199 research outputs found

    ATP: a Datacenter Approximate Transmission Protocol

    Full text link
    Many datacenter applications such as machine learning and streaming systems do not need the complete set of data to perform their computation. Current approximate applications in datacenters run on a reliable network layer like TCP. To improve performance, they either let sender select a subset of data and transmit them to the receiver or transmit all the data and let receiver drop some of them. These approaches are network oblivious and unnecessarily transmit more data, affecting both application runtime and network bandwidth usage. On the other hand, running approximate application on a lossy network with UDP cannot guarantee the accuracy of application computation. We propose to run approximate applications on a lossy network and to allow packet loss in a controlled manner. Specifically, we designed a new network protocol called Approximate Transmission Protocol, or ATP, for datacenter approximate applications. ATP opportunistically exploits available network bandwidth as much as possible, while performing a loss-based rate control algorithm to avoid bandwidth waste and re-transmission. It also ensures bandwidth fair sharing across flows and improves accurate applications' performance by leaving more switch buffer space to accurate flows. We evaluated ATP with both simulation and real implementation using two macro-benchmarks and two real applications, Apache Kafka and Flink. Our evaluation results show that ATP reduces application runtime by 13.9% to 74.6% compared to a TCP-based solution that drops packets at sender, and it improves accuracy by up to 94.0% compared to UDP

    iRED: A disaggregated P4-AQM fully implemented in programmable data plane hardware

    Full text link
    Routers employ queues to temporarily hold packets when the scheduler cannot immediately process them. Congestion occurs when the arrival rate of packets exceeds the processing capacity, leading to increased queueing delay. Over time, Active Queue Management (AQM) strategies have focused on directly draining packets from queues to alleviate congestion and reduce queuing delay. On Programmable Data Plane (PDP) hardware, AQMs traditionally reside in the Egress pipeline due to the availability of queue delay information there. We argue that this approach wastes the router's resources because the dropped packet has already consumed the entire pipeline of the device. In this work, we propose ingress Random Early Detection (iRED), a more efficient approach that addresses the Egress drop problem. iRED is a disaggregated P4-AQM fully implemented in programmable data plane hardware and also supports Low Latency, Low Loss, and Scalable Throughput (L4S) framework, saving device pipeline resources by dropping packets in the Ingress block. To evaluate iRED, we conducted three experiments using a Tofino2 programmable switch: i) An in-depth analysis of state-of-the-art AQMs on PDP hardware, using 12 different network configurations varying in bandwidth, Round-Trip Time (RTT), and Maximum Transmission Unit (MTU). The results demonstrate that iRED can significantly reduce router resource consumption, with up to a 10x reduction in memory usage, 12x fewer processing cycles, and 8x less power consumption for the same traffic load; ii) A performance evaluation regarding the L4S framework. The results prove that iRED achieves fairness in bandwidth usage for different types of traffic (classic and scalable); iii) A comprehensive analysis of the QoS in a real setup of a DASH) technology. iRED demonstrated up to a 2.34x improvement in FPS and a 4.77x increase in the video player buffer fill.Comment: Preprint (TNSM under review

    Improved algorithms for TCP congestion control

    Get PDF
    Reliable and efficient data transfer on the Internet is an important issue. Since late 70’s the protocol responsible for that has been the de facto standard TCP, which has proven to be successful through out the years, its self-managed congestion control algorithms have retained the stability of the Internet for decades. However, the variety of existing new technologies such as high-speed networks (e.g. fibre optics) with high-speed long-delay set-up (e.g. cross-Atlantic links) and wireless technologies have posed lots of challenges to TCP congestion control algorithms. The congestion control research community proposed solutions to most of these challenges. This dissertation adds to the existing work by: firstly tackling the highspeed long-delay problem of TCP, we propose enhancements to one of the existing TCP variants (part of Linux kernel stack). We then propose our own variant: TCP-Gentle. Secondly, tackling the challenge of differentiating the wireless loss from congestive loss in a passive way and we propose a novel loss differentiation algorithm which quantifies the noise in packet inter arrival times and use this information together with the span (ratio of maximum to minimum packet inter arrival times) to adapt the multiplicative decrease factor according to a predefined logical formula. Finally, extending the well-known drift model of TCP to account for wireless loss and some hypothetical cases (e.g. variable multiplicative decrease), we have undertaken stability analysis for the new version of the model

    Reducing Latency in Internet Access Links with Mechanisms in Endpoints and within the Network

    Get PDF
    Excessive and unpredictable end-to-end latency is a major problem for today’s Internet performance, affecting a range of applications from real-time multimedia to web traffic. This is mainly attributed to the interaction between the TCP congestion control mechanism and the unmanaged large buffers deployed across the Internet. This dissertation investigates transport and link layer solutions to solve the Internet’s latency problem on the access links. These solutions operate on the sender side, within the network or use signaling between the sender and the network based on Explicit Congestion Notification (ECN). By changing the sender’s reaction to ECN, a method proposed in this dissertation reduces latency without harming link utilization. Real-life experiments and simulations show that this goal is achieved while maintaining backward compatibility and being gradually deployable on the Internet. This mechanism’s fairness to legacy traffic is further improved by a novel use of ECN within the network

    User-Centric Quality of Service Provisioning in IP Networks

    Get PDF
    The Internet has become the preferred transport medium for almost every type of communication, continuing to grow, both in terms of the number of users and delivered services. Efforts have been made to ensure that time sensitive applications receive sufficient resources and subsequently receive an acceptable Quality of Service (QoS). However, typical Internet users no longer use a single service at a given point in time, as they are instead engaged in a multimedia-rich experience, comprising of many different concurrent services. Given the scalability problems raised by the diversity of the users and traffic, in conjunction with their increasing expectations, the task of QoS provisioning can no longer be approached from the perspective of providing priority to specific traffic types over coexisting services; either through explicit resource reservation, or traffic classification using static policies, as is the case with the current approach to QoS provisioning, Differentiated Services (Diffserv). This current use of static resource allocation and traffic shaping methods reveals a distinct lack of synergy between current QoS practices and user activities, thus highlighting a need for a QoS solution reflecting the user services. The aim of this thesis is to investigate and propose a novel QoS architecture, which considers the activities of the user and manages resources from a user-centric perspective. The research begins with a comprehensive examination of existing QoS technologies and mechanisms, arguing that current QoS practises are too static in their configuration and typically give priority to specific individual services rather than considering the user experience. The analysis also reveals the potential threat that unresponsive application traffic presents to coexisting Internet services and QoS efforts, and introduces the requirement for a balance between application QoS and fairness. This thesis proposes a novel architecture, the Congestion Aware Packet Scheduler (CAPS), which manages and controls traffic at the point of service aggregation, in order to optimise the overall QoS of the user experience. The CAPS architecture, in contrast to traditional QoS alternatives, places no predetermined precedence on a specific traffic; instead, it adapts QoS policies to each individual’s Internet traffic profile and dynamically controls the ratio of user services to maintain an optimised QoS experience. The rationale behind this approach was to enable a QoS optimised experience to each Internet user and not just those using preferred services. Furthermore, unresponsive bandwidth intensive applications, such as Peer-to-Peer, are managed fairly while minimising their impact on coexisting services. The CAPS architecture has been validated through extensive simulations with the topologies used replicating the complexity and scale of real-network ISP infrastructures. The results show that for a number of different user-traffic profiles, the proposed approach achieves an improved aggregate QoS for each user when compared with Best effort Internet, Traditional Diffserv and Weighted-RED configurations. Furthermore, the results demonstrate that the proposed architecture not only provides an optimised QoS to the user, irrespective of their traffic profile, but through the avoidance of static resource allocation, can adapt with the Internet user as their use of services change.France Teleco

    Re-architecting datacenter networks and stacks for low latency and high performance

    Get PDF
    © 2017 ACM. Modern datacenter networks provide very high capacity via redundant Clos topologies and low switch latency, but transport protocols rarely deliver matching performance. We present NDP, a novel datacenter transport architecture that achieves near-optimal completion times for short transfers and high flow throughput in a wide range of scenarios, including incast. NDP switch buffers are very shallow and when they fill the switches trim packets to headers and priority forward the headers. This gives receivers a full view of instantaneous demand from all senders, and is the basis for our novel, high-performance, multipath-aware transport protocol that can deal gracefully with massive incast events and prioritize traffic from different senders on RTT timescales. We implemented NDP in Linux hosts with DPDK, in a software switch, in a NetFPGA-based hardware switch, and in P4. We evaluate NDP's performance in our implementations and in large-scale simulations, simultaneously demonstrating support for very low-latency and high throughput.This work was partly funded by the SSICLOPS H2020 project (644866)
    • …
    corecore