open-loop behavior can be sufficiently modeled with ordinary differential equations, Sliding Mode Control (SMC) is one of the effective nonlinear robust control approaches that provide system invariance to uncertainties once the sliding mode motion is enforced in the system. An important aspect of sliding mode is the discontinuous nature of the control action, which switches between two values to move the system motion on so-called “sliding mode” that exist in a manifold and therefore often referred as variable structure control (VSC). The resulting feedback system is called variable structure system (VSS). The position tracking of the piezoelectric actuators (PEA) is selected as the test bed for the designed system. Piezoelectricity, the ability of the material to become strained due to an electric field, gives the possibility to user those materials as actuator in sub-micrometer domain for a range of applications. Piezoelectric effect is a crystalline effect, and therefore, piezoelectric actuators do not suffer from “stick slip” effect mainly caused by the friction between elements of a mechanical system. This property theoretically offers an unlimited resolution, and therefore piezoelectric actuators are already used in many applications to provide sub-micrometer resolution. Still the achievable resolution in practice can be limited by a number of other factors such as the piezo control amplifier (electronic noise), sensor (resolution, noise and mounting precision) and control electronics (noise and sensitivity to EMI). As a result of this work, we are aiming an analog controller for SISO systems and by the use of this controller, improvement on the tracking performance for the plant we are studying and decrease on the possible computational load on digital controllers is targeted

    Aeronautical engineering: A continuing bibliography with indexes (supplement 272)

    Get PDF
    This bibliography lists 719 reports, articles, and other documents introduced into the NASA scientific and technical information system in November, 1991. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics

    Conference on Intelligent Robotics in Field, Factory, Service, and Space (CIRFFSS 1994), volume 1

    Get PDF
    The AIAA/NASA Conference on Intelligent Robotics in Field, Factory, Service, and Space (CIRFFSS '94) was originally proposed because of the strong belief that America's problems of global economic competitiveness and job creation and preservation can partly be solved by the use of intelligent robotics, which are also required for human space exploration missions. Individual sessions addressed nuclear industry, agile manufacturing, security/building monitoring, on-orbit applications, vision and sensing technologies, situated control and low-level control, robotic systems architecture, environmental restoration and waste management, robotic remanufacturing, and healthcare applications

    Fault-tolerant load reduction control for large offshore wind turbines

    Get PDF
    Offshore wind turbines suffer from asymmetrical loading (blades, tower etc.), leading to enhanced structural fatigue. As well as asymmetrical loading different types of faults (pitch system faults etc.) can occur simultaneously, causing degradation of load mitigation performance and enhanced fatigue. Individual pitch control (IPC) provides an important method to achieve mitigation of rotor asymmetric loads, but this may be accompanied by a resulting enhancement of pitch movement leading to increased possibility of pitch system faults, which negative effects on IPC performance.This thesis focuses on combining the fault tolerant control (FTC) techniques with load reduction strategies by a more intelligent pitch control system (i.e. collective pitch control and IPC) for offshore wind turbines in a system level to reduce the operation & maintenance costs and improve the system reliability. The scenario of load mitigation is analogous to the FTC problem because the action of rotor/tower bending can be considered as a fault effect. The essential concept is to attempt to account for all the "fault effects" in the rotor and tower systems which can weaken the effect of bending moment reduction through the use of IPC.Motivated by the above, this thesis focuses on four aspects to fill the gap of the combination between FTC and IPC schemes. Firstly, a preview control system using model predictive control with future wind speed is proposed, which could be a possible alternative to using LiDAR technology when using preview control for load reduction. Secondly, a multivariable IPC controller for both blade and tower load mitigation considering the inherent couplings is investigated. Thirdly, appropriate control-based fault monitoring strategies including fault detection and fault estimation FE-based FTC scheme are proposed for several different pitch actuator/sensor faults. Furthermore, the combined analysis of an FE-based FTC strategy with the IPC system at a system level is provided and the robustness of the proposed strategy is verified

    Large space structures and systems in the space station era: A bibliography with indexes (supplement 03)

    Get PDF
    Bibliographies and abstracts are listed for 1221 reports, articles, and other documents introduced into the NASA scientific and technical information system between January 1, 1991 and June 30, 1991. Topics covered include large space structures and systems, space stations, extravehicular activity, thermal environments and control, tethering, spacecraft power supplies, structural concepts and control systems, electronics, advanced materials, propulsion, policies and international cooperation, vibration and dynamic controls, robotics and remote operations, data and communication systems, electric power generation, space commercialization, orbital transfer, and human factors engineering
    corecore