3,933 research outputs found

    Direction finding for an extended target with possibly non-symmetric spatial spectrum

    Get PDF
    We consider the problem of estimating the direction of arrival (DOA) of an extended target in radar array processing. Two algorithms are proposed that do not assume that the power azimuthal distribution of the scatterers is symmetric with respect to the mass center of the target. The first one is based on spectral moments which are easily related to the target’s DOA. The second method stems from a previous paper by the present authors and consists of a least-squares fit on the elements of the covariance matrix. Both methods are simple and are shown to provide accurate estimates. Furthermore, they extend the range of unambiguous DOAs that can be estimated, compared with the same previous paper

    Hyperspectral Unmixing Overview: Geometrical, Statistical, and Sparse Regression-Based Approaches

    Get PDF
    Imaging spectrometers measure electromagnetic energy scattered in their instantaneous field view in hundreds or thousands of spectral channels with higher spectral resolution than multispectral cameras. Imaging spectrometers are therefore often referred to as hyperspectral cameras (HSCs). Higher spectral resolution enables material identification via spectroscopic analysis, which facilitates countless applications that require identifying materials in scenarios unsuitable for classical spectroscopic analysis. Due to low spatial resolution of HSCs, microscopic material mixing, and multiple scattering, spectra measured by HSCs are mixtures of spectra of materials in a scene. Thus, accurate estimation requires unmixing. Pixels are assumed to be mixtures of a few materials, called endmembers. Unmixing involves estimating all or some of: the number of endmembers, their spectral signatures, and their abundances at each pixel. Unmixing is a challenging, ill-posed inverse problem because of model inaccuracies, observation noise, environmental conditions, endmember variability, and data set size. Researchers have devised and investigated many models searching for robust, stable, tractable, and accurate unmixing algorithms. This paper presents an overview of unmixing methods from the time of Keshava and Mustard's unmixing tutorial [1] to the present. Mixing models are first discussed. Signal-subspace, geometrical, statistical, sparsity-based, and spatial-contextual unmixing algorithms are described. Mathematical problems and potential solutions are described. Algorithm characteristics are illustrated experimentally.Comment: This work has been accepted for publication in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensin

    Direct and Inverse Computational Methods for Electromagnetic Scattering in Biological Diagnostics

    Full text link
    Scattering theory has had a major roll in twentieth century mathematical physics. Mathematical modeling and algorithms of direct,- and inverse electromagnetic scattering formulation due to biological tissues are investigated. The algorithms are used for a model based illustration technique within the microwave range. A number of methods is given to solve the inverse electromagnetic scattering problem in which the nonlinear and ill-posed nature of the problem are acknowledged.Comment: 61 pages, 5 figure

    Time resolved tracking of a sound scatterer in a turbulent flow: non-stationary signal analysis and applications

    Get PDF
    It is known that ultrasound techniques yield non-intrusive measurements of hydrodynamic flows. For example, the study of the echoes produced by a large number of particle insonified by pulsed wavetrains has led to a now standard velocimetry technique. In this paper, we propose to extend the method to the continuous tracking of one single particle embedded in a complex flow. This gives a Lagrangian measurement of the fluid motion, which is of importance in mixing and turbulence studies. The method relies on the ability to resolve in time the Doppler shift of the sound scattered by the continuously insonfied particle. For this signal processing problem two classes of approaches are used: time-frequency analysis and parametric high resolution methods. In the first class we consider the spectrogram and reassigned spectrogram, and we apply it to detect the motion of a small bead settling in a fluid at rest. In more non-stationary turbulent flows where methods in the second class are more robust, we have adapted an Approximated Maximum Likelihood technique coupled with a generalized Kalman filter.Comment: 16 pages 9 figure

    Guaranteed passive parameterized model order reduction of the partial element equivalent circuit (PEEC) method

    Get PDF
    The decrease of IC feature size and the increase of operating frequencies require 3-D electromagnetic methods, such as the partial element equivalent circuit (PEEC) method, for the analysis and design of high-speed circuits. Very large systems of equations are often produced by 3-D electromagnetic methods. During the circuit synthesis of large-scale digital or analog applications, it is important to predict the response of the system under study as a function of design parameters, such as geometrical and substrate features, in addition to frequency (or time). Parameterized model order reduction (PMOR) methods become necessary to reduce large systems of equations with respect to frequency and other design parameters. We propose an innovative PMOR technique applicable to PEEC analysis, which combines traditional passivity-preserving model order reduction methods and positive interpolation schemes. It is able to provide parametric reduced-order models, stable, and passive by construction over a user-defined range of design parameter values. Numerical examples validate the proposed approach

    Matrix probing: a randomized preconditioner for the wave-equation Hessian

    Get PDF
    This paper considers the problem of approximating the inverse of the wave-equation Hessian, also called normal operator, in seismology and other types of wave-based imaging. An expansion scheme for the pseudodifferential symbol of the inverse Hessian is set up. The coefficients in this expansion are found via least-squares fitting from a certain number of applications of the normal operator on adequate randomized trial functions built in curvelet space. It is found that the number of parameters that can be fitted increases with the amount of information present in the trial functions, with high probability. Once an approximate inverse Hessian is available, application to an image of the model can be done in very low complexity. Numerical experiments show that randomized operator fitting offers a compelling preconditioner for the linearized seismic inversion problem.Comment: 21 pages, 6 figure

    Generalized linear sampling method for elastic-wave sensing of heterogeneous fractures

    Get PDF
    A theoretical foundation is developed for active seismic reconstruction of fractures endowed with spatially-varying interfacial condition (e.g.~partially-closed fractures, hydraulic fractures). The proposed indicator functional carries a superior localization property with no significant sensitivity to the fracture's contact condition, measurement errors, and illumination frequency. This is accomplished through the paradigm of the FF_\sharp-factorization technique and the recently developed Generalized Linear Sampling Method (GLSM) applied to elastodynamics. The direct scattering problem is formulated in the frequency domain where the fracture surface is illuminated by a set of incident plane waves, while monitoring the induced scattered field in the form of (elastic) far-field patterns. The analysis of the well-posedness of the forward problem leads to an admissibility condition on the fracture's (linearized) contact parameters. This in turn contributes toward establishing the applicability of the FF_\sharp-factorization method, and consequently aids the formulation of a convex GLSM cost functional whose minimizer can be computed without iterations. Such minimizer is then used to construct a robust fracture indicator function, whose performance is illustrated through a set of numerical experiments. For completeness, the results of the GLSM reconstruction are compared to those obtained by the classical linear sampling method (LSM)
    corecore