128 research outputs found

    Peak to average power ratio reduction and error control in MIMO-OFDM HARQ System

    Get PDF
    Currently, multiple-input multiple-output orthogonal frequency division multiplexing (MIMOOFDM) systems underlie crucial wireless communication systems such as commercial 4G and 5G networks, tactical communication, and interoperable Public Safety communications. However, one drawback arising from OFDM modulation is its resulting high peak-to-average power ratio (PAPR). This problem increases with an increase in the number of transmit antennas. In this work, a new hybrid PAPR reduction technique is proposed for space-time block coding (STBC) MIMO-OFDM systems that combine the coding capabilities to PAPR reduction methods, while leveraging the new degree of freedom provided by the presence of multiple transmit chairs (MIMO). In the first part, we presented an extensive literature review of PAPR reduction techniques for OFDM and MIMO-OFDM systems. The work developed a PAPR reduction technique taxonomy, and analyzed the motivations for reducing the PAPR in current communication systems, emphasizing two important motivations such as power savings and coverage gain. In the tax onomy presented here, we include a new category, namely, hybrid techniques. Additionally, we drew a conclusion regarding the importance of hybrid PAPR reduction techniques. In the second part, we studied the effect of forward error correction (FEC) codes on the PAPR for the coded OFDM (COFDM) system. We simulated and compared the CCDF of the PAPR and its relationship with the autocorrelation of the COFDM signal before the inverse fast Fourier transform (IFFT) block. This allows to conclude on the main characteristics of the codes that generate high peaks in the COFDM signal, and therefore, the optimal parameters in order to reduce PAPR. We emphasize our study in FEC codes as linear block codes, and convolutional codes. Finally, we proposed a new hybrid PAPR reduction technique for an STBC MIMO-OFDM system, in which the convolutional code is optimized to avoid PAPR degradation, which also combines successive suboptimal cross-antenna rotation and inversion (SS-CARI) and iterative modified companding and filtering schemes. The new method permits to obtain a significant net gain for the system, i.e., considerable PAPR reduction, bit error rate (BER) gain as compared to the basic MIMO-OFDM system, low complexity, and reduced spectral splatter. The new hybrid technique was extensively evaluated by simulation, and the complementary cumulative distribution function (CCDF), the BER, and the power spectral density (PSD) were compared to the original STBC MIMO-OFDM signal

    A General Framework for Analyzing, Characterizing, and Implementing Spectrally Modulated, Spectrally Encoded Signals

    Get PDF
    Fourth generation (4G) communications will support many capabilities while providing universal, high speed access. One potential enabler for these capabilities is software defined radio (SDR). When controlled by cognitive radio (CR) principles, the required waveform diversity is achieved via a synergistic union called CR-based SDR. Research is rapidly progressing in SDR hardware and software venues, but current CR-based SDR research lacks the theoretical foundation and analytic framework to permit efficient implementation. This limitation is addressed here by introducing a general framework for analyzing, characterizing, and implementing spectrally modulated, spectrally encoded (SMSE) signals within CR-based SDR architectures. Given orthogonal frequency division multiplexing (OFDM) is a 4G candidate signal, OFDM-based signals are collectively classified as SMSE since modulation and encoding are spectrally applied. The proposed framework provides analytic commonality and unification of SMSE signals. Applicability is first shown for candidate 4G signals, and resultant analytic expressions agree with published results. Implementability is then demonstrated in multiple coexistence scenarios via modeling and simulation to reinforce practical utility

    Mixed numerologies interference analysis and inter-numerology interference cancellation for windowed OFDM systems

    Get PDF
    Extremely diverse service requirements are one of the critical challenges for the upcoming fifth-generation (5G) radio access technologies. As a solution, mixed numerologies transmission is proposed as a new radio air interface by assigning different numerologies to different subbands. However, coexistence of multiple numerologies induces the inter-numerology interference (INI), which deteriorates the system performance. In this paper, a theoretical model for INI is established for windowed orthogonal frequency division multiplexing (W-OFDM) systems. The analytical expression of the INI power is derived as a function of the channel frequency response of interfering subcarrier, the spectral distance separating the aggressor and the victim subcarrier, and the overlapping windows generated by the interferer's transmitter windows and the victim's receiver window. Based on the derived INI power expression, a novel INI cancellation scheme is proposed by dividing the INI into a dominant deterministic part and an equivalent noise part. A soft-output ordered successive interference cancellation (OSIC) algorithm is proposed to cancel the dominant interference, and the residual interference power is utilized as effective noise variance for the calculation of log-likelihood ratios (LLRs) for bits. Numerical analysis shows that the INI theoretical model matches the simulated results, and the proposed interference cancellation algorithm effectively mitigates the INI and outperforms the state-of-the-art W-OFDM receiver algorithms

    Efficient implementation of filter bank multicarrier systems using circular fast convolution

    Get PDF
    In this paper, filter bank-based multicarrier systems using a fast convolution approach are investigated. We show that exploiting offset quadrature amplitude modulation enables us to perform FFT/IFFT-based convolution without overlapped processing, and the circular distortion can be discarded as a part of orthogonal interference terms. This property has two advantages. First, it leads to spectral efficiency enhancement in the system by removing the prototype filter transients. Second, the complexity of the system is significantly reduced as the result of using efficient FFT algorithms for convolution. The new scheme is compared with the conventional waveforms in terms of out-of-band radiation, orthogonality, spectral efficiency, and complexity. The performance of the receiver and the equalization methods are investigated and compared with other waveforms through simulations. Moreover, based on the time variant nature of the filter response of the proposed scheme, a pilot-based channel estimation technique with controlled transmit power is developed and analyzed through lower-bound derivations. The proposed transceiver is shown to be a competitive solution for future wireless networks

    Generalized DFT: extensions in communications

    Get PDF
    Discrete Fourier Transform (DFT) is a restricted version of Generalized DFT (GDFT) which offers a very limited number of sets to be used in a multicarrier communication system. In contrast, as an extension on Discrete Fourier Transform (DFT) from the linear phase to non-linear phase, the proposed GDFT provides many possible carrier sets of various lengths with comparable or better performance than DFT. The availability of the rich library of orthogonal constant amplitude transforms with good performance allows people to design adaptive systems where user code allocations are made dynamically to exploit the current channel conditions in order to deliver better performance. For MIMO Radar systems, the ideal case to detect a moving target is when all waveforms are orthogonal, which can provide an accurate estimation. But this is not practical in distributed MIMO radars, where sensors are at varying distances from a target. Orthogonal waveforms with low auto- and cross-correlations are of great interest for MIMO radar applications with distributed antennas. Finite length orthogonal codes are required in real-world applications where frequency selectivity and signal correlation features of the optimal subspace are compromised. In the first part of the dissertation, a method is addressed to design optimal waveforms which meets above requirements for various radar systems by designing the phase shaping function (PSF) of GDFT framework with non-linear phase. Multicarrier transmission such as orthogonal frequency-division multiplexing (OFDM) has seen a rise in popularity in wireless communication, as it offers a promising choice for high speed data rate transmission. Meanwhile, high peak-to-average power ratio (PAPR) is one of the well-known drawbacks of the OFDM system due to reduced power efficiency in non-linear modules. Such a situation leads to inefficient amplification and increases the cost of the system, or increases in interference and signal distortion. Therefore, PAPR reduction techniques play an essential role to improve power efficiency in the OFDM systems. There has been a variety of PAPR reduction methods emphasizing different aspects proposed in the literature. The trade-off for PAPR reduction in the existing methods is either increased average power and/or added computational complexity. A new PAPR reduction scheme is proposed that implements a pre-designed symbol alphabet modifier matrix (SAM) to jointly modify the amplitude and phase values of the original data symbol alphabets prior to the IFFT operation of an OFDM system at the transmitter. The method formulated with the GDFT offers a low-complexity framework in four proposed cases devised to be independent of original data symbols. Without degrading the bit error rate (BER) performance, it formulates PAPR reduction problem elegantly and outperforms partial transmit sequences (PTS), selected mapping technique (SLM) and Walsh Hadamard transform (WHT-OFDM) significantly for the communication scenarios considered in the dissertation

    Orthogonal Frequency Division Multiplexing modulation and inter-carrier interference cancellation

    Get PDF
    The Orthogonal Frequency Division Multiplexing (OFDM) technique, wireless channel models, and a pair of new intercarrier interference self-cancellation methods are investigated in this thesis. The first chapter addresses the history of OFDM, along with its principles and applications. Chapter two consists of three parts: the principal, the modern OFDM models, and the Peak to Average Power Ratio (PAPR) problem. Chapter two also summarizes possible PAPR solutions. Chapter three discusses a series of well-known wireless channel models, as well as the general formula for wireless channels. In Chapter four, ICI problem has been discussed, along with its existing solutions. Chapter five focuses on two new ICI self-cancellation schemes, namely the clustering method and the multi-codebook method. These two new methods show promising results through the simulations. A summary of this thesis and the discussion of future research are also provided in Chapter five

    Nopeaan konvolutioon perustuva suodatettu OFDM ja ikkunoitu OFDM aaltomuotojen suorituskykyvertailussa 5G fyysiselle kerrokselle

    Get PDF
    Nykyisten mobiiliverkkojen vaatimukset kasvavat jatkuvasti, mikä johtuu pitkälti uusien mobiililaitteiden ja -palveluiden suosion kasvusta. Lisäksi matkapuhelinverkkoja on alettu käyttämään pääasiallisena internetyhteytenä, sillä nykyteknologialla on mahdollista saavuttaa kiinteään laajakaistayhteyksiin verrattavia käyttäjäkokemuksia useimmissa sovelluksissa. Nykyiset Long Term Evolution (LTE) ja LTE-Advanced ovat neljännen sukupolven (4G) teknologioita, jotka tarjoavat jo hyvin suuria tiedonsiirtonopeuksia. Tulevaisuuden palvelut vaativat kuitenkin uusia ominaisuuksia verkolta ja tämän takia uusia teknlogioita tutkitaan jatkuvasti lisää. Viidennen sukupolven (5G) teknologia pyrkii kasvattamaan tiedonsiirtonopeuksia entisestään. Lisäksi on ennustettu, että tulevaisuuden teknologiat vaativat tukea myös pienille ja viivekriittisille lähetyksille, kuten Internet of Things (IoT) ja Machineto-Machine (M2M) -tyyppisille palveluille. Tämä tarkoittaa, että verkkoon yhdistettyjen laitteiden määrä tulee kasvamaan räjähdysmäisesti. Verkossa ovat jatkossa esimerkiksi älykkäät autot, kodinkoneet, sensorit ja monet muut älykkäät laitteet, mikä vaatii mobiiliverkoilta merkittävästi suurta kapasiteettia ja joustavuutta. Tässä diplomityössä tutkitaan kahden uuden aaltomuodon soveltuvuutta 5G aaltomuodoksi: ikkunoitu CP-OFDM ja nopeaan konvoluutioon perustuva suodatettu CP-OFDM. Referenssinä on käytetty LTE-tyylistä kanavasuodatettua CP-OFDM aaltomuotoa vertaillen alltomuotojen spektraalista tehokkuutta ja vuototehoa. Aaltomuotojen suorituskykyä vertaillaan lopuksi kokonaisen tietoliikennelinkin yli. Tulosten perusteella kanavan käyttötehokkuus kasvaa uusilla aaltomuodoilla niin laaja- kuin kapeakaistalähetyksissä, mahdollistaen suurempia tiedonsiirtonopeuksia samassa kanavassa. Parannusta on havaittavissa erityisesti kapeakaistaisten lähetysten vuototehossa. Tämä sallii taajudessa lähekkäin olevien eri alikantoaaltoväliä, eri mittaisia syklisiä etuliitteitä tai eri aikasynkronisuusvaatimuksia käyytävien signaalien lähettämisen samanaikaisesti, häiritsemättä merkittävästi muita lähetyksiä.The demands for modern wireless cellular networks are increasing constantly due to the introduction of new mobile devices and services. Additionally, mobile networks are being used as a primary Internet connection as the current wireless networks are able to achieve similar user experiences than with wired connections in most applications. Long Term Evolution (LTE) and LTE-Advanced are current 4G technologies already allowing very high peak data rates. However, additional features are needed from network to satisfy traffic demands of the future and suitable technologies are in high interest in nowadays research. The fifth generation (5G) wireless system targets to increase data transmission rates further. In addition, it has been forecast that the traffic trends of the future becomes more delay-critical and small bursts communication has a bigger role. These type of services are e.g. Internet of Things (IoT) and Machine-to-Machine (M2M) communications. These increases dramatically the number of devices connected to Internet, for example smart cars, domestic appliances, sensors and other smart devices, which will require significantly improved capacity and flexibility from the forthcoming mobile communication networks. In this thesis, two waveform candidates for 5G are evaluated and compared: Windowed CP-OFDM and Fast Convolution based Filtered CP-OFDM. LTE-like channel filtered CP-OFDM is used as a reference in spectral efficiency, power leakage and overall link performance comparisons of the waveforms. It will be shown that the spectral utilization is improved with proposed waveforms in broadband and narrowband transmissions, which allows higher data rates inside the same bandwidth. The most significant improvement is observed in narrowband power leakage evaluations. Reduced power leakage allows to transmit several narrowband signals with different subcarrier spacings, cyclic prefix lengths, or different timing accuracy with tight frequency spacing without significant interference levels

    Nopeaan konvolutioon perustuva suodatettu OFDM ja ikkunoitu OFDM aaltomuotojen suorituskykyvertailussa 5G fyysiselle kerrokselle

    Get PDF
    Nykyisten mobiiliverkkojen vaatimukset kasvavat jatkuvasti, mikä johtuu pitkälti uusien mobiililaitteiden ja -palveluiden suosion kasvusta. Lisäksi matkapuhelinverkkoja on alettu käyttämään pääasiallisena internetyhteytenä, sillä nykyteknologialla on mahdollista saavuttaa kiinteään laajakaistayhteyksiin verrattavia käyttäjäkokemuksia useimmissa sovelluksissa. Nykyiset Long Term Evolution (LTE) ja LTE-Advanced ovat neljännen sukupolven (4G) teknologioita, jotka tarjoavat jo hyvin suuria tiedonsiirtonopeuksia. Tulevaisuuden palvelut vaativat kuitenkin uusia ominaisuuksia verkolta ja tämän takia uusia teknlogioita tutkitaan jatkuvasti lisää. Viidennen sukupolven (5G) teknologia pyrkii kasvattamaan tiedonsiirtonopeuksia entisestään. Lisäksi on ennustettu, että tulevaisuuden teknologiat vaativat tukea myös pienille ja viivekriittisille lähetyksille, kuten Internet of Things (IoT) ja Machineto-Machine (M2M) -tyyppisille palveluille. Tämä tarkoittaa, että verkkoon yhdistettyjen laitteiden määrä tulee kasvamaan räjähdysmäisesti. Verkossa ovat jatkossa esimerkiksi älykkäät autot, kodinkoneet, sensorit ja monet muut älykkäät laitteet, mikä vaatii mobiiliverkoilta merkittävästi suurta kapasiteettia ja joustavuutta. Tässä diplomityössä tutkitaan kahden uuden aaltomuodon soveltuvuutta 5G aaltomuodoksi: ikkunoitu CP-OFDM ja nopeaan konvoluutioon perustuva suodatettu CP-OFDM. Referenssinä on käytetty LTE-tyylistä kanavasuodatettua CP-OFDM aaltomuotoa vertaillen alltomuotojen spektraalista tehokkuutta ja vuototehoa. Aaltomuotojen suorituskykyä vertaillaan lopuksi kokonaisen tietoliikennelinkin yli. Tulosten perusteella kanavan käyttötehokkuus kasvaa uusilla aaltomuodoilla niin laaja- kuin kapeakaistalähetyksissä, mahdollistaen suurempia tiedonsiirtonopeuksia samassa kanavassa. Parannusta on havaittavissa erityisesti kapeakaistaisten lähetysten vuototehossa. Tämä sallii taajudessa lähekkäin olevien eri alikantoaaltoväliä, eri mittaisia syklisiä etuliitteitä tai eri aikasynkronisuusvaatimuksia käyytävien signaalien lähettämisen samanaikaisesti, häiritsemättä merkittävästi muita lähetyksiä.The demands for modern wireless cellular networks are increasing constantly due to the introduction of new mobile devices and services. Additionally, mobile networks are being used as a primary Internet connection as the current wireless networks are able to achieve similar user experiences than with wired connections in most applications. Long Term Evolution (LTE) and LTE-Advanced are current 4G technologies already allowing very high peak data rates. However, additional features are needed from network to satisfy traffic demands of the future and suitable technologies are in high interest in nowadays research. The fifth generation (5G) wireless system targets to increase data transmission rates further. In addition, it has been forecast that the traffic trends of the future becomes more delay-critical and small bursts communication has a bigger role. These type of services are e.g. Internet of Things (IoT) and Machine-to-Machine (M2M) communications. These increases dramatically the number of devices connected to Internet, for example smart cars, domestic appliances, sensors and other smart devices, which will require significantly improved capacity and flexibility from the forthcoming mobile communication networks. In this thesis, two waveform candidates for 5G are evaluated and compared: Windowed CP-OFDM and Fast Convolution based Filtered CP-OFDM. LTE-like channel filtered CP-OFDM is used as a reference in spectral efficiency, power leakage and overall link performance comparisons of the waveforms. It will be shown that the spectral utilization is improved with proposed waveforms in broadband and narrowband transmissions, which allows higher data rates inside the same bandwidth. The most significant improvement is observed in narrowband power leakage evaluations. Reduced power leakage allows to transmit several narrowband signals with different subcarrier spacings, cyclic prefix lengths, or different timing accuracy with tight frequency spacing without significant interference levels

    Cognitive Radio Dynamic Access Techniques

    Get PDF
    corecore