383 research outputs found

    ์™„์ „ ์ด์‹ํ˜• ์‹œ๊ฐ ๋ณด์ฒ  ์‹œ์Šคํ…œ์„ ์œ„ํ•œ ์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ •๋ณด๊ณตํ•™๋ถ€,2020. 2. ๊น€์„ฑ์ค€.A visual prosthetic system typically consists of a neural stimulator, which is a surgically implantable device for electrical stimulation intended to restore the partial vision of blind patients, and peripheral external devices including an image sensor, a controller, and a processor. Although several visual prosthetic systems, such as retinal prostheses or retinal implants, have already been commercialized, there are still many issues on them (e.g., substrate materials for implantable units, electrode configurations, the use of external hardware, power supply and data transmission methods, design and fabrication approaches, etc.) to be dealt with for an improved visual prosthetic system. In this dissertation, a totally implantable visual prosthetic system is suggested with four motivations, which are thought to be important, as in the following: 1) simple fabrication of implantable parts, such as micro-sized electrodes and a case, for a neural stimulator based on polymer without semiconductor techniques, 2) multi-polar stimulation for virtual channel generation to overcome a limited number of physical electrodes in a confined space, 3) a new image acquisition strategy using an implantable camera, and 4) power supply as well as data transmission to a neural stimulator without hindering patients various activities. First, polymer materials have been widely used to develop various implantable devices for visual prosthetic systems because of their outstanding advantages including flexibility and applicability to microfabrication, compared with metal, silicon, or ceramic. Most polymer-based implantable devices have been fabricated by the semiconductor technology based on metal deposition and photolithography. This technology provides high accuracy and precision for metal patterning on a polymer substrate. However, the technology is also complicated and time-consuming as it requires masks for photolithography and vacuum for metal deposition as well as huge fabrication facilities. This is the reason why biocompatible cyclic olefin polymer (COP) with low water absorption (<0.01 %) and high light transmission (92 %) was chosen as a new substrate material of an implantable device in this study. Based on COP, simple fabrication process of an implantable device was developed without masks, vacuum, and huge fabrication facilities. COP is characterized by strong adhesion to gold and high ultraviolet (UV) transparency as well. Because of such adhesion and UV transparency, a gold thin film can be thermally laminated on a COP substrate with no adhesion layer and micromachined by a UV laser without damaging the substrate. Using the developed COP-based process, a depth-type microprobe was fabricated first, and its electrochemical and mechanical properties as well as functionality were evaluated by impedance measurements, buckling tests, and in vivo neural signal recording, respectively. Furthermore, the long-term reliability of COP encapsulation formed by the developed process was estimated through leakage current measurements during accelerated aging in saline solution, to show the feasibility of the encapsulation using COP as well. Second, even if stimulation electrodes become sufficiently small, it is demanding to arrange them for precise stimulation on individual neurons due to electrical crosstalk, which is the spatial superposition of electric fields generated by simultaneous stimuli. Hence, an adequate spacing between adjacent electrodes is required, and this causes a limited number of physical electrodes in a confined space such as in the brain or in the retina. To overcome this limitation, many researchers have proposed stimulation strategies using virtual channels, which are intermediate areas with large magnitudes of electric fields between physical electrodes. Such virtual channels can be created by multi-polar stimulation that can combine stimuli output from two or more electrodes at the same time. To produce more delicate stimulation patterns using virtual channels herein, penta-polar stimulation with a grid-shaped arrangement of electrodes was leveraged specially to generate them in two dimensions. This penta-polar stimulation was realized using a custom-designed integrated circuit with five different current sources and surface-type electrodes fabricated by the developed COP-based process. The effectiveness of the penta-polar stimulation was firstly evaluated by focusing electric fields in comparison to mono-polar stimulation. In addition, the distribution of electric fields changed by the penta-polar stimulation, which indicated virtual channel generation, was estimated in accordance with an amplitude ratio between stimuli of the two adjacent electrodes and a distance from them, through both finite element analysis and in vitro evaluation. Third, an implantable camera is herein proposed as a new image acquisition approach capturing real-time images while implanted in the eye, to construct a totally implantable visual prosthetic system. This implantable camera has distinct advantages in that it can provide blind patients with benefits to perform several ordinary activities, such as sleep, shower, or running, while focusing on objects in accordance with natural eye movements. These advantages are impossible to be achieved using a wearing unit such as a glasses-mounted camera used in a conventional partially implantable visual prosthetic system. Moreover, the implantable camera also has a merit of garnering a variety of image information using the complete structure of a camera, compared with a micro-photodiode array of a retinal implant. To fulfill these advantageous features, after having been coated with a biocompatible epoxy to prevent moisture penetration and sealed using a medical-grade silicone elastomer to gain biocompatibility as well as flexibility, the implantable camera was fabricated enough to be inserted into the eye. Its operation was assessed by wireless image acquisition that displayed a processed black and white image. In addition, to estimate reliable wireless communication ranges of the implantable camera in the body, signal-to-noise ratio measurements were conducted while it was covered by an 8-mm-thick biological medium that mimicked an in vivo environment. Lastly, external hardware attached on the body has been generally used in conventional visual prosthetic systems to stably deliver power and data to implanted units and to acquire image signals outside the body. However, there are common problems caused by this external hardware, including functional failure due to external damages, unavailability during sleep, in the shower, or while running or swimming, and cosmetic issues. Especially, an external coil for power and data transmission in a conventional visual prosthetic system is connected to a controller and processor through a wire, which makes the coil more vulnerable to the problems. To solve this issue, a totally implantable neural stimulation system controlled by a handheld remote controller is presented. This handheld remote controller can control a totally implantable stimulator powered by a rechargeable battery through low-power but relatively long-range ZigBee wireless communication. Moreover, two more functions can be performed by the handheld controller for expanded applications; one is percutaneous stimulation, and the other is inductive charging of the rechargeable battery. Additionally, simple switches on the handheld controller enable users to modulate parameters of stimuli like a gamepad. These handheld and user-friendly interfaces can make it easy to use the controller under various circumstances. The functionality of the controller was evaluated in vivo, through percutaneous stimulation and remote control especially for avian navigation, as well as in vitro. Results of both in vivo experiments were compared in order to verify the feasibility of remote control of neural stimulation using the controller. In conclusion, several discussions on results of this study, including the COP-based simple fabrication process, the penta-polar stimulation, the implantable camera, and the multi-functional handheld remote controller, are addressed. Based on these findings and discussions, how the researches in this thesis can be applied to the realization of a totally implantable visual prosthetic system is elucidated at the end of this dissertation.์‹œ๊ฐ ๋ณด์ฒ  ์‹œ์Šคํ…œ์€ ์ผ๋ฐ˜์ ์œผ๋กœ ์‹ค๋ช… ํ™˜์ž๋“ค์˜ ๋ถ€๋ถ„ ์‹œ๋ ฅ์„ ์ „๊ธฐ ์ž๊ทน์œผ๋กœ ํšŒ๋ณต์‹œํ‚ค๊ธฐ ์œ„ํ•˜์—ฌ ์ˆ˜์ˆ ์ ์œผ๋กœ ์ด์‹๋  ์ˆ˜ ์žˆ๋Š” ์žฅ์น˜์ธ ์‹ ๊ฒฝ ์ž๊ทน๊ธฐ์™€ ์ด๋ฏธ์ง€ ์„ผ์„œ ๋˜๋Š” ์ปจํŠธ๋กค๋Ÿฌ, ํ”„๋กœ์„ธ์„œ๋ฅผ ํฌํ•จํ•˜๋Š” ์™ธ๋ถ€์˜ ์ฃผ๋ณ€ ์žฅ์น˜๋“ค๋กœ ๊ตฌ์„ฑ๋œ๋‹ค. ๋ง๋ง‰ ๋ณด์ฒ  ์žฅ์น˜ ๋˜๋Š” ๋ง๋ง‰ ์ž„ํ”Œ๋ž€ํŠธ์™€ ๊ฐ™์ด ๋ช‡๋ช‡ ์‹œ๊ฐ ๋ณด์ฒ  ์‹œ์Šคํ…œ์€ ์ด๋ฏธ ์ƒ์šฉํ™” ๋˜์—ˆ์ง€๋งŒ, ์—ฌ์ „ํžˆ ๋” ๋‚˜์€ ์‹œ๊ฐ ๋ณด์ฒ  ์‹œ์Šคํ…œ์„ ์œ„ํ•˜์—ฌ ๋‹ค๋ค„์ ธ์•ผ ํ•  ๋งŽ์€ ์ด์Šˆ๋“ค (์˜ˆ๋ฅผ ๋“ค์–ด, ์ด์‹ํ˜• ์žฅ์น˜์˜ ๊ธฐํŒ ๋ฌผ์งˆ, ์ „๊ทน์˜ ๋ฐฐ์—ด, ์™ธ๋ถ€ ํ•˜๋“œ์›จ์–ด์˜ ์‚ฌ์šฉ, ์ „๋ ฅ ๊ณต๊ธ‰ ๋ฐ ๋ฐ์ดํ„ฐ ์ „์†ก ๋ฐฉ๋ฒ•, ์„ค๊ณ„ ๋ฐ ์ œ์ž‘ ๋ฐฉ์‹ ๋“ฑ)์ด ์žˆ๋‹ค. ๋ณธ ํ•™์œ„๋…ผ๋ฌธ์€ ์™„์ „ ์ด์‹ํ˜• ์‹œ๊ฐ ๋ณด์ฒ  ์‹œ์Šคํ…œ์„ ์ œ์•ˆํ•˜๋ฉฐ, ์ด๋ฅผ ์œ„ํ•˜์—ฌ ๋‹ค์Œ๊ณผ ๊ฐ™์ด ์ค‘์š”ํ•˜๋‹ค๊ณ  ์ƒ๊ฐ๋˜๋Š” ์ด ๋„ค ๊ฐ€์ง€์˜ ์ด์Šˆ๋“ค๊ณผ ๊ด€๋ จ๋œ ์—ฐ๊ตฌ ๋‚ด์šฉ์„ ๋‹ค๋ฃฌ๋‹ค. 1) ํด๋ฆฌ๋จธ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•œ ์‹ ๊ฒฝ ์ž๊ทน๊ธฐ์˜ ๋ฏธ์„ธ ์ „๊ทน ๋ฐ ํŒจํ‚ค์ง€์™€ ๊ฐ™์€ ์ด์‹ ๊ฐ€๋Šฅํ•œ ๋ถ€๋ถ„์„ ๋ฐ˜๋„์ฒด ๊ธฐ์ˆ  ์—†์ด ๊ฐ„๋‹จํ•˜๊ฒŒ ์ œ์ž‘ํ•˜๋Š” ๋ฐฉ๋ฒ•๊ณผ 2) ์ œํ•œ๋œ ๊ณต๊ฐ„์—์„œ ์ „๊ทน ๊ฐœ์ˆ˜์˜ ๋ฌผ๋ฆฌ์ ์ธ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ๊ฐ€์ƒ ์ฑ„๋„์„ ํ˜•์„ฑํ•˜๋Š” ๋‹ค๊ทน์„ฑ ์ž๊ทน ๋ฐฉ์‹, 3) ์ด์‹ํ˜• ์นด๋ฉ”๋ผ๋ฅผ ์‚ฌ์šฉํ•˜๋Š” ์ƒˆ๋กœ์šด ์ด๋ฏธ์ง€ ํš๋“ ์ „๋žต, 4) ํ™˜์ž์˜ ๋‹ค์–‘ํ•œ ํ™œ๋™์„ ๋ฐฉํ•ดํ•˜์ง€ ์•Š์œผ๋ฉด์„œ ์‹ ๊ฒฝ ์ž๊ทน๊ธฐ์— ์ „๋ ฅ์„ ๊ณต๊ธ‰ํ•˜๊ณ  ๋ฐ์ดํ„ฐ๋ฅผ ์ „์†กํ•˜๋Š” ๋ฐฉ๋ฒ•. ์ฒซ์งธ๋กœ, ๊ธˆ์†์ด๋‚˜ ์‹ค๋ฆฌ์ฝ˜, ์„ธ๋ผ๋ฏน์— ๋น„ํ•˜์—ฌ ํด๋ฆฌ๋จธ๋Š” ์œ ์—ฐ์„ฑ ๋ฐ ๋ฏธ์„ธ ์ œ์ž‘์—์˜ ์ ์šฉ ๊ฐ€๋Šฅ์„ฑ์„ ํฌํ•จํ•˜๋Š” ๋‘๋“œ๋Ÿฌ์ง„ ์ด์ ๋“ค์ด ์žˆ๊ธฐ ๋•Œ๋ฌธ์— ์‹œ๊ฐ ๋ณด์ฒ  ์‹œ์Šคํ…œ์„ ๊ตฌ์„ฑํ•˜๋Š” ๋‹ค์–‘ํ•œ ์ด์‹ ๊ฐ€๋Šฅํ•œ ๋ถ€๋ถ„๋“ค์— ๋„๋ฆฌ ์ด์šฉ๋˜์—ˆ๋‹ค. ๋Œ€๋ถ€๋ถ„์˜ ํด๋ฆฌ๋จธ ๊ธฐ๋ฐ˜ ์ด์‹ํ˜• ์žฅ์น˜๋“ค์€ ๊ธˆ์† ์ฆ์ฐฉ๊ณผ ์‚ฌ์ง„ ์‹๊ฐ์„ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•˜๋Š” ๋ฐ˜๋„์ฒด ๊ณต์ •์œผ๋กœ ์ œ์ž‘๋˜์—ˆ๋‹ค. ์ด ๊ณต์ •์€ ํด๋ฆฌ๋จธ ๊ธฐํŒ ์œ„์— ๊ธˆ์†์„ ํŒจํ„ฐ๋‹ ํ•˜๋Š” ๋ฐ์— ์žˆ์–ด์„œ ๋†’์€ ์ •ํ™•์„ฑ๊ณผ ์ •๋ฐ€๋„๋ฅผ ์ œ๊ณตํ•œ๋‹ค. ํ•˜์ง€๋งŒ ๊ทธ ๊ณต์ •์€ ๋˜ํ•œ, ์‚ฌ์ง„ ์‹๊ฐ์— ์“ฐ์ด๋Š” ๋งˆ์Šคํฌ์™€ ๊ธˆ์† ์ฆ์ฐฉ์„ ์œ„ํ•œ ์ง„๊ณต๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ์•„์ฃผ ํฐ ๊ณต์ • ์„ค๋น„๋ฅผ ์š”๊ตฌํ•˜๊ธฐ ๋•Œ๋ฌธ์— ์‹œ๊ฐ„ ์†Œ๋ชจ๊ฐ€ ์‹ฌํ•˜๊ณ  ๋ณต์žกํ•˜๋‹ค. ์ด๋Š” ๋ณธ ์—ฐ๊ตฌ์—์„œ ๋‚ฎ์€ ์ˆ˜๋ถ„ ํก์ˆ˜ (<0.01 %)์™€ ๋†’์€ ๋น› ํˆฌ๊ณผ (92 %)๋ฅผ ํŠน์ง•์œผ๋กœ ํ•˜๋Š” ์ƒ์ฒด์ ํ•ฉํ•œ ๊ณ ๋ฆฌํ˜• ์˜ฌ๋ ˆํ•€ ํด๋ฆฌ๋จธ (cyclic olefin polymer, COP)๊ฐ€ ์ด์‹ํ˜• ์žฅ์น˜๋ฅผ ์œ„ํ•œ ์ƒˆ๋กœ์šด ๊ธฐํŒ ๋ฌผ์งˆ๋กœ์จ ์„ ํƒ๋œ ์ด์œ ์ด๋‹ค. COP๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•˜์—ฌ, ๋งˆ์Šคํฌ์™€ ์ง„๊ณต, ํฐ ๊ณต์ • ์„ค๋น„๊ฐ€ ํ•„์š” ์—†์ด ์ด์‹ ๊ฐ€๋Šฅํ•œ ์žฅ์น˜๋ฅผ ๊ฐ„๋‹จํ•˜๊ฒŒ ์ œ์ž‘ํ•˜๋Š” ๊ณต์ •์ด ๊ฐœ๋ฐœ๋˜์—ˆ๋‹ค. COP๋Š” ๊ธˆ๊ณผ์˜ ๊ฐ•ํ•œ ์ ‘ํ•ฉ๊ณผ ์ž์™ธ์„ ์— ๋Œ€ํ•œ ๋†’์€ ํˆฌ๋ช…์„ฑ์„ ๋˜ ๋‹ค๋ฅธ ํŠน์ง•์œผ๋กœ ํ•œ๋‹ค. ์ด์™€ ๊ฐ™์€ ์ ‘ํ•ฉ ํŠน์„ฑ๊ณผ ์ž์™ธ์„  ํˆฌ๋ช…์„ฑ ๋•๋ถ„์—, ๊ธˆ๋ฐ•์€ COP ๊ธฐํŒ์— ๋ณ„๋„์˜ ์ ‘ํ•ฉ์ธต ์—†์ด ์—ด๋กœ ์ ‘ํ•ฉ๋  ์ˆ˜ ์žˆ์„ ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ๊ทธ ๊ธฐํŒ์— ์†์ƒ์„ ์ฃผ์ง€ ์•Š์œผ๋ฉด์„œ ์ž์™ธ์„  ๋ ˆ์ด์ €๋ฅผ ํ†ตํ•˜์—ฌ ๋ฏธ์„ธํ•˜๊ฒŒ ๊ฐ€๊ณต๋  ์ˆ˜ ์žˆ๋‹ค. ๊ฐœ๋ฐœ๋œ COP ๊ธฐ๋ฐ˜์˜ ๊ณต์ •์„ ์ฒ˜์Œ์œผ๋กœ ์‚ฌ์šฉํ•˜์—ฌ ์นจ์Šตํ˜• ๋ฏธ์„ธ ํ”„๋กœ๋ธŒ๊ฐ€ ์ œ์ž‘๋˜์—ˆ๊ณ , ๊ทธ ์ „๊ธฐํ™”ํ•™์ , ๊ธฐ๊ณ„์  ํŠน์„ฑ๊ณผ ๊ธฐ๋Šฅ์„ฑ์ด ๊ฐ๊ฐ ์ž„ํ”ผ๋˜์Šค ์ธก์ •๊ณผ ๋ฒ„ํด๋ง ํ…Œ์ŠคํŠธ, ์ƒ์ฒด ๋‚ด ์‹ ๊ฒฝ์‹ ํ˜ธ ๊ธฐ๋ก์œผ๋กœ ํ‰๊ฐ€๋˜์—ˆ๋‹ค. ๊ทธ๋ฆฌ๊ณ  COP๋ฅผ ์‚ฌ์šฉํ•œ ๋ฐ€๋ด‰์˜ ๊ฐ€๋Šฅ์„ฑ๋„ ์•Œ์•„๋ณด๊ธฐ ์œ„ํ•˜์—ฌ, ๊ฐœ๋ฐœ๋œ ๊ณต์ •์„ ์‚ฌ์šฉํ•˜์—ฌ ํ˜•์„ฑ๋œ COP ๋ฐ€๋ด‰์˜ ์žฅ๊ธฐ ์•ˆ์ •์„ฑ์ด ์ƒ๋ฆฌ์‹์—ผ์ˆ˜์—์„œ์˜ ๊ฐ€์† ๋…ธํ™” ์ค‘ ๋ˆ„์„ค ์ „๋ฅ˜ ์ธก์ •์„ ํ†ตํ•˜์—ฌ ์ถ”์ •๋˜์—ˆ๋‹ค. ๋‘˜์งธ๋กœ, ์ž๊ทน ์ „๊ทน์˜ ํฌ๊ธฐ๊ฐ€ ์ถฉ๋ถ„ํžˆ ์ž‘์•„์ง„๋‹ค๊ณ  ํ•˜๋”๋ผ๋„, ๋™์‹œ์— ์ถœ๋ ฅ๋˜๋Š” ์ž๊ทน์— ์˜ํ•ด ํ˜•์„ฑ๋˜๋Š” ์ „๊ธฐ์žฅ์˜ ์ค‘์ฒฉ์ธ ํฌ๋กœ์Šค ํ† ํฌ ๋•Œ๋ฌธ์— ๊ฐœ๊ฐœ์˜ ์‹ ๊ฒฝ์„ธํฌ๋ฅผ ์ •๋ฐ€ํ•˜๊ฒŒ ์ž๊ทนํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ์ „๊ทน์„ ๋ฐฐ์—ดํ•˜๋Š” ๊ฒƒ์€ ์•„์ฃผ ์–ด๋ ต๋‹ค. ๋”ฐ๋ผ์„œ ์ธ์ ‘ํ•œ ์ „๊ทน ์‚ฌ์ด์— ์ ๋‹นํ•œ ๊ฐ„๊ฒฉ์ด ํ•„์š”ํ•˜๊ฒŒ ๋˜๊ณ , ์ด๋Š” ํŠนํžˆ ๋‡Œ ๋˜๋Š” ๋ง๋ง‰๊ณผ ๊ฐ™์€ ์ œํ•œ๋œ ๊ณต๊ฐ„์—์„œ ์ „๊ทน ๊ฐœ์ˆ˜์˜ ๋ฌผ๋ฆฌ์ ์ธ ํ•œ๊ณ„๋ฅผ ์•ผ๊ธฐํ•œ๋‹ค. ์ด ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•˜์—ฌ, ๋งŽ์€ ์—ฐ๊ตฌ์ž๋“ค์€ ์‹ค์ œ ์ „๊ทน ์‚ฌ์ด์—์„œ ํฐ ์ „๊ธฐ์žฅ ์„ธ๊ธฐ๋ฅผ ๊ฐ–๋Š” ์ค‘๊ฐ„ ์˜์—ญ์„ ๋‚˜ํƒ€๋‚ด๋Š” ๊ฐ€์ƒ ์ฑ„๋„์„ ์ด์šฉํ•œ ์ž๊ทน ์ „๋žต์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ์ด๋Ÿฌํ•œ ๊ฐ€์ƒ ์ฑ„๋„์€ ๋‘˜ ์ด์ƒ์˜ ์ „๊ทน์—์„œ ๋™์‹œ์— ์ถœ๋ ฅ๋˜๋Š” ์ž๊ทน ํŒŒํ˜•์„ ํ•ฉ์น  ์ˆ˜ ์žˆ๋Š” ๋‹ค๊ทน์„ฑ ์ž๊ทน์— ์˜ํ•˜์—ฌ ํ˜•์„ฑ์ด ๊ฐ€๋Šฅํ•˜๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๊ฐ€์ƒ ์ฑ„๋„์„ ์ด์šฉํ•˜์—ฌ ๋” ์ •๊ตํ•œ ์ž๊ทน ํŒจํ„ด์„ ๋งŒ๋“ค๊ธฐ ์œ„ํ•˜์—ฌ, ํŠนํžˆ 2์ฐจ์›์—์„œ์˜ ๊ฐ€์ƒ ์ฑ„๋„์„ ์ƒ์„ฑํ•˜๊ณ ์ž ๊ฒฉ์žํ˜• ๋ฐฐ์—ด์˜ ์ „๊ทน๊ณผ ํ•จ๊ป˜ 5๊ทน์„ฑ ์ž๊ทน์ด ์‚ฌ์šฉ๋˜์—ˆ๋‹ค. ์ด 5๊ทน์„ฑ ์ž๊ทน์€ ๋‹ค์„ฏ ๊ฐœ์˜ ์„œ๋กœ ๋‹ค๋ฅธ ์ „๋ฅ˜์›์„ ๊ฐ–๋„๋ก ๋งž์ถค ์„ค๊ณ„๋œ ์ง‘์ ํšŒ๋กœ์™€ ๊ฐœ๋ฐœ๋œ COP ๊ธฐ๋ฐ˜ ๊ณต์ •์œผ๋กœ ์ œ์ž‘๋œ ํ‰๋ฉดํ˜• ์ „๊ทน์„ ์‚ฌ์šฉํ•˜์—ฌ ๊ตฌํ˜„๋˜์—ˆ๋‹ค. ๋จผ์ €, 5๊ทน์„ฑ ์ž๊ทน์˜ ํšจ๊ณผ๋ฅผ ํ™•์ธํ•˜๊ณ ์ž ์ด ์ž๊ทน์œผ๋กœ ์ „๊ธฐ์žฅ์„ ํ•œ ๊ณณ์— ๋” ์ง‘์ค‘๋œ ํ˜•ํƒœ๋กœ ๋งŒ๋“ค ์ˆ˜ ์žˆ์Œ์ด ๋‹จ๊ทน์„ฑ ์ž๊ทน๊ณผ์˜ ๋น„๊ต๋ฅผ ํ†ตํ•˜์—ฌ ๊ฒ€์ฆ๋˜์—ˆ๋‹ค. ๊ทธ๋ฆฌ๊ณ  ์œ ํ•œ ์š”์†Œ ๋ถ„์„๊ณผ ์ƒ์ฒด ์™ธ ํ‰๊ฐ€ ๋‘˜ ๋ชจ๋‘๋ฅผ ํ†ตํ•˜์—ฌ, 5๊ทน์„ฑ ์ž๊ทน์œผ๋กœ ์ธํ•œ ๊ฐ€์ƒ ์ฑ„๋„ ํ˜•์„ฑ์„ ๋œปํ•˜๋Š” ์ „๊ธฐ์žฅ ๋ถ„ํฌ๊ฐ€ ์ธ์ ‘ํ•œ ๋‘ ์ „๊ทน์—์„œ ๋‚˜์˜ค๋Š” ์ž๊ทน์˜ ์ง„ํญ๋น„์™€ ๊ทธ ์ „๊ทน์œผ๋กœ๋ถ€ํ„ฐ ๋–จ์–ด์ง„ ๊ฑฐ๋ฆฌ์— ๋”ฐ๋ผ ๋ณ€ํ™”๋จ์ด ์ถ”์ •๋˜์—ˆ๋‹ค. ์…‹์งธ๋กœ, ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๋ˆˆ์— ์ด์‹๋œ ์ฑ„๋กœ ์‹ค์‹œ๊ฐ„ ์ด๋ฏธ์ง€๋ฅผ ์–ป์Œ์œผ๋กœ์จ ์™„์ „ ์ด์‹ํ˜• ์‹œ๊ฐ ๋ณด์ฒ  ์‹œ์Šคํ…œ์„ ๊ตฌ์„ฑํ•˜๋Š” ์ด์‹ํ˜• ์นด๋ฉ”๋ผ๋ฅผ ์ƒˆ๋กœ์šด ์ด๋ฏธ์ง€ ํš๋“ ๋ฐฉ์‹์œผ๋กœ์จ ์ œ์•ˆํ•œ๋‹ค. ์ด ์ด์‹ํ˜• ์นด๋ฉ”๋ผ๋Š” ์‹ค๋ช… ํ™˜์ž๋“ค์ด ์ž์—ฐ์Šค๋Ÿฌ์šด ๋ˆˆ์˜ ์›€์ง์ž„์„ ๋”ฐ๋ผ์„œ ๋ฌผ์ฒด๋ฅผ ๋ณผ ์ˆ˜ ์žˆ์œผ๋ฉฐ ์ž ์ด๋‚˜ ์ƒค์›Œ, ๋‹ฌ๋ฆฌ๊ธฐ์™€ ๊ฐ™์€ ์ผ์ƒ์ ์ธ ํ™œ๋™๋“ค์„ ๋ฐฉํ•ด ๋ฐ›์ง€ ์•Š๊ณ  ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์žˆ๋„๋ก ๋•๋Š”๋‹ค๋Š” ์ ์—์„œ ๋…ํŠนํ•œ ์žฅ์ ์„ ๊ฐ–๋Š”๋‹ค. ๊ธฐ์กด์˜ ๋ถ€๋ถ„ ์ด์‹ํ˜• ์‹œ๊ฐ ๋ณด์ฒ  ์‹œ์Šคํ…œ์—์„œ ์“ฐ์ด๋Š” ์•ˆ๊ฒฝ ๋ถ€์ฐฉํ˜• ์นด๋ฉ”๋ผ์™€ ๊ฐ™์€ ์ฐฉ์šฉ ์žฅ๋น„๋กœ๋Š” ์ด๋Ÿฌํ•œ ์žฅ์ ๋“ค์„ ์–ป์„ ์ˆ˜ ์—†๋‹ค. ๊ฒŒ๋‹ค๊ฐ€, ์ด์‹ํ˜• ์นด๋ฉ”๋ผ๋Š” ๋ง๋ง‰ ์ž„ํ”Œ๋ž€ํŠธ์˜ ๋ฏธ์„ธ ํฌํ† ๋‹ค์ด์˜ค๋“œ ์–ด๋ ˆ์ด์™€ ๋‹ฌ๋ฆฌ ์™„์ „ํ•œ ์นด๋ฉ”๋ผ ๊ตฌ์กฐ๋ฅผ ์ด์šฉํ•˜์—ฌ ๋‹ค์–‘ํ•œ ์ด๋ฏธ์ง€ ์ •๋ณด๋ฅผ ํš๋“ํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ์žฅ์ ์„ ๊ฐ–๋Š”๋‹ค. ์ด๋Ÿฌํ•œ ์ด์ ๋“ค์„ ๋‹ฌ์„ฑํ•˜๊ธฐ ์œ„ํ•˜์—ฌ, ๊ทธ ์ด์‹ํ˜• ์นด๋ฉ”๋ผ๋Š” ์ˆ˜๋ถ„ ์นจํˆฌ๋ฅผ ๋ง‰๊ณ ์ž ์ƒ์ฒด์ ํ•ฉํ•œ ์—ํญ์‹œ๋กœ ์ฝ”ํŒ…๋˜์—ˆ๊ณ  ์ƒ์ฒด์ ํ•ฉ์„ฑ๊ณผ ์œ ์—ฐ์„ฑ์„ ์–ป๊ธฐ ์œ„ํ•˜์—ฌ ์˜๋ฃŒ์šฉ ์‹ค๋ฆฌ์ฝ˜ ์—˜๋ผ์Šคํ† ๋จธ๋กœ ๋ฐ€๋ด‰๋œ ํ›„์— ๋ˆˆ์— ์ถฉ๋ถ„ํžˆ ์‚ฝ์ž…๋  ์ˆ˜ ์žˆ๋Š” ํ˜•ํƒœ ๋ฐ ํฌ๊ธฐ๋กœ ์ œ์ž‘๋˜์—ˆ๋‹ค. ์ด ์žฅ์น˜์˜ ๋™์ž‘์€ ํ‘๋ฐฑ์œผ๋กœ ์ฒ˜๋ฆฌ๋œ ์ด๋ฏธ์ง€๋ฅผ ํ‘œ์‹œํ•˜๋Š” ๋ฌด์„  ์ด๋ฏธ์ง€ ํš๋“์œผ๋กœ ์‹œํ—˜๋˜์—ˆ๋‹ค. ๊ทธ๋ฆฌ๊ณ  ๋ชธ ์•ˆ์—์„œ ์ด์‹ํ˜• ์นด๋ฉ”๋ผ ๊ฐ–๋Š” ์•ˆ์ •์ ์ธ ํ†ต์‹  ๊ฑฐ๋ฆฌ๋ฅผ ์ธก์ •ํ•˜๊ธฐ ์œ„ํ•˜์—ฌ, ์žฅ์น˜๊ฐ€ ์ƒ์ฒด ๋‚ด ํ™˜๊ฒฝ์„ ๋ชจ์‚ฌํ•˜๊ธฐ ์œ„ํ•œ 8 mm ๋‘๊ป˜์˜ ์ƒ์ฒด ๋ฌผ์งˆ๋กœ ๋ฎ์ธ ์ƒํƒœ์—์„œ ๊ทธ ์žฅ์น˜์˜ ์‹ ํ˜ธ ๋Œ€ ์žก์Œ๋น„๊ฐ€ ์ธก์ •๋˜์—ˆ๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ, ๊ธฐ์กด์˜ ์‹œ๊ฐ ๋ณด์ฒ  ์‹œ์Šคํ…œ์—์„œ ๋ชธ์— ๋ถ€์ฐฉ๋œ ํ˜•ํƒœ์˜ ์™ธ๋ถ€ ํ•˜๋“œ์›จ์–ด๋Š” ์ด์‹๋œ ์žฅ์น˜์— ์ „๋ ฅ๊ณผ ๋ฐ์ดํ„ฐ๋ฅผ ์•ˆ์ •์ ์œผ๋กœ ์ „๋‹ฌํ•˜๊ณ  ์ด๋ฏธ์ง€ ์‹ ํ˜ธ๋ฅผ ์ˆ˜์ง‘ํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ์ผ๋ฐ˜์ ์œผ๋กœ ์‚ฌ์šฉ๋˜์—ˆ๋‹ค. ๊ทธ๋Ÿผ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ , ์ด๋Ÿฌํ•œ ํ•˜๋“œ์›จ์–ด๋Š” ์™ธ๋ถ€๋กœ๋ถ€ํ„ฐ์˜ ์†์ƒ์œผ๋กœ ์ธํ•œ ๊ธฐ๋Šฅ์ ์ธ ๊ฒฐํ•จ๊ณผ ์ˆ˜๋ฉด ๋ฐ ์ƒค์›Œ, ๋‹ฌ๋ฆฌ๊ธฐ, ์ˆ˜์˜ ํ™œ๋™ ์ค‘ ์ด์šฉ ๋ถˆ๊ฐ€๋Šฅ์„ฑ, ์™ธํ˜•์ ์ธ ์ด์Šˆ ๋“ฑ์„ ํฌํ•จํ•˜๋Š” ๊ณตํ†ต์ ์ธ ๋ฌธ์ œ๋“ค์„ ์•ผ๊ธฐํ•œ๋‹ค. ์ „๋ ฅ ๋ฐ ๋ฐ์ดํ„ฐ ์ „์†ก์„ ์œ„ํ•œ ์™ธ๋ถ€ ์ฝ”์ผ์€ ์‹œ๊ฐ ๋ณด์ฒ  ์‹œ์Šคํ…œ์—์„œ ์ปจํŠธ๋กค๋Ÿฌ์™€ ํ”„๋กœ์„ธ์„œ์— ์œ ์„ ์œผ๋กœ ์—ฐ๊ฒฐ๋˜๊ณ , ์ด๋Ÿฌํ•œ ์—ฐ๊ฒฐ์€ ๊ทธ ์ฝ”์ผ์ด ์•ž์„œ ์–ธ๊ธ‰๋œ ๋ฌธ์ œ๋“ค์— ํŠนํžˆ ์ทจ์•ฝํ•˜๊ฒŒ ๋งŒ๋“ ๋‹ค. ์ด๋Ÿฌํ•œ ์ด์Šˆ๋ฅผ ํ•ด๊ฒฐํ•˜๊ณ ์ž, ํœด๋Œ€์šฉ ๋ฌด์„  ์ปจํŠธ๋กค๋Ÿฌ๋กœ ์ œ์–ด๋˜๋Š” ์™„์ „ ์ด์‹ํ˜• ์‹ ๊ฒฝ ์ž๊ทน ์‹œ์Šคํ…œ์ด ์ œ์•ˆ๋œ๋‹ค. ์ด ํœด๋Œ€์šฉ ๋ฌด์„  ์ปจํŠธ๋กค๋Ÿฌ๋Š” ์ €์ „๋ ฅ์ด์ง€๋งŒ ๋น„๊ต์  ์žฅ๊ฑฐ๋ฆฌ ํ†ต์‹ ์ด ๊ฐ€๋Šฅํ•œ ์ง๋น„ (ZigBee) ๋ฌด์„  ํ†ต์‹ ์„ ํ†ตํ•˜์—ฌ ์žฌ์ถฉ์ „ ๊ฐ€๋Šฅํ•œ ๋ฐฐํ„ฐ๋ฆฌ๋กœ ๋™์ž‘ํ•˜๋Š” ์™„์ „ ์ด์‹ํ˜• ์ž๊ทน๊ธฐ๋ฅผ ์ œ์–ดํ•  ์ˆ˜ ์žˆ๋‹ค. ์ด ์™ธ์—๋„, ์ด ํœด๋Œ€์šฉ ์ปจํŠธ๋กค๋Ÿฌ๋ฅผ ์‚ฌ์šฉํ•˜๋ฉด ํญ๋„“์€ ์‘์šฉ์„ ์œ„ํ•œ ๋‘ ๊ฐ€์ง€ ๊ธฐ๋Šฅ์„ ์ถ”๊ฐ€๋กœ ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์žˆ๋‹ค. ํ•˜๋‚˜๋Š” ์œ ์„  ๊ฒฝํ”ผ ์ž๊ทน์ด๋ฉฐ, ๋‹ค๋ฅธ ํ•˜๋‚˜๋Š” ์žฌ์ถฉ์ „ ๊ฐ€๋Šฅํ•œ ๋ฐฐํ„ฐ๋ฆฌ์˜ ์œ ๋„ ์ถฉ์ „ ๊ธฐ๋Šฅ์ด๋‹ค. ๋˜ํ•œ, ์ด ํœด๋Œ€์šฉ ์ปจํŠธ๋กค๋Ÿฌ์˜ ๊ฐ„๋‹จํ•œ ์Šค์œ„์น˜๋ฅผ ์‚ฌ์šฉํ•˜๋ฉด ์‚ฌ์šฉ์ž๋Š” ๊ฒŒ์ž„ํŒจ๋“œ์™€ ๊ฐ™์ด ์ž๊ทน ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ์‰ฝ๊ฒŒ ์กฐ์ ˆํ•  ์ˆ˜ ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ํœด๋Œ€ ๊ฐ€๋Šฅํ•˜๊ณ  ์‚ฌ์šฉ์ž ์นœํ™”์ ์ธ ์ธํ„ฐํŽ˜์ด์Šค๋ฅผ ํ†ตํ•ด ๋‹ค์–‘ํ•œ ์ƒํ™ฉ์—์„œ ๊ทธ ์ปจํŠธ๋กค๋Ÿฌ๋ฅผ ์‰ฝ๊ฒŒ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ๋‹ค. ๊ทธ ์ปจํŠธ๋กค๋Ÿฌ์˜ ๊ธฐ๋Šฅ์€ ์ƒ์ฒด ์™ธ ํ‰๊ฐ€๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ์กฐ๋ฅ˜์˜ ์›€์ง์ž„ ์ œ์–ด๋ฅผ ์œ„ํ•œ ์œ ์„  ๊ฒฝํ”ผ ์ž๊ทน ๋ฐ ์›๊ฒฉ ์ œ์–ด๋ฅผ ํ†ตํ•ด ์ƒ์ฒด ๋‚ด์—์„œ๋„ ํ‰๊ฐ€๋˜์—ˆ๋‹ค. ๋˜ํ•œ, ๊ทธ ์ปจํŠธ๋กค๋Ÿฌ๋ฅผ ์‚ฌ์šฉํ•œ ์›๊ฒฉ ์‹ ๊ฒฝ ์ž๊ทน ์ œ์–ด์˜ ์ˆ˜ํ–‰ ๊ฐ€๋Šฅ์„ฑ์„ ๊ฒ€์ฆํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ๋‘ ์ƒ์ฒด ๋‚ด ์‹คํ—˜์˜ ๊ฒฐ๊ณผ๊ฐ€ ์„œ๋กœ ๋น„๊ต๋˜์—ˆ๋‹ค. ๊ฒฐ๋ก ์ ์œผ๋กœ, COP ๊ธฐ๋ฐ˜์˜ ๊ฐ„๋‹จํ•œ ์ œ์ž‘ ๊ณต์ •๊ณผ 5๊ทน์„ฑ ์ž๊ทน, ์ด์‹ํ˜• ์นด๋ฉ”๋ผ, ํœด๋Œ€์šฉ ๋‹ค๊ธฐ๋Šฅ ๋ฌด์„  ์ปจํŠธ๋กค๋Ÿฌ๋ฅผ ํฌํ•จํ•˜๋Š” ์—ฐ๊ตฌ ๊ฒฐ๊ณผ์— ๋Œ€ํ•œ ์—ฌ๋Ÿฌ ๋…ผ์˜๊ฐ€ ์ด๋ฃจ์–ด์ง„๋‹ค. ๊ทธ๋ฆฌ๊ณ  ์ด๋Ÿฌํ•œ ๊ฒฐ๊ณผ์™€ ๊ณ ์ฐฐ์— ๊ธฐ์ดˆํ•˜์—ฌ, ๋ณธ ํ•™์œ„๋…ผ๋ฌธ์˜ ์—ฐ๊ตฌ๊ฐ€ ์™„์ „ ์ด์‹ํ˜• ์‹œ๊ฐ ๋ณด์ฒ  ์‹œ์Šคํ…œ์˜ ๊ตฌํ˜„์— ์–ด๋–ป๊ฒŒ ์ ์šฉ๋  ์ˆ˜ ์žˆ๋Š” ์ง€๊ฐ€ ์ด ๋…ผ๋ฌธ์˜ ๋์—์„œ ์ƒ์„ธํžˆ ์„ค๋ช…๋œ๋‹ค.Abstract ------------------------------------------------------------------ i Contents ---------------------------------------------------------------- vi List of Figures ---------------------------------------------------------- xi List of Tables ----------------------------------------------------------- xx List of Abbreviations ------------------------------------------------ xxii Chapter 1. Introduction --------------------------------------------- 1 1.1. Visual Prosthetic System --------------------------------------- 2 1.1.1. Current Issues ------------------------------------------------- 2 1.1.1.1. Substrate Materials ---------------------------------------- 3 1.1.1.2. Electrode Configurations --------------------------------- 5 1.1.1.3. External Hardware ----------------------------------------- 6 1.1.1.4. Other Issues ------------------------------------------------- 7 1.2. Suggested Visual Prosthetic System ------------------------ 8 1.3. Four Motivations ---------------------------------------------- 10 1.4. Proposed Approaches ---------------------------------------- 11 1.4.1. Cyclic Olefin Polymer (COP) ------------------------------ 11 1.4.2. Penta-Polar Stimulation ----------------------------------- 13 1.4.3. Implantable Camera --------------------------------------- 16 1.4.4. Handheld Remote Controller ---------------------------- 18 1.5. Objectives of this Dissertation ------------------------------ 20 Chapter 2. Materials and Methods ----------------------------- 23 2.1. COP-Based Fabrication and Encapsulation -------------- 24 2.1.1. Overview ----------------------------------------------------- 24 2.1.2. Simple Fabrication Process ------------------------------- 24 2.1.3. Depth-Type Microprobe ---------------------------------- 26 2.1.3.1. Design ----------------------------------------------------- 26 2.1.3.2. Characterization ----------------------------------------- 27 2.1.3.3. In Vivo Neural Signal Recording ---------------------- 30 2.1.4. COP Encapsulation ---------------------------------------- 31 2.1.4.1. In Vitro Reliability Test ---------------------------------- 33 2.2. Penta-Polar Stimulation ------------------------------------- 34 2.2.1. Overview ---------------------------------------------------- 34 2.2.2. Design and Fabrication ----------------------------------- 35 2.2.2.1. Integrated Circuit (IC) Design ------------------------- 35 2.2.2.2. Surface-Type Electrode Fabrication ------------------ 38 2.2.3. Evaluations -------------------------------------------------- 39 2.2.3.1. Focused Electric Field Measurement ---------------- 42 2.2.3.2. Steered Electric Field Measurement ----------------- 42 2.3. Implantable Camera ----------------------------------------- 43 2.3.1. Overview ---------------------------------------------------- 43 2.3.2. Design and Fabrication ----------------------------------- 43 2.3.2.1. Circuit Design -------------------------------------------- 43 2.3.2.2. Wireless Communication Program ------------------ 46 2.3.2.3. Epoxy Coating and Elastomer Sealing -------------- 47 2.3.3. Evaluations ------------------------------------------------- 50 2.3.3.1. Wireless Image Acquisition --------------------------- 50 2.3.3.2. Signal-to-Noise Ratio (SNR) Measurement -------- 52 2.4. Multi-Functional Handheld Remote Controller --------- 53 2.4.1. Overview ---------------------------------------------------- 53 2.4.2. Design and Fabrication ----------------------------------- 53 2.4.2.1. Hardware Description ---------------------------------- 53 2.4.2.2. Software Description ----------------------------------- 57 2.4.3. Evaluations -------------------------------------------------- 57 2.4.3.1. In Vitro Evaluation -------------------------------------- 57 2.4.3.2. In Vivo Evaluation --------------------------------------- 59 Chapter 3. Results ------------------------------------------------- 61 3.1. COP-Based Fabrication and Encapsulation ------------- 62 3.1.1. Fabricated Depth-Type Microprobe ------------------- 62 3.1.1.1. Electrochemical Impedance -------------------------- 63 3.1.1.2. Mechanical Characteristics --------------------------- 64 3.1.1.3. In Vivo Neural Signal Recording --------------------- 66 3.1.2. COP Encapsulation --------------------------------------- 68 3.1.2.1. In Vitro Reliability Test --------------------------------- 68 3.2. Penta-Polar Stimulation ------------------------------------ 70 3.2.1. Fabricated IC and Surface-Type Electrodes ---------- 70 3.2.2. Evaluations ------------------------------------------------- 73 3.2.2.1. Focused Electric Field Measurement --------------- 73 3.2.2.2. Steered Electric Field Measurement ---------------- 75 3.3. Implantable Camera ---------------------------------------- 76 3.3.1. Fabricated Implantable Camera ----------------------- 76 3.3.2. Evaluations ------------------------------------------------ 77 3.3.2.1. Wireless Image Acquisition -------------------------- 77 3.3.2.2. SNR Measurement ------------------------------------ 78 3.4. Multi-Functional Handheld Remote Controller ------- 80 3.4.1. Fabricated Remote Controller ------------------------- 80 3.4.2. Evaluations ------------------------------------------------ 81 3.4.2.1. In Vitro Evaluation ------------------------------------ 81 3.4.2.2. In Vivo Evaluation ------------------------------------- 83 Chapter 4. Discussions ------------------------------------------ 86 4.1. COP-Based Fabrication and Encapsulation ------------ 87 4.1.1. Fabrication Process and Fabricated Devices -------- 87 4.1.2. Encapsulation and Optical Transparency ------------ 89 4.2. Penta-Polar Stimulation------------------------------------ 99 4.2.1. Designed IC and Electrode Configurations --------- 99 4.2.2. Virtual Channels in Two Dimensions ---------------- 101 4.3. Implantable Camera -------------------------------------- 102 4.3.1. Enhanced Reliability by Epoxy Coating ------------- 106 4.4. Multi-Functional Handheld Remote Controller ------ 107 4.4.1. Brief Discussions of the Two Extra Functions ------ 108 4.5. Totally Implantable Visual Prosthetic System --------- 113 Chapter 5. Conclusion ------------------------------------------ 117 References -------------------------------------------------------- 121 Supplements ------------------------------------------------------ 133 ๊ตญ๋ฌธ ์ดˆ๋ก ----------------------------------------------------------- 143Docto

    Egocentric Computer Vision and Machine Learning for Simulated Prosthetic Vision

    Get PDF
    Las prรณtesis visuales actuales son capaces de proporcionar percepciรณn visual a personas con cierta ceguera. Sin pasar por la parte daรฑada del camino visual, la estimulaciรณn elรฉctrica en la retina o en el sistema nervioso provoca percepciones puntuales conocidas como โ€œfosfenosโ€. Debido a limitaciones fisiolรณgicas y tecnolรณgicas, la informaciรณn que reciben los pacientes tiene una resoluciรณn muy baja y un campo de visiรณn y rango dinรกmico reducido afectando seriamente la capacidad de la persona para reconocer y navegar en entornos desconocidos. En este contexto, la inclusiรณn de nuevas tรฉcnicas de visiรณn por computador es un tema clave activo y abierto. En esta tesis nos centramos especialmente en el problema de desarrollar tรฉcnicas para potenciar la informaciรณn visual que recibe el paciente implantado y proponemos diferentes sistemas de visiรณn protรฉsica simulada para la experimentaciรณn.Primero, hemos combinado la salida de dos redes neuronales convolucionales para detectar bordes informativos estructurales y siluetas de objetos. Demostramos cรณmo se pueden reconocer rรกpidamente diferentes escenas y objetos incluso en las condiciones restringidas de la visiรณn protรฉsica. Nuestro mรฉtodo es muy adecuado para la comprensiรณn de escenas de interiores comparado con los mรฉtodos tradicionales de procesamiento de imรกgenes utilizados en prรณtesis visuales.Segundo, presentamos un nuevo sistema de realidad virtual para entornos de visiรณn protรฉsica simulada mรกs realistas usando escenas panorรกmicas, lo que nos permite estudiar sistemรกticamente el rendimiento de la bรบsqueda y reconocimiento de objetos. Las escenas panorรกmicas permiten que los sujetos se sientan inmersos en la escena al percibir la escena completa (360 grados).En la tercera contribuciรณn demostramos cรณmo un sistema de navegaciรณn de realidad aumentada para visiรณn protรฉsica ayuda al rendimiento de la navegaciรณn al reducir el tiempo y la distancia para alcanzar los objetivos, incluso reduciendo significativamente el nรบmero de colisiones de obstรกculos. Mediante el uso de un algoritmo de planificaciรณn de ruta, el sistema encamina al sujeto a travรฉs de una ruta mรกs corta y sin obstรกculos. Este trabajo estรก actualmente bajo revisiรณn.En la cuarta contribuciรณn, evaluamos la agudeza visual midiendo la influencia del campo de visiรณn con respecto a la resoluciรณn espacial en prรณtesis visuales a travรฉs de una pantalla montada en la cabeza. Para ello, usamos la visiรณn protรฉsica simulada en un entorno de realidad virtual para simular la experiencia de la vida real al usar una prรณtesis de retina. Este trabajo estรก actualmente bajo revisiรณn.Finalmente, proponemos un modelo de Spiking Neural Network (SNN) que se basa en mecanismos biolรณgicamente plausibles y utiliza un esquema de aprendizaje no supervisado para obtener mejores algoritmos computacionales y mejorar el rendimiento de las prรณtesis visuales actuales. El modelo SNN propuesto puede hacer uso de la seรฑal de muestreo descendente de la unidad de procesamiento de informaciรณn de las prรณtesis retinianas sin pasar por el anรกlisis de imรกgenes retinianas, proporcionando informaciรณn รบtil a los ciegos. Estรฉ trabajo estรก actualmente en preparaciรณn.<br /

    ๊ด‘ ๋‹ค์ด์˜ค๋“œ ๊ธฐ๋ฐ˜ ์ธ๊ณต ๋ง๋ง‰ ์‹œ์Šคํ…œ์„ ์œ„ํ•œ ์ €์ „๋ ฅ ์„ค๊ณ„ ๋ฐ LCP ํŒจํ‚ค์ง•์— ๋Œ€ํ•œ ์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์ „๊ธฐยท์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€, 2017. 2. ๊น€์„ฑ์ค€.The retinal prosthesis is an implantable electronic device that delivers electrical stimuli containing visual information to the retina for the visual restoration of the blinds. The currently available retinal prostheses have several problems in the number of pixels. They are limited in the number of pixels, which restricts the amount of visual information they can deliver. Many research groups are trying to improve their device in this aspect. In order to achieve a significant number of pixels, retinal prosthesis needs large stimulus power dissipation. A typical device consumes more than 20 mW of power to drive 1000 channels. Some of this power can lead to temperature rise which is a safety issue. As the power dissipation scales up with the increase in the number of channels, it is desired to minimize the power per channel as much as possible. Another problem is the absence of a suitable packaging material for the long-term reliable optical window. Due to the curved and narrow implant space available for this kind of device, as well as the transparency required for the incoming wavelengths of lights, it is quite difficult to choose a material that satisfies all requirements of long-term hermetic packaging with optically transparent window. Sapphire glass with titanium metal package are too bulky and rigid, and flexible transparent polymers such as polyimide and parylene-C have high moisture absorption for the implant. This dissertation proposes strategies and methods to solve the problems mentioned above. Two stimulation strategies are proposed. One strategy is to confine the stimulus level with a threshold that cell is activated. Thus we coin it as thresholding strategy.' The other strategy is to reduce the number of stimulation channels by using only outlines of images (outline extraction strategy). Prototype ICs were designed and fabricated for the verification of the effects of these strategies. The simulation and the measurement agree to show that retinal implant with the thresholding and outline extraction strategies consumes below one-third of the stimulus power of the conventional photodiode-based devices. Area-efficient designs of the voltage-controlled current source are also adopted to increase the number of channels. The unit pixel area of the fabricated prototype IC was 0.0072 mm2, expanding up to 1200-channels in the macular area. Liquid crystal polymer (LCP) is proposed as the long-term implantable packaging material with an optical window. It is an inert, biocompatible, and flexible polymer material that has a moisture absorption rate similar to Pyrex glass. We showed that an LCP film with a thickness less than 10 ฮผm allows transmission of the lights in the visible wavelengths by more than 10 %, as the rate increases with thinner films. Thus a thinning process was developed. O2 DRIE was shown effective in reducing the roughness of the film, and the corresponding light scattering. The spatial resolution of LCP with 8.28 ฮผm thickness showed a minimum distinguishable pitch of 90 ฮผm, allowing a 1200 channel integration within a macular area.Chapter 1: Introduction 1 1.1. Retinal Prosthesis โ€“ State of the Arts 2 1.1.1. Retinal Prosthesis with External Camera 3 1.1.2. Retinal Prosthesis with Internal Photodiode Array 5 1.2. Photodiode-based Retinal Prosthesis 8 1.2.1. Problems 8 1.2.2. Possible Solutions 12 Chapter 2: Methods 17 2.1. Thresholding 17 2.1.1. Concept 17 2.1.2. Circuit Descriptions 19 2.2. Outline Extraction 28 2.2.1. Concept 28 2.2.2. Circuit Descriptions 30 2.3. Average Stimulus Power Estimation 40 2.3.1. Stimulus Patterns Generation of Conventional and Proposed Strategies 40 2.3.2. Minimum Distinguishable Channels to Recognize 41 2.4. Virtual Channel 43 2.4.1. Concept 43 2.4.2. Circuit Descriptions 44 2.5. Polymer Packaging 51 2.5.1. LCP as a Long-term Reliable Packaging Material 51 2.5.2. Test Methods 53 Chapter 3: Results 58 3.1. Thresholding 58 3.1.1. Fabricated IC 58 3.1.2. Test Setup 60 3.1.3. Test Results 61 3.2. Outline Extraction 65 3.2.1. Simulation Results 65 3.2.2. Fabricated IC 67 3.2.3. Test Setup 68 3.2.4. Test Results 72 3.3. Average Stimulus Power Estimation 76 3.4. Virtual Channels 79 3.4.1. Fabricated IC 79 3.4.2. Test Setup 80 3.4.3. Test Results 81 3.4.4. Two-dimensional Virtual Channel Generatorโ€“ Test setup and Its Result 84 3.5. Polymer Packaging 87 3.5.1. Light Transmittance according to LCP Thickness 87 3.5.2. Thickness Control of LCP 89 3.5.3. Spatial Resolution of LCP 89 Chapter 4: Discussion 92 4.1. Average Stimulus Power 92 4.2. Visual Acuity 95 4.3. Hermeticity of the Thinned LCP Film 97 Chapter 5: Conclusion and Future Directions 99 References 103 Appendix โ€“ Generated Stimulus Patterns of Various the Number of Channels 112 ๊ตญ ๋ฌธ ์ดˆ ๋ก 139Docto

    Neuroengineering Tools/Applications for Bidirectional Interfaces, Brainโ€“Computer Interfaces, and Neuroprosthetic Implants โ€“ A Review of Recent Progress

    Get PDF
    The main focus of this review is to provide a holistic amalgamated overview of the most recent human in vivo techniques for implementing brainโ€“computer interfaces (BCIs), bidirectional interfaces, and neuroprosthetics. Neuroengineering is providing new methods for tackling current difficulties; however neuroprosthetics have been studied for decades. Recent progresses are permitting the design of better systems with higher accuracies, repeatability, and system robustness. Bidirectional interfaces integrate recording and the relaying of information from and to the brain for the development of BCIs. The concepts of non-invasive and invasive recording of brain activity are introduced. This includes classical and innovative techniques like electroencephalography and near-infrared spectroscopy. Then the problem of gliosis and solutions for (semi-) permanent implant biocompatibility such as innovative implant coatings, materials, and shapes are discussed. Implant power and the transmission of their data through implanted pulse generators and wireless telemetry are taken into account. How sensation can be relayed back to the brain to increase integration of the neuroengineered systems with the body by methods such as micro-stimulation and transcranial magnetic stimulation are then addressed. The neuroprosthetic section discusses some of the various types and how they operate. Visual prosthetics are discussed and the three types, dependant on implant location, are examined. Auditory prosthetics, being cochlear or cortical, are then addressed. Replacement hand and limb prosthetics are then considered. These are followed by sections concentrating on the control of wheelchairs, computers and robotics directly from brain activity as recorded by non-invasive and invasive techniques

    Zapping the Retina - Understanding electrical responsiveness and electrical desensitization in mouse retinal ganglion cells

    Get PDF
    The field of science and technology has come a long way since the famous 70โ€™s science fiction series โ€œThe Six Million Dollar Man,โ€ where a disabled pilot was transformed into a bionic superhero after receiving artificial implants. What was indeed once a science fiction has now turned into a science fact with the development of various electronic devices interfacing the human neurons in the brain, retina, and limbs. One such advancement was the development of retinal implants. Over the past two decades, the field of retinal prosthetics has made significant advancement in restoring functional vision in patients blinded by diseases such as Retinitis pigmentosa (RP) and Age-related macular degeneration (AMD). RP and AMD are the two leading cause of degenerative blindness. While there is still no definitive cure for either of these diseases, various treatment strategies are currently being explored. Of the various options, the most successful one has been the retinal implants. Retinal implants are small microelectrode or photodiode arrays, which are implanted in the eye of a patient, to stimulate the degenerating retina electrically. They are broadly classified into three types depending on the placement ฬถ epiretinal (close proximity to retinal ganglion cells, RGCs) , subretinal (close proximity to bipolar cells, BP) and suprachoroidal (close proximity to choroid). While the ongoing human trials have shown promising results, there remains a considerable variability among patients concerning the quality of visual percepts which limits the working potential of these implants. One such limitation often reported by the implanted patients is โ€œ fadingโ€ of visual percepts. Fading refers to the limited ability to elicit temporally stable visual percepts. While, this is not a primary concern for epiretinal implants , it is often observed in subretinal and suprachoroidal implants which use the remaining retinal network to control the temporal spiking pattern of the ganglion cells. The neural correlate of fading is often referred to as โ€œelectrical desensitizationโ€, which is the reduction of ganglion cell responses to repetitive electrical stimulation . While much is known about the temporal component of desensitization ( time constant, ฯ„), the spatial aspects (space constant, ฮป) has not been well characterized. Further, how both these aspects interact to generate spiking responses, remains poorly understood. These crucial questions formed the critical components of my thesis. To address these questions, we stimulated the retinal network electrically, with voltage and current pulses and recorded the corresponding spiking activity using the microelectrode arrays (MEAs). While addressing the primary question of my thesis, we were able to address few idiosyncrasies which has currently stymied the field of retinal prosthetics. At a conceptual level, we have developed an experimental and analysis framework by which one can identify the single stimulus that will activate the most ganglion cells (Chapter 2, Part 1). This stimulus is optimal for โ€˜blindโ€™ experiments where the specific response properties of each cell are unknown. Furthermore, we attempted to understand the correspondence between the electrical response patterns and visual response types (Chapter 2, Part2). In Chapter 3, we sought to understand better how the visual responses parameters change during ongoing electrical stimulation. We demonstrated that apart from the adaptation occurring due to visual stimulation and invitro experimental conditions, the electrical stimulation alters the RGC visual responses, suggesting the requirement for stimulation-induced changes to be incorporated in the designing of stimulation paradigms for the implant. Finally addressing the primary question (Chapter 4) of my thesis with which we started, we were able to demonstrate, that the electrical desensitization requires the interaction of both time and distance and is not a global phenomenon of the retina. In the final chapter (Chapter 5) we summarize the results of the thesis, discuss the key outcomes and its relevance to the prosthetic field and other vision restoration strategies and the potential future directions of this research. Therefore, in future, to improve the efficacy of retinal prostheses and patient outcomes, it is crucial to have an in-depth understanding of the responsiveness of the retinal circuitry to electrical stimulation

    A 16 x 16 CMOS amperometric microelectrode array for simultaneous electrochemical measurements

    Get PDF
    There is a requirement for an electrochemical sensor technology capable of making multivariate measurements in environmental, healthcare, and manufacturing applications. Here, we present a new device that is highly parallelized with an excellent bandwidth. For the first time, electrochemical cross-talk for a chip-based sensor is defined and characterized. The new CMOS electrochemical sensor chip is capable of simultaneously taking multiple, independent electroanalytical measurements. The chip is structured as an electrochemical cell microarray, comprised of a microelectrode array connected to embedded self-contained potentiostats. Speed and sensitivity are essential in dynamic variable electrochemical systems. Owing to the parallel function of the system, rapid data collection is possible while maintaining an appropriately low-scan rate. By performing multiple, simultaneous cyclic voltammetry scans in each of the electrochemical cells on the chip surface, we are able to show (with a cell-to-cell pitch of 456 ฮผm) that the signal cross-talk is only 12% between nearest neighbors in a ferrocene rich solution. The system opens up the possibility to use multiple independently controlled electrochemical sensors on a single chip for applications in DNA sensing, medical diagnostics, environmental sensing, the food industry, neuronal sensing, and drug discovery

    Towards clinical trials of a novel Bionic Eye: Building evidence of safety and efficacy

    Get PDF
    In the quest for therapeutic solutions for the visually impaired, electrical stimulation of the retina is, and has been, the focus of intense research. Some of these efforts have led to the development of the Phoenix99 Bionic Eye, a device which combines promising technological features with novel stimulation strategies. For medical devices, considerable challenges must be overcome before theyโ€™re allowed to be trialled in their target population. The requirements for a study to be performed include the demonstration of a positive risk-benefit ratio of the research. The present dissertation is an attempt to address how pre-clinical trials in animals can be used to understand and minimise risks. A positive risk-benefit ratio means that the potential benefits of the research outweigh the risks of the intervention. In the case of retinal prostheses, the risks include the surgical intervention, the immune response to the device, the safety of the electrical stimuli, and the effects of device ageing. In this work, successful demonstration of the surgical safety and biocompatibility of passive Phoenix99 devices during long-term implantation in sheep called for the evaluation of the chronic effects of the novel stimulation paradigms it can deliver. As preparation for this study, the techniques used to evaluate the safety and efficacy of the stimuli in animals were refined. A systematic approach to minimise the impact of anaesthesia on the experimental results is presented, as well as a novel in vivo retinal recording technique. To maximise the clinical relevance of all animal trials, a computer model for the prediction of thresholds was developed. Finally, in vitro device ageing was performed to deepen our understanding of the designโ€™s potential for long-term implantation. Protocols for a long-term device safety study in sheep and for an acute human trial are also presented, thus taking concrete and sensible steps towards the first clinical use of the Phoenix99 Bionic Eye
    • โ€ฆ
    corecore