20,919 research outputs found

    The Infrared Imaging Spectrograph (IRIS) for TMT: optical design of IRIS imager with "Co-axis double TMA"

    Get PDF
    IRIS (InfraRed Imaging Spectrograph) is one of the first-generation instruments for the Thirty Meter Telescope (TMT). IRIS is composed of a combination of near-infrared (0.84--2.4 μ\mum) diffraction limited imager and integral field spectrograph. To achieve near-diffraction limited resolutions in the near-infrared wavelength region, IRIS uses the advanced adaptive optics system NFIRAOS (Narrow Field Infrared Adaptive Optics System) and integrated on-instrument wavefront sensors (OIWFS). However, IRIS itself has challenging specifications. First, the overall system wavefront error should be less than 40 nm in Y, z, J, and H-band and 42 nm in K-band over a 34.0 ×\times 34.0 arcsecond field of view. Second, the throughput of the imager components should be more than 42 percent. To achieve the extremely low wavefront error and high throughput, all reflective design has been newly proposed. We have adopted a new design policy called "Co-Axis double-TMA", which cancels the asymmetric aberrations generated by "collimator/TMA" and "camera/TMA" efficiently. The latest imager design meets all specifications, and, in particular, the wavefront error is less than 17.3 nm and throughput is more than 50.8 percent. However, to meet the specification of wavefront error and throughput as built performance, the IRIS imager requires both mirrors with low surface irregularity after high-reflection coating in cryogenic and high-level Assembly Integration and Verification (AIV). To deal with these technical challenges, we have done the tolerance analysis and found that total pass rate is almost 99 percent in the case of gauss distribution and more than 90 percent in the case of parabolic distribution using four compensators. We also have made an AIV plan and feasibility check of the optical elements. In this paper, we will present the details of this optical system.Comment: 18 pages, 14 figures, Proceeding 9908-386 of the SPIE Astronomical Telescopes + Instrumentation 201

    Statistical methods for tissue array images - algorithmic scoring and co-training

    Full text link
    Recent advances in tissue microarray technology have allowed immunohistochemistry to become a powerful medium-to-high throughput analysis tool, particularly for the validation of diagnostic and prognostic biomarkers. However, as study size grows, the manual evaluation of these assays becomes a prohibitive limitation; it vastly reduces throughput and greatly increases variability and expense. We propose an algorithm - Tissue Array Co-Occurrence Matrix Analysis (TACOMA) - for quantifying cellular phenotypes based on textural regularity summarized by local inter-pixel relationships. The algorithm can be easily trained for any staining pattern, is absent of sensitive tuning parameters and has the ability to report salient pixels in an image that contribute to its score. Pathologists' input via informative training patches is an important aspect of the algorithm that allows the training for any specific marker or cell type. With co-training, the error rate of TACOMA can be reduced substantially for a very small training sample (e.g., with size 30). We give theoretical insights into the success of co-training via thinning of the feature set in a high-dimensional setting when there is "sufficient" redundancy among the features. TACOMA is flexible, transparent and provides a scoring process that can be evaluated with clarity and confidence. In a study based on an estrogen receptor (ER) marker, we show that TACOMA is comparable to, or outperforms, pathologists' performance in terms of accuracy and repeatability.Comment: Published in at http://dx.doi.org/10.1214/12-AOAS543 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Plasma Processing of III-V Materials for Energy Efficient Electronics Applications

    Get PDF
    This paper reviews some recent activity at the James Watt Nanofabrication Centre in the University of Glasgow in the area of plasma processing for energy efficient compound semiconductor-based transistors. Atomic layer etching suitable for controllable recess etching in GaN power transistors will be discussed. In addition, plasma based surface passivation techniques will be reviewed for a variety of compound semiconductor materials ((100) and (110) oriented InGaAs and InGaSb)

    Modelling the behaviour of microbulk Micromegas in Xenon/trimethylamine gas

    Get PDF
    We model the response of a state of the art micro-hole single-stage charge amplication device (`microbulk' Micromegas) in a gaseous atmosphere consisting of Xenon/trimethylamine at various concentrations and pressures. The amplifying structure, made with photo-lithographic techniques similar to those followed in the fabrication of gas electron multipliers (GEMs), consisted of a 100 um-side equilateral-triangle pattern with 50 um-diameter holes placed at its vertexes. Once the primary electrons are guided into the holes by virtue of an optimized field configuration, avalanches develop along the 50 um-height channels etched out of the original doubly copper-clad polyimide foil. In order to properly account for the strong field gradients at the holes' entrance as well as for the fluctuations of the avalanche process (that ultimately determine the achievable energy resolution), we abandoned the hydrodynamic framework, resorting to a purely microscopic description of the electron trajectories as obtained from elementary cross-sections. We show that achieving a satisfactory description needs additional assumptions about atom-molecule (Penning) transfer reactions and charge recombination to be made

    An Efficient Data-aided Synchronization in L-DACS1 for Aeronautical Communications

    Full text link
    L-band Digital Aeronautical Communication System type-1 (L-DACS1) is an emerging standard that aims at enhancing air traffic management (ATM) by transitioning the traditional analog aeronautical communication systems to the superior and highly efficient digital domain. L-DACS1 employs modern and efficient orthogonal frequency division multiplexing (OFDM) modulation technique to achieve more efficient and higher data rate in comparison to the existing aeronautical communication systems. However, the performance of OFDM systems is very sensitive to synchronization errors. L-DACS1 transmission is in the L-band aeronautical channels that suffer from large interference and large Doppler shifts, which makes the synchronization for L-DACS more challenging. This paper proposes a novel computationally efficient synchronization method for L-DACS1 systems that offers robust performance. Through simulation, the proposed method is shown to provide accurate symbol timing offset (STO) estimation as well as fractional carrier frequency offset (CFO) estimation in a range of aeronautical channels. In particular, it can yield excellent synchronization performance in the face of a large carrier frequency offset.Comment: In the proceeding of International Conference on Data Mining, Communications and Information Technology (DMCIT
    • …
    corecore