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Direction Finding for an Extended Target With Possibly
Non-Symmetric Spatial Spectrum

Andrei Monakov and Olivier Besson

Abstract—We consider the problem of estimating the direction of ar-
rival (DOA) of an extended target in radar array processing. Two algo-
rithms are proposed that do not assume that the power azimuthal distri-
bution of the scatterers is symmetric with respect to the mass center of the
target. The first one is based on spectral moments which are easily related
to the target’s DOA. The second method stems from a previous paper by
the present authors and consists of a least-squares fit on the elements of
the covariance matrix. Both methods are simple and are shown to provide
accurate estimates. Furthermore, they extend the range of unambiguous
DOAs that can be estimated, compared with the same previous paper.

Index Terms—Covariance matrix, direction-of-arrival estimation,
extended target, spectral moments.

I. INTRODUCTION AND MOTIVATION OF THE WORK

The problem of estimating the direction of arrival (DOA) of an ex-
tended target is an important issue in radar array processing. Briefly
speaking, a target can be considered as “extended” as soon as its phys-
ical dimensions are of the same order as the array beamwidth (although
the signal to noise ratio has also to be accounted for in order to define
an extended target). In such a case, the energy backscattered by the
target seems to no longer emanate from a point source but from mul-
tiple, closely spaced scatterers [2]. This in turn implies that the signal
received on the array does not result in a rank-one correlation matrix.
In fact, the distribution of the eigenvalues correlation matrix (and in
particular the value of the second eigenvalue of the correlation matrix
compared to the noise floor) serves as an indicator for defining a target
as extended; see, e.g., [3] for a related discussion. Interestingly enough,
a similar problem has been recently evidenced in the area of wireless
communications. Some campaigns of measurements [4] have shown
that local scattering in the vicinity of a mobile is a non-negligible phe-
nomenon. Owing to the presence of local scatterers around the mobile,
the source appears to be spatially dispersed, as seen from a base sta-
tion antenna array. This has a potential impact on the performance of
any array processing algorithm and, thus, should be taken into account.
Finally, note that in underwater acoustics, a nonhomogeneous propa-
gation medium gives rise to coherence loss along the array [5], [6] and,
therefore, to a full-rank correlation matrix.
Briefly stated, the signal received on an array of sensors from a

spread source can be described by the following model:

yyy(t) = xxx(t)� aaa(�0)s(t) (1)

where xxx(t) describes the randommultiplicative effect due to local scat-
tering, s(t) is the emitted signal that is independent of xxx(t), and aaa(�0)
is the so-called steering vector. In the previous equation, � denotes
the Schur–Hadamard (i.e. element-wise) product. In the case of a point
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source, xxx(t) � 1. The covariance matrix corresponding to (1) is easily
obtained as

E yyy(t)yyyH(t) = PBBB � aaa(�0)aaa
H(�0) (2)

where BBB = Efxxx(t)xxxH(t)g is the covariance matrix of the multiplica-
tive perturbation, and P stands for the source power. The elements of
BBB depend on the azimuthal power distribution of the scatterers.

In this correspondence, we address the problem of estimating �0
from N snapshots drawn from (1). In order to be insensitive to a pos-
sible mismodeling of the azimuthal power distribution, we consider es-
timators that do not make any assumption on the distribution of the
scatterers. Direction finding for scattered sources without any specific
assumption on the form of BBB has received considerable attention in
the last few years. A first approach consists of applying techniques
developed originally for point sources. For example, the conventional
beamformer was studied in [7] and was shown to produce accurate es-
timates, provided that the angular spread is not large. Likewise, appli-
cation of subspace-based techniques such as MUSIC or ESPRIT still
enables to recover accurately the mean DOA in the case of small an-
gular spreads [8]. However, these methods are likely to degrade rapidly
if source spreading becomes large and is not taken into account [9]. Ex-
tension of subspace-based techniques to handle spread sources have
been presented, e.g., in [10] and [11]. The proposed methods work
rather well; however, selection of the signal subspace dimension still
remains a delicate task for which no theoretically sound solution exists.
Indeed, the “optimal” number of eigenvectors to be retained depends,
among others, on the angular spread, which is unknown, and the per-
formance of these estimators is sensitive to this parameter. Robust and
simple methods were recently proposed in [1], [12], and [13]. These
methods essentially rely on an unstructured model for the covariance
matrix of the multiplicative noise. Hence, they do not assume any spe-
cific form for the azimuthal power distribution of the scatterers, which
is an appealing feature. Additionally, they provide computationally ef-
ficient algorithms. Finally, their performance was shown to approach
the Cramér–Rao bound in a wide variety of scenarios. However, these
methods are based on, and indeed exploit, the fact that the azimuthal
power distribution is symmetric, which makes the covariance matrix of
the multiplicative noise BBB real-valued. Therefore, they cannot handle
the situation where the distribution of the scatterers is no longer sym-
metric. Observe that this would be the case with an extended target that
is not symmetric with respect to its mass center.

In this correspondence, we relax the assumption of a real-valued
covariance matrix of the multiplicative noise and consider the more
general situation of a possibly nonsymmetric power distribution. Two
simple methods, which do not depend on any assumption on the form
or the symmetry of the scatterers distribution, are proposed. The first
is based on a general parametrization of the covariance matrix in terms
of its spectral moments, as was done in [2]. The second borrows ideas
from [1], where a least-squares fit on the elements of the covariance
matrix is carried out. In contrast to [1], the assumption of a real-valued
covariance matrix of the multiplicative noise is not made. The proposed
method exploits the fact that it corresponds to some correlation func-
tion. Moreover, compared with [1], it extends the unambiguous range
of DOAs that can be estimated.

II. DATA MODEL AND ASSUMPTIONS

Let us consider an uniform linear array (ULA) ofm sensors spaced
a half-wavelength apart. The snapshot received at time t is assumed to
obey the following model:

yyy(t) = xxx(t)� aaa(!0)s(t) + nnn(t) (3)

where !0 = � sin �0 is the spatial frequency, and aaa(!0) =
[1 ei! � � � ei(m�1)! ]T is the so-called steering vector. nnn(t) is
assumed to be a zero-mean complex-valued spatially white noise
with power �2n. s(t) denotes the emitted signal with power P ,
and xxx(t) = [x1(t) � � � xm(t)]T captures the effect of local
scattering or that of an extended target in radar array processing.
xxx(t) is assumed to be stationary both temporally and spatially. With
RRRx = Efxxx(t)xxxH(t)gEfjs(t)j2g being the correlation matrix of xxx(t)
(in which, for the sake of convenience, we have absorbed the signal
power), the correlation matrix of yyy(t) is readily obtained as

RRRy = RRRx � aaa(!0)aaa
H(!0) + �

2
nIII = RRRs + �

2
nIII (4)

under the additive white noise assumption. For later use, let us define

rx(k) = E fxk+`(t)x
�

` (t)g =
1

2�

�

��

Sx(!)e
ik!

d! (5)

where Sx(!) corresponds to the spectrum of the random process xxx(t).
Observe thatSx(!) is determined by the spatial distribution of the scat-
terers. In contrast to most studies so far, we do not make the assumption
that rx(k) is real valued, i.e. it can take values in . However, we as-
sume that the center frequency of Sx(!) is 0, that is

�

��

!Sx(!)d! = 0: (6)

In other words, !0 corresponds to the “mass center” of the target. This
assumption is important as we can concentrate on the estimation of !0
without any additional assumptions concerning the shape of Sx(!).
Given N snapshots fyyy(t)gN

t=1 drawn from (3), our goal is to estimate
!0. For later use, let

RRRy =
1

N

N

t=1

yyy(t)yyyH(t) (7)

denote the sample covariance matrix.

III. ESTIMATION

In this section, two methods for estimating !0 are proposed. The
first one makes use of spectral moments, whereas the second algorithm
consists in a least-squares fit on some statistic build from the sample
covariance matrix.

A. Spectral Moments-Based Estimation

Our first method relies on the fact that the covariance matrixRRRs can
be written in the following form [2]:

RRRs =

1

q=0

MqAAAq

AAAq(k; `) =
1

q!
[i(k� `)]q ei(k�`)! (8)

where Mq are the so-called spectral moments, ! is arbitrary, and
AAAq(k; `) is the (k; `) element of AAAq . It was shown in [2] that spectral
moments have a clear physical meaning. More precisely, the zeroth
moment M0 equals the total scattered power (in our case Prx(0)).
The first moment is given by

M1 = M0(!0 � !)
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and thus provides information about the sought parameter !0. The pre-
vious relation suggests the following very simplemethod for estimating
the center frequency

!0 = ! +
M1

M0

(9)

whereM1 andM0 correspond to estimates of the moments. The latter
can be obtained easily from the sample covariance matrix as the solu-
tion of a linear least-squares problem; for the sake of brevity, we omit
the details and refer the interested reader to [2] for more details. Note
that although an arbitrary ! can be chosen, the closer ! to !0, the
better is the accuracy of the estimate. In the case considered herein,
the conventional beamformer can provide a rather accurate estimate of
the DOA, and therefore, ! can be set to this value. Accordingly, mul-
tiple values of ! can be investigated, and the value resulting in the best
fitting can be retained.

B. Covariance Matrix Based Estimation

Our second algorithm borrows ideas from [1], which is based on the
following observation. For k = 1; � � � ;m � 1, let

zk =

m�k

`=1

RRRy(k + `; `) = (m� k)rx(k)e
ik! = �ke

ik! (10)

be the statistic obtained by summing along the kth subdiagonal ofRRRy ,
and let

zk =

m�k

`=1

RRRy(k+ `; `) (11)

denote a consistent estimate of zk . In [1], it was proposed to jointly
estimate !0 and ��� = [�1 � � � �m�1]

T by minimizing

Q =

m�1

k=1

jzk � �ke
ik!j

2
: (12)

The method in [1] was shown to produce rather accurate estimates.
However, it suffers from two drawbacks. First, it assumes that rx(k)
is real-valued. Next, the unambiguous range of spatial frequencies that
can be estimated by this method is restricted to [�(�=2); (�=2)]. In-
deed, the frequency estimate of [1] is given by the argument that max-
imizes

V = Re
m�1

k=1

z2ke
�i2k! (13)

However
m�1

k=1

z2ke
�i2k( +!) =

m�1

k=1

z2ke
�ik�e�i2k!

=

m�1

k=1

z2ke
�i2k�eik�e�i2k!

=

m�1

k=1

z2ke
�i2k(� +!)

and therefore, ! is uniquely identifiable in [�(�=2); (�=2)]. This cor-
responds to a [�30�; 30�] DOA sector, which is rather restrictive.

Herein, we relax the assumption of a real-valued rx(k) and consider
a possibly complex-valued rx(k). At the same time, we try to improve
the unambiguous DOA range. Similarly to [1], we propose to minimize
Q with respect to !0 and ��� . Nevertheless, it is clear that if rx(k) is
arbitrary and complex-valued, then the solution to this problem is not
unique. Indeed, for any �, rx(k)eik! = [rx(k)e

�ik�]eik(! +�),

and therefore, !0 and ��� would not be identifiable. However,
the latter decomposition would lead to a correlation function
rx(k) = rx(k)e

�ik� (for k = 1; � � � ;m� 1) which (at least for large
m) would violate the assumption in (6) as it would correspond to a
spectrum Sx(!) = Sx(! + �) for which

�

��

!Sx(!)d! =

�

��

!Sx(!+�)d!

=

�

��

(! ��)Sx(!)d!

=

�

��

!Sx(!)d! ��

�

��

Sx(!)d!

= ��rx(0) 6= 0

which disagrees with (6). From the above discussion, it appears that the
physically meaningful assumption (6) prevents ambiguity problems,
although it relies on all rx(k)’s, whereas Q depends only on the first
m�1 correlation lags. In the sequel, we concentrate on the estimation
of the spatial frequency only. In contrast to [1], we do not concentrate
the criterion with respect to ��� ; rather, we exploit the fact that rx(k)
is a correlation function with spectrum Sx(!). Toward this end, we
rewrite the minimization problem in terms of Sx(!) and then show that
asymptotically, the minimizing argument of Q is the true frequency.
First, observe that

Q =

m�1

k=1

jzkj
2 + j�kj

2 � 2Re z�k�ke
ik! :

Hence, minimizing Q with respect to !0 amounts to maximizing

Q =

m�1

k=1

(m� k)Re z�krx(k)e
ik!

=
1

2�

m�1

k=1

(m� k)Re z�k

�

��

Sx(u)e
ik(u+!)du

=
1

2�

�

��

Sx(v � !)

m�1

k=1

(m� k)Re(z�ke
ikv) dv

where, to obtain the last equality, we used the fact that Sx(u) is real
valued. Therefore, Q can be written as

Q =
1

2�

�

��

Sx(v � !)�(v)dv (14)

with

�(v) =

m�1

k=1

(m� k)Re z�ke
ikv : (15)

Let us now study the asymptotic properties of �(v). Using the fact that
zk converges to zk = (m� k)rx(k)e

ik! , it follows that

lim
N!1

�(!) =

m�1

k=1

(m�k)2Re r�ke
ik(!�! )

=

m�1

k=1

(m�k)2Re
1

2�

�

��

Sx(u)e
ik(!�! �u)du

=
1

2�

�

��

Sx(!�!0�u) (u)du (16)
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where

 (u) =Re
m�1

k=1

(m� k)2eiku

= �

m2

2
+

m

2 sin2 u

2

�

cos2 u

2

2 sin2 u

2

sinmu

sinu
:

The function  (u) is real and even. It is straightforward to show that
it has a unique peak in the vicinity of u = 0, whose effective width is
equal to 3�=(M + 1). Substituting (16) into (14) yields

lim
N!1

Q =
1

4�2

�

��

�

��

Sx(v � !)Sx(v � !0 � u) (u)dudv

=

�

��

 (u)B(u+ !0 � !)du (17)

where the function

B(u) =
1

4�2

�

��

Sx(v)Sx(v � u)du (18)

is the correlation function of the spectrum Sx(u). Clearly,B(u) is pos-
itive, symmetric with respect to u = 0 and achieves its maximum at
u = 0. This, along with the properties of  (u), implies that the max-
imum of Q will asymptotically be reached when ! = !0. Now, Q
depends on Sx(!), which is unknown. However, using (16) and the
fact that the spectrum Sx(u) is concentrated in the vicinity of u = 0, it
follows that �(!) will asymptotically peak at ! = !0. Therefore, we
suggest that we estimate !0 as

!0 = argmax
!

�(!)

= argmax
!

Re
m�1

k=1

(m� k)z�ke
ik! : (19)

It should be pointed out that the ambiguity described previously—and
mainly due to the squaring operation in (13)—is resolved with the
new algorithm. In addition, the proposed method can handle complex-
valued rx(m) under the assumption (6); however, the latter condition
is mild as it only means that we wish to recover the mass center of the
target.

IV. NUMERICAL EXAMPLES

In this section, we provide an illustration of the performances of the
proposed methods. The method based on the spectral moments [see
(9)] is referred to as SME in the figures, whereas (19) is denoted by
“proposed” in the figures. For comparison purposes, the performances
of the AML1 method of [13] and the method of [1] (we refer to it as
the “subdiag” method in the figures) are also displayed. Finally, the
Cramér–Rao bound for the problem at hand is also given. We consider
a linear array of m = 8 sensors. Unless otherwise stated, the mass
center of the target is located at !0 = 0:2, which corresponds to �0 =
3:65�. In all simulations, the spatial spectrum of the target is given by
Fig. 1, where � will be referred to as the source extent. Observe that �
is normalized to the array beamwidth 2�=m, i.e., � = 0:5 means that
the source extent is half the array beamwidth. In addition, note that the
mass center of the target is at !0 since the condition in (6) is fulfilled.
Finally, note that the power spatial density in Fig. 1 is not symmetric
with respect to ! = 0, which indicates that rx(k) is complex valued.
The signal-to-noise ratio is defined as q2 = 10 log

10
P=�2n in decibels.

In all figures, the root mean-square errors of the estimates (normalized
to the array beamwidth) are plotted.

S ( )
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Fig. 1. Power spatial density of the target.
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Fig. 2. RMSE of the DOA estimates versus SNR. m = 8, N = 64, and
� = 0:25.
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Fig. 3. RMSE of the DOA estimates versus N. m = 8, q = 0 dB, and
� = 0:25.

In Figs. 2–4, we study the influence of the signal-to-noise ratio, the
number of snapshots, and the source extent. From inspection of these
figures, it can be seen that the spectral moment estimate (9) performs
slightly poorer than the new method (19). The latter has performance
similar to the subdiag method of [1] and very close to the CRB over a
wide range of scenarios.
Finally, we illustrate the improvement in terms of DOA range ambi-

guity that is achieved with the new method compared with that of [1].
Toward this end, the target’s position is varied from 0 to 90�, and results
are given in Fig. 5. It can be observed that for �0 > 30�, the method
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Fig. 5. RMSE of the DOA estimates versus � . m = 8, N = 64, q = 0
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of [1] provides erroneous estimates, which clearly demonstrates the
ambiguity problem. In contrast, our method does not suffer from this
problem.

V. CONCLUSIONS

In this correspondence, we consider the direction-finding problem
for an extended target whose power spatial density is not necessarily
symmetric with respect to its mass center. Two computationally simple
algorithms were proposed. One is based on the spectral moments of the
target, which are easily related to its DOA. The second borrows ideas
from [1] and extends the range of DOAs that can be estimated unam-
biguously. Both methods provide robust, simple, yet accurate DOA es-
timates.

REFERENCES

[1] O. Besson, P. Stoica, and A. Gershman, “Simple and accurate direction
of arrival estimator in the presence of imperfect spatial coherence,” IEEE
Trans. Signal Processing, vol. 49, pp. 730–737, Apr. 2001.

[2] A. Monakov, “Observation of extended targets with antenna arrays,”
IEEE Trans. Aerosp. Electron. Syst., vol. 36, pp. 297–302, Jan. 2000.

[3] M. Zatman, “How narrowband is narrowband?,” Proc. Inst. Elect.
Eng.—Radar, Sonar Navigat., vol. 145, no. 2, pp. 85–91, 1998.

[4] K. Pedersen, P. Mogensen, and B. Fleury, “A stochastic model of the
temporal and azimuthal dispersion seen at the base station in outdoor
propagation environments,” IEEE Trans. Veh. Technol., vol. 49, pp.
437–447, Mar. 2000.

[5] A. Paulraj and T. Kailath, “Direction of arrival estimation by eigenstruc-
ture methods with imperfect spatial coherence of wavefronts,” J. Acoust.
Soc. Amer., vol. 83, pp. 1034–1040, Mar. 1988.

[6] A. Gershman, C. Mecklenbräuker, and J. Böhme, “Matrix fitting ap-
proach to direction of arrival estimation with imperfect coherence of
wavefronts,” IEEE Trans. Signal Processing, vol. 45, pp. 1894–1899,
July 1997.

[7] R. Raich, J. Goldberg, and H. Messer, “Bearing estimation for a dis-
tributed source via the conventional beamformer,” in Proc. SSAP Work-
shop, Portland, OR, Sept. 1998, pp. 5–8.

[8] R. Moses, T. Söderström, and J. Sorelius, “Effects of multipath-induced
angular spread on direction of arrival estimators in array signal pro-
cessing,” in Proc. IEEE/IEE Workshop Signal Process. Methods Mul-
tipath Environments, Glasgow, U.K., Apr. 20–21, 1995, pp. 6–15.

[9] D. Astély and B. Ottersten, “The effects of local scattering on direction
of arrival estimation with MUSIC,” IEEE Trans. Signal Processing, vol.
47, pp. 3220–3234, Dec. 1999.

[10] M. Bengtsson and B. Ottersten, “Low-complexity estimators for
distributed sources,” IEEE Trans. Signal Processing, vol. 48, pp.
2185–2194, Aug. 2000.

[11] , “A generalization of weighted subspace fitting to full-rank
models,” IEEE Trans. Signal Processing, vol. 49, pp. 1002–1012, May
2001.

[12] O. Besson and P. Stoica, “Decoupled estimation of DOA and angular
spread for a spatially distributed source,” IEEE Trans. Signal Pro-
cessing, vol. 48, pp. 1872–1882, July 2000.

[13] O. Besson, F. Vincent, P. Stoica, and A. Gershman, “Approximate max-
imum likelihood estimators for array processing in multiplicative noise
environments,” IEEE Trans. Signal Processing, vol. 48, pp. 2506–2518,
Sept. 2000.

Comments on “A High-Resolution
Quadratic Time-Frequency Distribution for

Multicomponent Signals Analysis”

Zahir M. Hussain

Abstract—It is shown that the time-frequency distribution (TFD) pro-
posed in the above paper is not well defined in the ordinary sense for power
signals, including the single-tone sinusoid, and it needs the introduction of
generalized functions and transforms. It is also shown that the proposed
TFD does not satisfy the conditions cited by the authors of the paper to jus-
tify the claim that it has the instantaneous frequency property.

Index Terms—Generalized functions, instantaneous frequency, mul-
ticomponent signals, reduced interference distributions, time-frequency
analysis.

Recently, a time-frequency distribution (TFD) of Cohen’s Class,
which is known as the B-distribution (BD), was proposed and claimed
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